K2.14-离散系统稳定性判据
线性离散系统的稳定性判据

线性离散系统的稳定性判据(1) 修正劳斯—胡尔维茨稳定判据连续系统的劳斯—胡尔维茨稳定判据,是通过系统特征方程的系数及其符号来判断系统的稳定性。
这个方法实际上仍是判断特征方程的根是否都在s平面的左半部。
然而,在离散系统中,判断系统的稳定性,是判断系统特征方程的根是否全在z平面的单位圆内。
因此,离散系统不能直接应用劳斯—胡尔维茨判据来分析稳定性。
从理论上分析,利用关系式z=eTs,可以将z为变量的特征方程转换为以s为变量的特征方程。
但因为s在指数中,代换运算不方便。
为此,必须引入另一种线性变换。
将z平面单位圆内区域映射为另一平面上的左半部。
这样,就可以应用劳斯—胡尔维茨稳定判据来判断离散系统的稳定性。
为此,可采用双线性变换方法开展判断。
双线性变换Ⅰ:(1)式中w是复变量,由上式解得(2)或采用双线性变换Ⅱ:(3)或写成(4)此时(5)双线性变换Ⅱ与双线性变换Ⅰ一样,可以将z平面的单位圆变换成w平面的虚轴。
令w平面的虚轴为,则w平面的左半平面为稳定区域,为w平面的频率,且由上式可知其中为s平面的频率。
此时,s平面、z平面以及w平面的关系为图1 s平面、z平面及w平面映射关系当较小时有(6)即w平面的频率近似于s平面的频率。
这是采用双线性变换Ⅱ的优点之一。
另外,双线性变换Ⅱ也与下一章的双线性变换一致,故建议使用双线性变换Ⅱ。
通过z-w变换,就可以应用劳斯—胡尔维茨判据分析线性离散系统的稳定性。
胡尔维茨判据:由系统特征方程各系数组成的主行列式及其顺序主子式全部为正。
该方法随着系统阶数的增加,计算会变得复杂。
此时可以采用下面劳斯判据。
劳斯判据的要点是:①对于特征方程,若系数的符号不一样,则系统不稳定。
若系数符号一样,建立劳斯行列表。
②建立劳斯列表③若劳斯行列表第一列各元素严格为正,则所有特征根均分布在左半平面,系统稳定。
④若劳斯行列表第一列出现负数,系统不稳定。
且第一列元素符号变化的次数,即右半平面上特征根个数。
系统的稳定性和代数稳定判据

系统的稳定性和代数稳定判据系统的稳定性和代数稳定判据系统稳的定和代性稳数定判据系统的稳定性和代数稳定判据稳定性的本概基一、念统系稳定的性如一个果性定线常统在扰系作用消动后,失如一个果性定常线统系在扰作动用失消,能后恢够到复始的原衡状平态,能够复恢到始的平原衡态状,系即的零统输响入应是收的,则称敛统系是定的。
稳应收敛是的则,称统是系定的。
反之稳,若统不能恢系复到始的平原衡状,态反之若系,统能不复到原恢的平始衡态状,即系的零统入响应具输有幅震荡或等发性散,质即系统的零入输响具应等幅有荡或震发性质,散则称统是不稳系的。
定则称系统不是稳定的。
系统的稳定性和代数稳定判据二、线性统稳定系的充条件要设闭环系统的传函数C(s)递bmsm+m1bsm1 + +bs +b B(s)0 Φ1s( ) = = = nn 1(R) ans s+ n1sa++ a1 + as0D s()(m ≤ n )令p 系为特征统程) 方0= (Ds ,, , (i =i 12 n)而R( ) =s1 彼此等不干扰为理。
脉冲函数想:C ()s=k的根,B( ) s(Bs) R( s) =D( )s D (s)则αr js +β cji =∑ ∑ j +=1 (sσ j+j ωj ) (σs j jω j ) =i1 s pi[][]k+ 2 r=n ct() = ∑ i cei =1kpi t ∑+ej=1 rσ jt( A joc ωs j t+ B j s n i ω jt )(t≥ )0系统的稳定性和代数稳定判据式上明表:式表明上:1 当且。
仅系统当的征特根全具有负部部(和实均小。
当于且当系仅统特的征全部具有根实负部(),即征特的位根分布置在面平左半的时部,即征特根的置分布在S平面位的半左部时),零即特征根位置的分在布平的左面半时,才能成部此系时在扰动统消后能失恢复原来的平衡到态,状立此时,系统在扰消动失后能复到恢来的原衡状平态,系则统是稳的定统。
K2.14 离散系统稳定性判别

特例:对二阶系统:A(z)=a2z2+a1z+a0,易得
A(1)>0, A(-1)>0, a2>|a0|
6
Xidian University, ICIE. All Rights Reserved
离散系统稳定性判据 例2 已知:A(z)=4z4-4z3+2z-1,判断系统稳定性。
解:
A(1)=1>0 (-1)4A(-1)=5>0
an-1 a1 cn-2 c1 dn-3 d1
第2n-3行 r2 r1
an-2 …… a2 a1 a0 a 2 …… an-2 an-1 an cn-3 …… c1 c0 c2 …… cn-2 cn-1 dn-4 …… d0 d2 …… dn-2
r0
5
Xidian University, ICIE. All Rights Reserved
z2 (z 1)
(z 1)(z 0.4)(z 0.6)
Y (z) 2.08z 0.93z 0.15z z 1 z 1 z 0.4 z 0.6
g(k) 2.08 0.93(0.4)k 0.15(0.6)k (k)
4
Xidian University, ICIE. All Rights Reserved
(2) H(z) 极点是0.4和-0.6,在单位圆内,故系统稳定。
(3) 将H(z)/z进行部分分式展开,得到
H (z) 1.4z 0.4z z 0.6 z 0.4 z 0.6
h(k ) 1.4(0.4)k 0.4(0.6)k (k )
(4) 求阶跃响应
Y(z) F(z)H(z)
(1) 离散系统稳定的时域充要条件: | h (k ) | k
离散系统Z变换分析法02

3.闭环 Z 传递函数的结构图1
闭环 Z 传递函数的结构图2
2.5.4 过渡过程特性
与连续系统用传递函数分析过渡过程类 似,可以用 Z传递函数来分析离散系统的过 渡过程特性。 • 分析离散系统的过渡过程特性的步骤: • • 1)Y(Z)=GC(Z)R(Z)
•
•
2)由Y(Z)求出y(kT)
例题12 例题12
2. 开环 Z 传递函数 • 线件离散系统的开环 Z传递函数 跟连续系统的开环传递函数具有类似 的特性。
串联环节的Z传递函数
例题9
z az , G2 ( z ) = , 设图2 − 10 a)中G1 ( z ) = ( − aT z −1 z −e 试求开环Z传递函数G ( z )。 z az 解:G ( z ) = G1 ( z )G2 ( z ) = z − 1 z − e − aT az 2 = ( z − 1)( z − e − aT )
(1)离散系统稳定的充要条件(时域) 设:系统差分方程
c(k ) + a1c(k − 1) + a2 c(k − 2) + L + an c(k − n) = b0 r (k ) + b1r (k − 1) + L + b0 r (k − m)
系统齐次方程
ቤተ መጻሕፍቲ ባይዱ
c(k ) + a1c(k − 1) + a2 c(k − 2) + L + an c(k − n) = 0
−1 −1 −Ts
1 1 )( − )] s s+a
= 1(t ) − 1(t − T ) − e − at + e − a ( t −T ) 对y (t )采样,离散化后,得 y (kT ) = 1(kT ) − 1(kT − T ) − e −akT + e − a ( kT −T ) 则 HG ( z ) = Z [ y (kT )] z 1 z 1 1 − e − aT = − − − = − aT − aT z −1 z −1 z − e z−e z − e −aT
第五节系统的稳定性和代数稳定判据

yδ (t ) = 0 , − p j 和 −ζ k ωk 应为负实数。 要使 lim t →∞
其单位脉冲响应函数为:
Yδ ( s ) = Φ ( s ) ⋅1 = ∑
j =1 n1
线性定常系统稳定的充要条件:
Aj +∑ Bk ( s + ζ k ωk ) + Ck ωk 1 − ζ k2 s 2 + 2ζ k ωk s + ωk2 k =1
Monday, October 14, 2013
2
定义1:对于线性定常系统,在零初始条件下,当t→∞时,系 统的单位脉冲响应为零,即
lim yδ (t ) = 0
t →∞
设系统或元件的微分方程为:
y ( n ) (t ) + an −1 y ( n −1) (t ) + ... + a0 y (t ) = bm x ( m ) (t ) + bm −1 x ( m −1) (t ) + ... + b0 x (t )
0≤ t < ∞ 0≤ t < ∞
式中:x(t)—输入,y(t)—输出 ai , (i = 0 ~ n − 1); b j , j = 0 ~ m ) 为常系数。将上式求拉氏变化,得
(sn + an−1sn−1 + ... + a1s + a0 )Y (s) = (bm sm + bm−1sm−1 + ... + b1s + b0 ) X (s)
k =1 k =1
Monday, October 14, 2013
t≥0
5
Monday, October 14, 2013
离散系统的稳定性分析

I实验名称:离散糸统的稳定性分析一、 目的要求1 •掌握香农定理,了解信号的采样保持与采样周期的关系2 •掌握采样周期对采样系统的稳定性影响。
二、 原理简述 1.信号的采样保持:电路图:连续信号x(t)经采样器采样后变为离散信号x*(t),香农(Shannon)采样定理指 出,离散信号x*(t)可以完满地复原为连续信号条件为:3 s >2® max系姓名 预定时 间____________ 专业 ________________ ____________ 学号 ________________ 实验时2014-5-27 2014-5-27____________ 间 _________________班授课老师 ________________________ 实验台号I n I® = -------式中3 S为米样角频率,且',(T为米样周期),3 max为连续信号x (t)的幅频谱| x (j CD 的上限频率T s 若连续信号x (t)是角频率为D S = 22.5的正弦波,它经采样后变为x*(t),则25(1-尹) ,1 _ 12 占[(2厂一1+訂巧二+ (1—訂「一 27>力)]0-1)匕-严)闭环脉冲传递函数为:C ⑵12.5[(2厂-l + d + (l -严—22)]丽'一 X 匚(25丁二 13.5 — 11.牝引)二十(12.5 — 11.5邑血—25T 严) 闭环采样系统的特征方程式为:z 2 +(25T-13.5 1 L5e _2r )z+ Q2.5-11 .Se'3r -25Te^T ) = 0特征方程式的根与采样周期T 有关,若特征根的模均小于1,则系统稳定,若有 一个特征根的模大于1,则系统不稳定,因此系统的稳定性与采样周期 T 的大小 有关。
仪器设备PC 机一台,TD-ACC+ (或TD-ACS )教学实验系统一套。
系统的稳定性常见判据

例4
(4s 1) G(s)H (s) s2(s 1)(2s 1)
P=1
P=0
稳定
1 22
G( j)H( j)
10.6
1/ 2 2
不稳定
三、Nyquist 稳定判据
7. 应用举例
例1 P=0
G(s)H(s)
K
(T1s 1)(T2 s 1)
不论K取任何正值,系统总是稳定的
2. 不稳定现象的存在是由于反馈作用 3. 稳定性是指自由响应的收敛性
定义:
无输入时的初态
系统在初始状态作用下
输入引起的初态
输出
收敛(回复平衡位置)
(响应) 发散(偏离越来越大)
系统稳定 系统不稳定
2. 系统稳定条件
线性定常系统:
anxo(n) (t )
an
1
x ( n1) o
(
t
)
a1
x o(
➢ 减小K值,使G(j)H(j)减小,曲线①有可能因模减小, 相位不变,而不包围(-1,j0),因而系统趋于稳定。
➢ 若K不变,亦可增加导前环节的时间常数T4、T5使相位减 小,曲线①变成曲线②。由于曲线②不包围点(-1,j0),故 系统稳定。
三、Nyquist 稳定判据
7. 应用举例
例4
G(s)H(s)
sn
an1 an
sn1 a1 an
s
a0 an
(s s1 )( s s2 )(s sn )
s1,s2,…,sn:特征根
n
n
n
因为
(s s1 )( s s2 )(s sn ) sn ( si )sn1 ( si s j )sn2 (1)n si
第七节 离散系统的稳定性分析

22 可以看出主频段的面积影射成单位圆内,
而且任一次频段包围面积也影射为同一单 位圆,说明Z与S平面间的影射不是一一对 应,S中一点对应Z面中一点,但Z中一点对 应S平面中多个点。
例一:
轧钢机压下位置控制系统速度, T u 控制系
统等效时间常数,T u 100ms , 采样周期取为
系统稳定性。
一 稳定条件及S,E平面对应关 系
Z eTS eT ( j )
j 2
eT e jT eT e s ,s采样频率, 则,Z eT , T
连续系统中,闭环传递函数极点均位于s平面
的左半平面( 0)时,系统稳定,由此可以对
应出Z,S平面稳定区域之间的映射关系。
S平面
0 系统稳定
T=100ms,开环增益K=10
U(S)
K
S (T u S 1)
Y(S)
分析系统的稳定性
开环脉冲传递函数
G(Z)
Z
K
S(T u
S
1 )
KZ
1
Tu
S T u S 1
K
Z Z 1
Z
Z
e
T
T
u
T
KZ(1 e T u)
T
(z 1)(z e T u )
0.632KZ (Z 1)(Z 0.368)
概念介绍(反映系统动态品质) 一.等频线(等 线) 在S平面上,等频线是一条平行于实轴的直
线,频率 恒定
Z eTS eT *e jT
J s
S2 S 4
z
S
4
s
T
2
对应到Z平面上,映射成了从原点出发向外 辐射的一条直线,与实轴夹角T 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1) 将差分方程两边取 z变换,得
Y (z) 0.2z1Y (z) 0.24z2Y (z) F (z) z1F (z)
H
(z)
Y (z) F(z)
1
1 0.2 z 1
H(z)
B(z) A(z)
bmzm an zn
bm1zm1 b0 an1zn1 a0
要判断A(z)=0的所有根的绝对值是否都小于1。
朱里列表:
第1行 an 第2行 a0 第3行 cn-1 第4行 c0 第5行 dn-2 第6行 d0 ……
an-1 a1 cn-2 c1 dn-3 d1
第2n-3行 r2 r1
6
离散系统稳定性判据 例2 已知:A(z)=4z4-4z3+2z-1,判断系统稳定性。
解:
A(1)=1>0 (-1)4A(-1)=5>0
朱里列表:
4 -4 0 2 -1 -1 2 0 -4 4 15 -14 0 4 4 0 -14 15 209 -210 56
根据朱里准则:4>1 , 15>4 , 209>56 所以系统稳定。
Y(z) F(z)H(z)
z2 (z 1)
ห้องสมุดไป่ตู้
(z 1)(z 0.4)(z 0.6)
Y (z) 2.08z 0.93z 0.15z z 1 z 1 z 0.4 z 0.6
g(k) 2.08 0.93(0.4)k 0.15(0.6)k (k)
离散系统稳定性判据
(3) 离散因果系统稳定性判定--朱里准则
z 1 0.24z2
3
离散系统稳定性判据
(2) H(z) 极点是0.4和-0.6,在单位圆内,故系统稳定。
(3) 将H(z)/z进行部分分式展开,得到
H (z) 1.4z 0.4z z 0.6 z 0.4 z 0.6
h(k ) 1.4(0.4)k 0.4(0.6)k (k )
(4) 求阶跃响应
an-2 …… a2 a1 a0 a 2 …… an-2 an-1 an cn-3 …… c1 c0 c2 …… cn-2 cn-1 dn-4 …… d0 d2 …… dn-2
r0
5
离散系统稳定性判据
第3行按下列规则计算:
c n1
an a0
a0 an
cn2
an a0
a1 an1
c n3
an a0
a2 an2
…
一直到第2n-3行,该行有3个元素。
朱里准则指出:
A(z)=0的所有根都在单位圆内的充要条件是:
(1) A(1)>0
(2) (-1)nA(-1)>0
(3) an>|a0| cn-1>|c0| dn-2>|d0| …… r2>|r0| 对奇数行,其第1个元素必大于最后一个元素的绝对值。
特例:对二阶系统:A(z)=a2z2+a1z+a0,易得 A(1)>0, A(-1)>0, a2>|a0|
(2) 离散系统稳定性的Z域充要条件: 若LTI离散系统的系统函数H(z)的收敛域包含单位
圆,则系统为稳定系统。
若LTI离散因果系统稳定,要求其系统函数H(z)的极
点全部在单位圆内。
2
离散系统稳定性判据
例1 某离散系统的差分方程为 y(k) 0.2y(k 1) 0.24y(k 2) f (k) f (k 1)
知识点K2.14
离散系统稳定性判据
离散系统稳定性判据
主要内容:
1.系统函数与系统特性 2.离散系统稳定性判据
基本要求:
1.掌握系统函数与系统特性 2.掌握离散系统稳定性判据
1
离散系统稳定性判据 K2.14 离散系统稳定性判据(因果系统)
(1) 离散系统稳定的时域充要条件: | h (k ) | k
7