完整word版,浙江大学2016-2017学年第2学期高等数学A期末考试试卷
2016-2017学年高等数学期末试卷A及参考答案-精品文档

华南农业大学期末考试试卷(A 卷)2016~2017学年第2学期 考试科目:高等数学B Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分) 1.设两点(3,1,1)A ,(2,0,1)B ,则与AB 方向相同的单位向量=e .2.设函数2(,)(f x y y x =+-,则(1,1)y f = .3.已知{}22(,)4D x y x y =+≤,则2d d Dx y =⎰⎰ .4.幂级数1(1)2nnn x n +∞=-⋅∑的收敛区间为 . 5.若2xy Ce=为微分方程()0yp x y '+=的通解,则()p x = .二、单项选择题(本大题共5小题,每小题3分,共15分) 1.直线11211x y z -+==-与平面1x y z -+=的位置关系是( ) A .平行; B .垂直;C .夹角为4π; D .夹角为4π-.2.设z =,则 z zxy x y∂∂+=∂∂ ( ) A .0; B .12; C; D. 3.设22{(,)|,0}D x y xy x y =+≤≥,则二重积分(,)Df x y dxdy =⎰⎰( )A.100(,)dy f x y dx ⎰⎰; B.100(,)dy f x y dx ⎰⎰; C .1100(,)dx f x y dy ⎰⎰; D.100(,)dx f x y dy ⎰⎰.4.下列级数收敛的是 ( )A.n +∞=; B.1n +∞=; C.n +∞=; D.1n +∞=5.差分方程122t t ty y t +-=⋅的特解形式为 ( )A .2t t y A =⋅;B .2t t y At =⋅;C .()2t t y At B =+⋅;D .()2t t y t At B =+⋅.三、计算题(本大题共6小题,每小题8分,共48分)1. 求过点(2,1,0)且与直线520350x y z y z +--=⎧⎨--=⎩垂直的平面方程.2. 设函数yz x =(0,1x x >≠),求2zx y∂∂∂.3. 求函数arctanxz xy y=+在点(0,1)处的全微分.4.试将函数2()12xf x x x=+-展开成x 的幂级数,并指出其收敛区间.5.计算二重积分22Dx I dxdy y =⎰⎰,其中D 是由直线,2y x x ==及1xy =所围成的闭区域.6.求微分方程30xy y '''+=满足初始条件(1)1,(1)2y y '==-的特解.四、解答题(本大题共3小题,第1题 10分,第2、3题各6分,共 22 分) 1.设某工厂生产A 和B 两种产品,产量分别为x 和y (单位:千件), 利润函数为22(,)2336590L x y x xy y x y =---++(单位:万元),问如何安排生产才能使总利润最大?最大利润是多少?2.设0S 为初始存款,年利率为(01)r r <<,t 年末金额累积到t S (1,2,t =).若以复利累积,试求t S 满足的差分方程,并解此差分方程.3.若0,1n a n ≥≥,级数21n n a +∞=∑收敛,试讨论级数1nn a n+∞=∑的敛散性。
高数下期末考试试卷及答案

⋯⋯⋯⋯⋯2017 学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A)注意:1、本试卷共 3 页;2、考试时间110 分钟;3、姓名、学号必须写在指定地方7.设级数a a 0 (n )为交错级数,,则(). nnn 1(A) 该级数收敛(B)该级数发散(C)该级数可能收敛也可能发散(D)该级数绝对收敛8. 下列四个命题中,正确的命题是().(A)若级数 a 发散,则级数n2a 也发散n名姓⋯⋯⋯⋯⋯题号一二三四总分得分(B)若级数(C)若级数nn112a发散,则级数n2a收敛,则级数nnn11a也发散na 也收敛nn 1 n 1⋯⋯.阅卷人得分一、单项选择题(8 个小题,每小题 2 分,共16 分)将每题的正确答案的(D)若级数|a n |收敛,则级数n 1n 12a 也收敛n号学⋯⋯⋯代号A B C D、、或填入下表中.题号 1 2 3 4 5 6 7 8 阅卷人得分⋯线答案二、填空题(7 个小题,每小题 2分,共14 分) .号序封密1.已知a与b都是非零向量,且满足a b a b,则必有().(A) a b0(B) a b0(C) a b0 (D) a b03x 4y 2z 61. 直线x 3y z a 0与z 轴相交,则常数 a为.号班学教12 2lim( xy )sinx 0y 0过2.极限( ).y2.设( , ) ln( ),f x y x x则f2 2D : x y 2x ,二重积分(x y)d= .(1,0)___________.y2 2x y超(A) 0 (B) 1 (C) 2 (D)不存在3.函数 f (x, y) x y 在(3, 4) 处沿增加最快的方向的方向导数为.要3.下列函数中,df f 的是( ).(A)f ( x, y) xy (B)f (x, y) x y c0,c0为实数不4.设纸卷试题答2 2 x y(C)f (x, y) x y (D)f ( x, y) e4.函数 f (x, y) xy (3 x y) ,原点(0,0) 是f (x, y) 的( ).(A)驻点与极值点(B)驻点,非极值点5.设f x 是连续函数,D2 2{( x, y ,z) | 0 z 9 xy } ,2 2f (x y )dv在柱面坐标系下学大峡三⋯⋯.⋯⋯⋯⋯⋯⋯⋯⋯(C)极值点,非驻点(D)非驻点,非极值点5 .设平面区域x y2 2D : (x 1) (y1) 2 ,若I1d ,4Dx yI d ,24Dx yI3 d ,则有().34D(A)I I I (B)I1 I 2 I3 (C)I 2 I1 I3 (D)I 3I1 I 21 2 32 y2x2 26.设椭圆L :1的周长为l ,则(3x 4y )ds ().4 3L(A) l (B) 3l (C) 4l (D) 12l的三次积分为.6. 幂级数n 1n( 1)1nxn!的收敛域是.1 , xf ( x)7. 将函数 21 x , 0 x以2 为周期延拓后,其傅里叶级数在点x 处收敛于.2017 年《高等数学Ⅰ(二)》课程期末考试试卷 A 共3 页第1页⋯阅卷人得分4.设是由曲面z xy, y x, x 1及z 0 所围成的空间闭区域,求2 3d d dI xy z x y z .名姓⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯x1.设u xf (x, )y解:三、综合解答题一( 5 个小题,每小题7分,共35分,解答题应写出文字说明、证明过程或演算步骤),其中 f 有连续的一阶偏导数,求ux,uy.解:.⋯号学⋯⋯⋯线封z z xy 在点(2,1,0) 处的切平面方程及法线方程.2.求曲面 e 3解:号序密过5.求幂级数nx n 1 的和函数S(x) ,并求级数n 1 nn 的和.n1 2解:超号班学要教不纸卷试题答3. 交换积分次序,并计算二次积分解:sin ydxdyxy.学大峡三⋯⋯.⋯⋯⋯⋯⋯⋯⋯⋯2017 年《高等数学Ⅰ(二)》课程期末考试试卷 A 共3 页第2页阅卷人得分四、综合解答题二( 5 个小题,每小题7分,共35分,解答题应写出文字⋯⋯⋯⋯⋯⋯说明、证明过程或演算步骤)1. 从斜边长为 1 的一切直角三角形中,求有最大周长的直角三角形.解4.计算xdS,为平面x y z 1在第一卦限部分.解:名姓⋯⋯⋯⋯⋯⋯.⋯号学⋯⋯⋯线2.计算积分L2 2( )dx y s,其中L 为圆周2 2x y ax ( a0).号序封密解:蝌,5.利用高斯公式计算对坐标的曲面积分dxdy + dydz + dzdxS2 2 2其中为圆锥面z x y z 0 z 1介于平面及之间的部分的下侧.解:过超号班学要教不纸卷试题答3.利用格林公式,计算曲线积分I (x y )dx (x 2xy)dy ,其中L 是由抛物线y x2 和2 2Lx y2 所围成的区域D的正向边界曲线.学大峡三⋯⋯.⋯y2y x2 x y⋯D⋯⋯O x⋯⋯⋯⋯2017 年《高等数学Ⅰ(二)》课程期末考试试卷 A 共3 页第 3 页2017 学年春季学期(B )若级数2a 发散,则级数na 也发散;n《高等数学Ⅰ(二) 》期末考试试卷(A)答案及评分标准(C )若级数n n 1 12 a 收敛,则级数 nn n 11a 也收敛;n(D )若级数|a n |收敛,则级数2a 也收敛.nn 1n 1一、单项选择题( 8 个小题,每小题 2 分,共 16 分)题号1 2 3 4 5 6 7 8答案D A B B A D C D二、填空题 (7 个小题,每小题 2 分,共 14 分) .3x 4y 2z 6 0 x 3y z a 01. 直线与 z 轴相交,则常数 a 为 3 。
《高等数学》 2016-2017学年第一学期期末试卷A卷

河海大学2016—2017学年第一学期 《高等数学》 期末试卷(A )一、选择题(每小题3分,共15分) 1.设函数xxx f g x x f -+=-=-11))((,1)2(,则)3(g 等于( A )。
A .3- B .2- C .0 D .1 2.设x x x x y ++-=,则y 是x 的( A )阶无穷小。
A .81B .41C .21D .13.点0=x 是函数xe xf 111)(+=的( C )。
A .振荡间断点 B .可去间断点 C .跳跃间断点 D .无穷间断点 4.下列条件中,( C )是函数)(x f 在0x 处有导数的充分必要条件。
A .hh x f h x f h 2)()(lim000--+→存在 B .)(lim 0x f x x '→存在C .)(x f 在0x 处可微D .)(x f 在0x 处连续 5.设)(u f 可微,则)(sin x f y =的微分=dy ( B )。
A .dx x f )(sin 'B .xdx x f cos )(sin 'C .()x d x f sin )(sin 'D .xdx x f sin )(sin '二、填空题(每小题3分,共15分): 1. 函数[]x x y -=的最小正周期是1。
2.设)0(003cos )(>⎪⎪⎩⎪⎪⎨⎧>-+≤+=a x x a x a x x xx f ,当=a 49时, 0=x 是)(x f的连续点。
3.⎪⎭⎫⎝⎛+=∞→1lim )(2nx nx x f n 的间断点是=x ,且是第二类间断点。
4.设12)(-=x e x f ,则()=)0(2008f 120082-e 。
5.设方程0arctan =+-y y x 确定的函数)(x y y =,求=dxdy221y y +。
三、(6分)叙述∞=→)(lim 0x f x 的定义,并用定义证明定义∞=+→xx x 12lim0。
浙江大学大二数学专业《高等数学下》考试A卷及答案

《高等数学》(下)考试卷A适用专业: 考试日期: 试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一. 填空题:(共6小题,每空2分,共14分)1.设z=22x xy y ++,则x z ∂∂= ; yz∂∂= . 2.改变积分顺序240(,)dy f x y dx ⎰⎰= .3.函数 z=2x 2+y 2在点P(1,1)处的梯度为__________4.级数∑∞=11n n的敛散性为 .5.设平面曲线L 为下半圆周y=-21x -,则曲线积分⎰+Lds y x )(22=__________6.曲线x=41t 4,y=31t 3,z=21t 2在相应点t=1处的切线方程为_______________二.单项选择. (共8小题,每小题3分,共24分)1.设D 为圆域:x 2+y 2≤1,Ddxdy ⎰⎰=A.则A =( ) .(A) π (B) 4π (C) 2π (D) 3π. 2.lim 0n n u →∞≠是级数1n n u ∞=∑发散的( )(A).充分条件 (B). 必要条件 (C).充要条件 (D).无关条件 3.积分()(),,LP x y dx Q x y dy +⎰与路径无关的充要条件是( )(A) .P Q y x ∂∂=∂∂ (B). P Q y x∂∂=-∂∂ (C). P Q x y ∂∂=∂∂ (D). P Q y y ∂∂=∂∂ 4.设3z x y =,则dz =( ).(A)dx dy + (B)233x ydx x dy + (C) 3x dx ydy + (D) 23x ydx ydy +5.曲线积分⎰++-c yx xdyydx 22的值为( ),其中C 取圆周221x y +=的正向. (A )、π (B)、-2π (C)、 2π (D)、-π 6.已知2)()(y x ydydx ay x +++为某一函数的全微分,则a=( ) (A) -1 (B) 0 (C) 2 (D) 17.设∑为锥面z=22y x +介于z=0与z=1之间的部分,1∑是∑在第一卦限的部分,则⎰⎰∑++ds xz yz xy )(=( )(A)0 (B)4⎰⎰∑1xyds (C) 4⎰⎰∑1zyds (D) 4⎰⎰∑1xzds8.f x (x 0,y 0) 与f y (x 0,y 0)均存在是函数f(x,y)在点(x 0,y 0)处连续的( )条件 (A) 充分 (B)必要 (C)充要 (D)无关三.(8分)设z=x 3y 2-3xy 3-xy+1,求22x z ∂∂ ,22yz∂∂。
完整word版,浙江大学2016-2017学年第2学期高等数学A期末考试试卷

复旦大学高等数学A 期末考试试卷2016~2017学年第2 学期 考试科目:高等数学A 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.二元函数2ln(21)z y x =-+的定义域为 。
2. 设向量(2,1,2)a =r ,(4,1,10)b =-r,c b a λ=-r r r ,且a c ⊥r r ,则λ= 。
3.经过(4,0,2)-和(5,1,7)且平行于x 轴的平面方程为 。
4.设yz u x =,则du = 。
5.级数11(1)np n n∞=-∑,当p 满足 条件时级数条件收敛。
二、单项选择题(本大题共5小题,每小题3分,共15分)1.微分方程2()'xy x y y +=的通解是( )A .2x y Ce =B .22x y Ce =C .22y y e Cx =D .2y e Cxy = 2.求极限(,)(0,0)lim x y →= ( )A .14 B .12- C .14- D .123.直线:327x y zL ==-和平面:32780x y z π-+-=的位置关系是 ( ) A .直线L 平行于平面π B .直线L 在平面π上C .直线L 垂直于平面πD .直线L 与平面π斜交4.D 是闭区域2222{(,)|}x y a x y b ≤+≤,则Dσ= ( )A .33()2b a π- B .332()3b a π- C .334()3b a π- D .333()2b a π-5.下列级数收敛的是 ( )A .11(1)(4)n n n ∞=++∑ B .2111n n n ∞=++∑ C .1121n n ∞=-∑ D.1n ∞=三、计算题(本大题共7小题,每小题7分,共49分) 1. 求微分方程'x y y e +=满足初始条件0x =,2y =的特解。
2. 计算二重积分22Dx ydxdy x y++⎰⎰,其中22{(,)1,1}D x y x y x y =+≤+≥。
浙大期末高等数学试卷

考试时间:120分钟满分:100分一、选择题(每题5分,共20分)1. 下列函数中,在区间(0,+∞)上连续且可导的是()。
A. f(x) = x^2B. f(x) = |x|C. f(x) = e^xD. f(x) = x^32. 设f(x) = 3x^2 - 2x + 1,则f'(x) = ()。
A. 6x - 2B. 6xC. 6x + 2D. 63. 下列各数中,不属于等差数列的是()。
A. 1, 4, 7, 10, ...B. 2, 5, 8, 11, ...C. 3, 6, 9, 12, ...D. 1, 3, 6, 10, ...4. 设f(x) = x^3 - 3x + 2,则f(x)的极值点为()。
A. x = -1B. x = 0C. x = 1D. x = 25. 下列积分中,结果为π的是()。
A. ∫0^π x^2 dxB. ∫0^π sin x dxC. ∫0^π cos x dxD. ∫0^π x dx二、填空题(每题5分,共25分)6. 若函数f(x) = 2x^3 - 3x^2 + 4x + 1在x=1处的导数为2,则f'(1) =________。
7. 数列{an}的通项公式为an = 2n - 1,则数列的前10项和S10 = ________。
8. 设函数f(x) = x^2 + 3x + 2,则f(-2) = ________。
9. 设f(x) = e^x,则f'(x) = ________。
10. 设f(x) = ln(x),则f'(x) = ________。
三、解答题(共55分)11. (10分)求函数f(x) = x^3 - 6x^2 + 9x + 1的导数f'(x)。
12. (15分)已知数列{an}的通项公式为an = n^2 - 3n + 2,求证:数列{an}是等差数列。
13. (20分)设函数f(x) = x^3 - 3x + 2,求f(x)在区间[0, 3]上的最大值和最小值。
高等数学第二学期期末考试试题真题及完整答案(第2套)

高等数学第二学期期末考试试题真题及完整答案一、填空题(将正确答案填在横线上)(本大题共5小题,每小题4分,总计20分)1、设函数,则=2、曲面在点处的切平面方程为____3、= .4、曲面积分= ,其中,为与所围的空间几何形体的封闭边界曲面,外侧.5、幂级数的收敛域为。
二、选择题(将选项填在括号内)(本大题共5小题,每小题4分,总计20分)1、函数在(1,1)点沿方向的方向导数为( )。
(A) 0 (B) 1 (C) 最小 (D)最大2、函数在处( ).(A)不连续,但偏导数存在 (B)不连续,且偏导数不存在(C)连续,但偏导数不存在 (D)连续,且偏导数存在3、计算=( ),其中为(按逆时针方向绕行).(A)0 (B)(C) (D)4、设连续,且,其中D由所围成,则( )。
(A)(B) (C) (D)5、设级数收敛,其和为,则级数收敛于( )。
(A)(B)(C)(D)三、解答下列各题(本大题共3小题,每小题8分,总计24分)1、设函数由方程所确定,计算,。
2、计算,其中,为曲线,.3、求幂级数的和函数.三、解答下列各题(本大题共3小题,每小题8分,总计24分)1、求内接于半径为的球面的长方体的最大体积.2、计算,其中平面区域.3、计算,其中为平面被柱面所截得的部分.五、解答下列各题(本大题共2小题,每小题6分,总计12分)1、计算其中为上从点到点.2、将函数展开成的幂级数.答案及评分标准一、填空题 (本大题分5小题,每小题4分,共20分)1、 2、3、 4、 5、二、选择题(将选项填在括号内)(本大题共5小题,每小题4分,共20分)1、C2、A3、B4、D5、B三、解答下列各题(本大题共3小题,每小题8分,共24分)1、解:方程两端同时对分别求偏导数,有,………………6分解得:.…………………………………………8分2、解:作图(略)。
原式=………………………2分.………………………8分3、解:经计算,该级数的收敛域为。
XX大学2016—2017学年度第二学期考试试卷A卷高数1-2(A)

XX 大学2016—2017学年度第二学期考试试卷A 卷高等数学1—2注意事项:1. 请考生在下列横线上填写姓名、学号和年级专业。
2 .请仔细阅读各种题目的回答要求,在规定的位置填写答案。
3. 不要在试卷上乱写乱画,不要在装订线内填写无关的内容。
4. 满分100分,考试时间120分钟专业 学号 姓名_________________一.填空题(共24分,每小题3分)1.设函数x y z =,则__________________________=dz .2.方程333z e xyz e -=确定()y x z z ,=,则__________________=∂∂x z. 3. 曲线t t x sin -=,t y cos 1-=,2sin 2tz =在π=t 处切线方程为_________________________________________. 4. 函数2u x y z =+在点(2,1,0)M 处最大的方向导数为__________________. 5. 交换二次积分222(,)y y I dy f x y dx =⎰⎰的积分次序,得__________________=I .6.设平面曲线)10(:2≤≤=x x y L ,则曲线积分__________________=⎰ds x L.7. 幂级数∑∞=12n n n x n的收敛域是 ________________________.8. 微分方程022=+'-''y y y 的通解为___________________________.二、选择题(共12分,每小题3分)1. 设曲面2232y x z +=在点)5 , 1 , 1(M 处的切平面方程为064=+-+λz y x ,则λ=( ).(A) 15- (B) 0 (C) 5- (D) 52. 函数),(y x f 在点),(y x 处可微是函数),(y x f 在该点处存在偏导数的( ). (A) 必要条件 (B) 充分条件(C) 充要条件 (D) 既非充分又非必要条件3. 设曲线L 是单位圆周122=+y x 按逆时针方向,则下列曲线积分不等于零的是( ).(A) ds y L⎰ (B) ds x L⎰ (C) dx y xdy L⎰+ (D) ⎰+-L y x ydxxdy 224. 下列级数中收敛的是( ).(A) ∑∞=122n n n (B) ∑∞=+12n n n(C) ∑∞=+1)2121(n n n (D) ∑∞=133n n n三、解答题:(共59分)1.(7分)求二元函数()3132,23---=y x xy y x f 的极值. 2. (7分)设函数2,x z f x y y ⎛⎫= ⎪⎝⎭,其中()v u f ,具有二阶连续偏导数,求yx zx z ∂∂∂∂∂2 , .3.(7分)计算二重积分dxdy xy D⎰⎰2,其中D 是由圆周422=+y x 与y 轴所围成的右半区域.4.(7分)将函数())1ln(x x f +=展成1-x 的幂级数,并写出可展区间5.(7分)计算曲面积分(2)I xy x y z dS ∑=+++⎰⎰,其中∑为平面1x y z ++=在第一卦限中的部分.6. (8分) 求微分方程x xe y y y 223=+'-''的通解.7. (8分)计算曲线积分()()y d y xy dx yx x I L⎰+-+-=2322其中L 为曲线22x x y -=从)0,2(A 到)0,0(O 的弧段. 8.(8分)利用高斯公式计算曲面积分()()d xdy x z dzdx y dydz x I ⎰⎰∑-+++=33332,其中∑为由上半球面224y x z --=与锥面22y x z +=围成的空间闭区域的整个边界曲面的外侧.四.(5分)设()f x 是在(,)-∞+∞内的可微函数, 且()()f x f x α'<, 其中01α<<. 任取实数0a , 定义1ln (),1,2,3n n a f a n -==.证明:级数11()n n n a a ∞-=-∑绝对收敛.高等数学1--2 参考答案与评分标准一、填空题(共24分,每小题3分) 1. dy xy ydx y dz x x 1ln -+= 2. 3z z yz x e xy ∂=∂- 3.2022-=-=-z y x π4.5. 2(,)xI dx f x y dy =⎰⎰6.()11127. )21, 21[- 8. )sin cos (21x c x c e y x +=二、选择题(共12分,每小题3分) 1. C 2. B 3. D 4. D 三、解答题(共64分) 1. (7分)解: 令⎪⎩⎪⎨⎧=-==-=022022y x f x y f yx 得驻点⎩⎨⎧==00y x ,⎩⎨⎧==22y x 2 分 x f xx 2-=,2=xy f ,2-=yy f 4 分 在(0,0)处, 2 , 2 , 0-===C B A04 2<-=-B AC , ∴(0,0)为非极值点. 5 分在(2,2)处 2 , 2 , 04-==<-=C B A04 2>=-B AC ∴ 1)2 , 2(=f 为函数),(y x f 的极大值. 7 分2.(7分) 解:2121f xy f yx z '+'=∂∂ 3分)21(212f xy f yy y x z '+'∂∂=∂∂∂ ])([ 22])([11222212221221112x f yx f xy f x x f y x f y f y ''+-''+'+''+-''+'-= 223122113212221f y x f y x f yx f x f y ''+''-''-'+'-= 7 分3. (7分) 解:⎰⎰⎰⎰--=224 0222y Dxdx dy y dxdy xy3分⎰--=2 2 22)4(21dy y y 5 分 1564)4(2 0 42=-=⎰dy y y 7 分4. (7分) 解:10(1)ln(1)1n n n x x n ∞+=-+=+∑ 11≤<-x 1 分)211ln(2ln )]1(2ln[)1ln(-++=⋅-+=+x x x 3分10)21(1)1(2ln +∞=∑-+-+=n n n x n∑∞=++-+-+=011)1(2)1()1(2ln n n n n x n 6分1211≤-<-x ⇒ 31≤<-x 7分5.(7分)解::1z x y ∑=--dS ∴== 2分(2DI xy ∴=+⎰⎰4分1102xDdx xydy dxdy -=⎰5分()13202xx x dx =-+6分=7分6.(8分)解 (1)先求微分方程023=+'-''y y y 的通解Y特征方程 0232=+-r r 即 0)1)(2(=--r r ,21=r ,12=rx x e c e c Y 221+= 3 分(2)求原方程的一个特解*y 2 =λ 是特征方程的根,故设 x x e bx ax e b ax x y 222)()(+=+=*5分令bx ax x Q +=2)(,则b ax x Q +='2)(,a x Q 2)(=''将)(x Q ',)(x Q ''代入方程x x Q p x Q ='++'')()2()(λ 得 x b ax a =++22则 ⎩⎨⎧=+=1212b a a , 解之得⎪⎩⎪⎨⎧==021b a , x xe y 221=*7 分 所求通解 x x x xe e c e c y 222121++= 8 分7.(8分) 解:⎰++-+-OAL dy y xy dx yx x )2()(322dxdy x y dxdy y Px Q DD)()(22⎰⎰⎰⎰+=∂∂-∂∂= 3 分 ⎰⎰⋅=θd ρd cos 2 0220 ρρθπ5 分⎰==20 443cos 4ππθθd 6 分dy y xy dx yx x I OA ⎰+-+--=)2()(43322π 7 分2434320-=-=⎰ππxdx 8 分8. (8分) 解:由高斯公式dV z y x I )333(222⎰⎰⎰Ω++= 3 分2244 03 sin d d r dr ππθφφ=⎰⎰⎰ 6 分192(152π=- 8 分9.(5分)解:对任意设2n ≥,由拉格朗日中值定理,有111212121'()ln ()ln (),()n n n n n n n n n n f a a f a f a a a a a f ξαξ----------=-=-<-2 分其中1n ξ-介于1n a -与2n a -之间. 于是有11101,2,.n n n a a a a n α---<-= 3分 又级数1101n n a a α∞-=-∑收敛, 由比较审敛法知级数11()n n n a a ∞-=-∑绝对收敛.5分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复旦大学高等数学A 期末考试试卷2016~2017学年第2 学期 考试科目:高等数学A 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.二元函数2ln(21)z y x =-+的定义域为 。
2. 设向量(2,1,2)a =r ,(4,1,10)b =-r,c b a λ=-r r r ,且a c ⊥r r ,则λ= 。
3.经过(4,0,2)-和(5,1,7)且平行于x 轴的平面方程为 。
4.设yz u x =,则du = 。
5.级数11(1)np n n∞=-∑,当p 满足 条件时级数条件收敛。
二、单项选择题(本大题共5小题,每小题3分,共15分)1.微分方程2()'xy x y y +=的通解是( )A .2x y Ce =B .22x y Ce =C .22y y e Cx =D .2y e Cxy = 2.求极限(,)(0,0)lim x y →= ( )A .14 B .12- C .14- D .123.直线:327x y zL ==-和平面:32780x y z π-+-=的位置关系是 ( ) A .直线L 平行于平面π B .直线L 在平面π上C .直线L 垂直于平面πD .直线L 与平面π斜交4.D 是闭区域2222{(,)|}x y a x y b ≤+≤,则Dσ= ( )A .33()2b a π- B .332()3b a π- C .334()3b a π- D .333()2b a π-5.下列级数收敛的是 ( )A .11(1)(4)n n n ∞=++∑ B .2111n n n ∞=++∑ C .1121n n ∞=-∑ D.1n ∞=三、计算题(本大题共7小题,每小题7分,共49分) 1. 求微分方程'x y y e +=满足初始条件0x =,2y =的特解。
2. 计算二重积分22Dx ydxdy x y++⎰⎰,其中22{(,)1,1}D x y x y x y =+≤+≥。
3.设(,)z z x y =为方程2sin(23)43x y z x y z +-=-+确定的隐函数,求z z x y∂∂+∂∂。
4.求曲线积分()()Lx y dx x y dy ++-⎰,其中L 沿222(0,0)x y a x y +=≥≥,逆时针方向。
5.计算Dy ⎰⎰,其中D是由y =1x =-及1y =所围成的区域。
6.判断级数1(1)1n n n n ∞=-+∑的敛散性,并指出是条件收敛还是绝对收敛。
7.将函数1(1)(2)x x --展开成x 的幂级数,并求其成立的区间。
四、解答题(本大题共 3 小题,每小题 7 分,共 21 分)1.抛物面22z x y =+被平面1x y z ++=截成一椭圆,求原点到这椭圆的最长与最短距离。
2. 求幂级数1(1)(1)!n nn nx n ∞=-+∑的和函数。
3. 设函数()f x 和()g x 有连续导数,且(0)1f =,(0)0g =,L 为平面上任意简单光滑闭曲线,取逆时针方向,L 围成的平面区域为D ,已知[()()]()LDxydx yf x g x dy yg x d σ++=⎰⎰⎰Ñ,求()f x 和()g x 。
参考答案一、填空题(本大题共5小题,每小题3分,共15分)1.2{(,)|210}x y y x -+> 2.33.920y z --= 4.1ln ln yz yz yz yzx dx zx xdy yx xdz -++ 5.01p <≤ 二、单项选择题(本大题共5小题,每小题3分,共15分)1.C 2.C 3.C 4.B 5.A三、计算题(本大题共7小题,每小题7分,共49分) 1. 求微分方程'x y y e +=满足初始条件0x =,2y =的特解。
解:先求'0y y +=的通解,得1x y C e -=………………2分采用常数变易法,设()x y h x e -=,得''()()x x y h x e h x e --=-………3分 代入原方程得'()()()x x x x h x e h x e h x e e ----+=………………4分得21()2x h x e C =+………………5分故通解为12x x y e Ce -=+………………6分将初始条件0x =,2y =带入得32C =,故特解为1322x x y e e -=+…………7分2. 计算二重积分22Dx ydxdy x y++⎰⎰,其中22{(,):1,1}D x y x y x y =+≤+≥。
解:设cos ,sin x r y r θθ==………………1分则10,12sin cos r πθθθ≤≤≤≤+………………3分所以1212220sin cos cos sin Dx y r r dxdy d rdr x y r πθθθθθ+++=+⎰⎰⎰⎰………………5分 20(sin cos 1)d πθθθ=+-⎰………………6分42π-=………………7分3. 设(,)z z x y =为方程2sin(23)43x y z x y z +-=-+确定的隐函数,求z zx y∂∂+∂∂。
解:设(,,)432sin(23)F x y z x y z x y z =-+-+-………………1分12cos(23),44cos(23),36cos(23)x y z F x y z F x y z F x y z =-+-=--+-=++-………………4分2cos(23)14cos(23)4,3[12cos(23)]3[12cos(23)]y x z z F F z x y z z x y z x F x y z y F x y z ∂+--∂+-+=-==-=∂++-∂++-……6分 所以1z z x y∂∂+=∂∂………………7分4. 求曲线积分()()Lx y dx x y dy ++-⎰,其中L 沿222(0,0)x y a x y +=≥≥,逆时针方向。
解:圆的参数方程为:cos ,sin (0)2x a t y a t t π==≤≤……………1分220()()(cos sin (cos sin )cos )sin Lx y dx x y dy a t a t da a t a t da t t ππ++-=+-+⎰⎰⎰……3分220(cos 2sin 2)at t dt π=-⎰………………4分220[sin 2cos 2]2a t t π=+………………6分 2a =-………………7分(本题也可以利用“曲线积分与路径无关”来解)5.计算Dy ⎰⎰,其中D是由y =1x =-及1y =所围成的区域。
解:{(,)|1,11}D x y y x =≤≤-≤≤………………1分111Dy dx y -=⎰⎰⎰………………2分31262112[(1)63x y -=-⨯+-⎰………………4分1311(||1)9x dx -=--⎰………………5分1302(1)9x dx =--⎰………………6分16=………………7分6.判断级数1(1)1n n n n ∞=-+∑的敛散性,并指出是条件收敛还是绝对收敛。
解:(1)11n n n n n -=++1分)n →∞:………………3分 所以级数发散。
………………4分 又(1)1(1)(111n n n n n -=--++5分1n n +=………………6分显然,交错级数1n n ∞=1nn ∞=都收敛,所以原级数收敛。
因此是条件收敛。
………………7分7. 将函数1(1)(2)x x --展开成x 的幂级数,并求其成立的区间。
解:111(1)(2)12x x x x=-----………………2分而1,||11n n x x x ∞==<-∑………………3分 211[1()](||2)2222x xx x =+++<-L ………………4分 所以22111[1()](1)(2)222x xx x x x =+++-+++--L L ………………5分101(1)2nn n x ∞+==-∑………………6分 成立范围||1x <………………7分四、 解答题(本大题共 3 小题,每小题 7 分,共 21 分)1. 抛物面22z x y =+被平面1x y z ++=截成一椭圆,求原点到这椭圆的最长与最短距离。
解:设椭圆上任一点P 的坐标为(,,)P x y z ,P 点满足抛物面和平面方程。
原点到这椭圆上任一点的距离的平方为222x y z ++,………………1分 构造拉格朗日函数22222()(1)F x y z x y z x y z λμ=++++-+++-………………2分2222022020010x yzF x x F y y F z F x y z F x y z λμλμλμλμ=++=⎧⎪=++=⎪⎪=-+=⎨⎪=+-=⎪=++-=⎪⎩………………4分解得1(12x =-………………5分得两个驻点为121111(2(22222P P =---=---- …………………6分………………7分2. 求幂级数1(1)(1)!n nn nx n ∞=-+∑的和函数。
解:因为0!n xn x e n ∞==∑,所以0(1)!n n xn x e n ∞-=-=∑,………………1分00(1)(1)(11)()(1)!(1)!n n n nn n nx n x S x n n ∞∞==--+-==++∑∑………………2分00(1)(1)!(1)!n n n nn n x x n n ∞∞==--=-+∑∑………………3分(1)!n nx n x e n ∞-=-=∑………………4分 110010010(1)(1)!11(1)1(11(1)1)(1)!(1)!1(1)1(1)1!1!!n n n n n n n n n n n n n n n n n x n x x x n x n x x x x n x e x x n x xn x n ∞+++∞∞==∞∞=∞-===--=-++⎡⎤--=-=--⎢⎥⎣⎦=-=+--=-∑∑∑∑∑∑ (0)x ≠…………5分所以1()(1)(0)x x S x e e x x --=--≠故1()(1)(0)x x S x e e x x --=--≠……6分当0x =时,()0S x =。
………7分另解:当0x ≠时,11110(1)1(1)1(1)(1)!(1)!(1)!n n n n x n n n n n n x x n x n x n x n d x +∞∞∞===⎡⎤---==⎢⎥++-⎣⎦⎰∑∑∑ 1111001(1)1(1)(1)!(1)!n n n x n n n x x n x n x x dx x dx -∞∞==-⎧⎫⎡⎤⎡⎤--⎪⎪==-⎨⎬⎢⎥⎢⎥--⎪⎪⎣⎦⎣⎦⎩⎭⎰⎰∑∑ 001(1)!n x n n x n x x dx ∞=-=-∑⎰0011xx x xx dx e xd e x x --=-=⎰⎰()11x x e e x x--=+- 11x x e e x x --=+-当0x =时,()0S x =。