初三数学中考基础复习专题汇编

合集下载

初三数学考试复习资料

初三数学考试复习资料

初三数学考试复习资料初三数学考试复习资料复习是对前面已学过的知识进行系统再加工,并根据学习情况对学习进行适当调整,为下一阶段的学习做好准备。

下面是为大家整理的关于初三数学考试复习资料,希望对您有所帮助!初三数学知识点分类复习题【复习要点】代数几何综合题是初中数学中覆盖面最广、综合性的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数几何知识解题.【实弹射击】1、(08广东省)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.(1)填空:如图a,AC= ,BD= ;四边形ABCD是梯形.(2)请写出图a中所有的相似三角形(不含全等三角形).图10(3)如图b,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.图a2、(09广东省) 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM ∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积,并求出面积;(3)当M点运动到什么位置时Rt△ABM ∽Rt△AMN,求此时x的值.3、(10广东省)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。

动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动。

中考数学专题知识点题型复习训练及答案解析(经典珍藏版):26 应用题

中考数学专题知识点题型复习训练及答案解析(经典珍藏版):26 应用题

备考中考一轮复习点对点必考题型题型26 应用题考点解析1.一元二次方程的应用(1)列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.(2)列一元二次方程解应用题中常见问题:①数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.②增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.③形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.④运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”a.审:理解题意,明确未知量、已知量以及它们之间的数量关系.b.设:根据题意,可以直接设未知数,也可以间接设未知数.c.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.d.解:准确求出方程的解.e.验:检验所求出的根是否符合所列方程和实际问题.f.答:写出答案.2.分式方程的应用(1)列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.(2)要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.3.一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.4.一元一次不等式组的应用对具有多种不等关系的问题,考虑列一元一次不等式组,并求解.一元一次不等式组的应用主要是列一元一次不等式组解应用题,其一般步骤:(1)分析题意,找出不等关系;(2)设未知数,列出不等式组;(3)解不等式组;(4)从不等式组解集中找出符合题意的答案;(5)作答.5.一次函数的应用(1)分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.(2)函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.(3)概括整合①简单的一次函数问题:a建立函数模型的方法;b分段函数思想的应用.②理清题意是采用分段函数解决问题的关键.6.二次函数的应用(1)利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.(2)几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.(3)构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.五年中考1.(2019•成都)随着5G技术的发展,人们对各类5G产品的使用充满期待,某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可以用p x来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?2.(2018•成都)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?3.(2017•成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)8 9 10 11.5 13y1(分钟)18 20 22 25 28(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.4.(2016•成都)某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?5.(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?一年模拟6.(2019•成华区模拟)随着人们生活水平的提高,对饮水品质的需求也越来越高,某商场购进甲、乙两种型号的净水器,每台甲型净水器比每台乙型净水器进价多200元,已知用5万元购进甲型净水器与用4.5万元购进乙型净水器的数量相等.(1)求每台甲型,乙型净水器的进价各是多少元?(2)该商场计划花费不超过9.8万元购进两种型号的净水器共50台进行销售,甲型净水器每台销售2500元,乙型净水器每台售价2200元,商场还将从销售甲型净水器的利润中按每台a元(70<a<80)捐献给贫困地区作为饮水改造扶贫资金.设该公司售完50台净水器并捐献扶贫资金后获得的利润为W元,求W的最大值.7.(2019•邛崃市模拟)某健身馆普通票价为40元/张,6﹣9月为了促销,新推出两种优惠卡:①金卡售价1200元/张,每次凭卡不再收费.②银卡售价300元/张,每次凭卡另收10元.普通票正常出售,两种优惠卡仅限6﹣9月使用,不限次数.设健身x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.8.(2019•武侯区模拟)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.9.(2019•锦江区模拟)十三五”以来,党中央,国务院不断加大脱贫攻坚的支持决策力度,并出台配套文件,国家机关各部门也出台多项政策文件或实施方案.某单位认真分析被帮扶人各种情况后,建议被帮扶人大力推进特色产业,大量栽种甜橙;同时搭建电商运营服务平台,开设网店销售农产品橙.丰收后,将一批甜橙采取现场销售和网络销售相结合进行试销,统计后发现:同样多的甜橙,现场销售可获利800元,网络销售则可获利1000元,网络销售比现场销售每件多获利5元(1)现场销售和网络销售每件分别多少元?(2)根据甜橙试销情况分析,现场销售量a(件)和网络销售量b(件)满足如下关系式:b a2+12a ﹣200.求a为何值时,农户销售甜橙获得的总利润最大?最大利润是多少?10.(2019•武侯区模拟)成都市某商场购进甲、乙两种商品,甲商品的购进总价y(元)与购进数量x(件)之间的函数关系如图l1所示,乙商品的购进总价y(元)与购进数量x(件)之间的函数关系如图l2所示.(1)请分别求出直线l1,l2的函数表达式,并直接写出甲、乙两种商品的购进单价各是多少元?(2)现该商场购进甲、乙两种商品各100件,甲、乙商品的销售单价均为70元,销售一段时间后,商场对甲商品搞促销活动,打八折继续销售剩余甲商品,乙商品的销售单价始终保持不变.若商场规定甲商品打折前的销售数量不得多于甲商品打折后的销售数量的,那么甲商品应接原销售单价销售多少件,才能使得甲、乙两种商品全部销售完后商场获得最大利润?最大利润为多少元?11.(2019•双流区模拟)某文具店出售一种文具,每个进价为2元,根据长期的销售情况发现:这种文具每个售价为3元时,每天能卖出500个,如果售价每上涨0.1元,其销售量将减少10个.物价局规定售价不能超过进价的240%.(1)如果这种文具要实现每天800元的销售利润,每个文具的售价应是多少?(2)该如何定价,才能使这种文具每天的利润最大?最大利润是多少?12.(2016•荆州)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.13.(2019•郫都区模拟)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?14.(2019•郫都区模拟)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)求果园增种橙子树x(棵)与果园橙子总产量y(个)的函数关系式;(2)多种多少棵橙子,可以使橙子的总产量在60420个以上?15.(2019•成都模拟)某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.(1)求销售量y件与销售单价x(x>10)元之间的关系式;(2)当销售单价x定为多少,才能使每天所获销售利润最大?最大利润是多少?精准预测1.天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?2.八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳.已知购买一副羽毛球拍比购买一根跳绳多20元.若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半.(1)求购买一副羽毛球拍、一根跳绳各需多少元?(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的2倍还多10,且该班购买羽毛球拍和跳绳的总费用不超过350元,那么八(1)班最多可购买多少副羽毛球拍?3.已知A、B两地相距2.4km,甲骑车匀速从A地前往B地,如图表示甲骑车过程中离A地的路程y(km)与他行驶所用的时间x(min)之间的关系.根据图象解答下列问题:(1)甲骑车的速度是km/min;(2)若在甲出发时,乙在甲前方0.6km处,两人均沿同一路线同时出发匀速前往B地,在第3分钟甲追上了乙,两人到达B地后停止.请在下面同一平面直角坐标系中画出乙离A地的距离y乙(km)与所用时间x(min)的关系的大致图象;(3)乙在第几分钟到达B地?(4)两人在整个行驶过程中,何时相距0.2km?4.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地如图,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数图象;折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数图象;请根据图象解答下到问题:(1)货车离甲地距离y(干米)与时间x(小时)之间的函数式为;(2)当轿车与货车相遇时,求此时x的值;(3)在两车行驶过程中,当辆车与货年相距20千米时,求x的值.5.某水果店经销一种高档水果,售价为每千克60元(1)连续两次降价后售价为每千克48.6元,若每次下降的百分率相同.求平均下降的百分率;(2)已知这种水果的进价为每千克48元,每天可售出80千克,经市场调查发现,若售价每涨价1元,日销售量将减少4千克,设每千克涨价t元,每天获得的利润为w元.①当售价为多少元时,每天获得的利润为最大?最大为多少元?②水果店老板为保证每天的利润不低于988元,请直接写出t的取值范围是.6.某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x天该产品的生产量z(件)与x(天)满足关系式z=﹣2x+120.(1)第40天,该厂生产该产品的利润是元;(2)设第x天该厂生产该产品的利润为w元.①求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?7.我国为了实现到达到全面小康社会的目标,近几年加大了扶贫工作的力度,合肥市某知名企业为了帮助某小型企业脱贫,投产一种书包,每个书包制造成本为18元,试销过程中发现,每月销售量y(万个)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,据统计当售价定为30元/个时,每月销售40万个,当售价定为35元/个时,每月销售30万个.(1)请求出k、b的值.(2)写出每月的利润w(万元)与销售单价x(元)之间的函数解析式.(3)该小型企业在经营中,每月销售单价始终保持在25≤x≤36元之间,求该小型企业每月获得利润w (万元)的范围.8.合肥享有“中国淡水龙虾之都”的美称,甲、乙两家小龙虾美食店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家店都让利酬宾,在人数不超过20人的前提下,付款金额y甲、y乙(单位:元)与人数之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)小王公司想在“龙虾节”期间组织团建,在甲、乙两家店就餐,如何选择甲、乙两家美食店吃小龙虾更省钱?9.某公司生产的一种商品其售价是成本的1.5倍,当售价降低5元时商品的利润率为25%.若不进行任何推广年销售量为1万件.为了获得更好的利益,公司准备拿出一定的资金做推广,根据经验,每年投入的推广费x万元时销售量y(万件)是x的二次函数:当x为1万元时,y是1.5(万件).当x为2万元时,y是1.8(万件).(1)求该商品每件的的成本与售价分别是多少元?(2)求出年利润与年推广费x的函数关系式;(3)如果投入的年推广告费为1万到3万元(包括1万和3万元),问推广费在什么范同内,公司获得的年利润随推广费的增大而增大?10.永农化工厂以每吨800元的价格购进一批化工原料,加工成化工产品进行销售,已知每1吨化工原料可以加工成化工产品0.8吨,该厂预计销售化工产品不超过50吨时每吨售价为1600元,超过50吨时,每超过1吨产品,销售所有的化工产品每吨价格均会降低4元,设该化工厂生产并销售了x吨化工产品.(1)用x的代数式表示该厂购进化工原料吨;(2)当x>50时,设该厂销售完化工产品的总利润为y,求y关于x的函数关系式;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在什么范围?11.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)当销售单价为70元时,每天的销售利润是多少?(2)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量x的取值范围;(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)12.为满足市场需求,某超市在新年来临前夕,购进一款商品,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,如果每盒售价每提高1元,则每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?13.潮州旅游文化节开幕前,某凤凰茶叶公司预测今年凤凰茶叶能够畅销,就用32000元购进了一批凤凰茶叶,上市后很快脱销,茶叶公司又用68000元购进第二批凤凰茶叶,所购数量是第一批购进数量的2倍,但每千克凤凰茶叶进价多了10元.(1)该凤凰茶叶公司两次共购进这种凤凰茶叶多少千克?(2)如果这两批茶叶每千克的售价相同,且全部售完后总利润率不低于20%,那么每千克售价至少是多少元?14.某运动品商场欲购进篮球和足球共100个,两种球进价和售价如下表所示,设购进篮球x个(x为正整数),且所购进的两种球能全部卖出,获得的总利润为w元.(1)求总利润W关于x的函数关系式.(2)如果购进两种球的总费用不低于5800元且不超过6000元,那么该商场如何进货才能获利最多?并求出最大利润.(3)在(2)的条件下,若每个篮球的售价降低a元,请分析如何进货才能获得最大利润.篮球足球进价(元/个)62 54售价(元/个)76 6015.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(列方程解答)(2)该车行计划今年新进一批A型车和B型车共60辆,A型车的进货价为每辆1100元,销售价与(1)相同;B型车的进货价为每辆1400元,销售价为每辆2000元,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?备考中考一轮复习点对点必考题型题型26 应用题考点解析1.一元二次方程的应用(1)列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.(2)列一元二次方程解应用题中常见问题:①数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.②增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.③形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.④运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”a.审:理解题意,明确未知量、已知量以及它们之间的数量关系.b.设:根据题意,可以直接设未知数,也可以间接设未知数.c.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.d.解:准确求出方程的解.e.验:检验所求出的根是否符合所列方程和实际问题.f.答:写出答案.2.分式方程的应用(1)列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.(2)要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作。

初三数学中考复习3篇

初三数学中考复习3篇

初三数学中考复习第一篇:初三数学中考复习之代数基础代数是初中数学的重要部分,掌握代数知识对中考至关重要。

以下是代数基础的重点知识。

一、代数式代数式是用字母与数的组合表示的数学式子,例如:3x+5、x²+2x-1。

代数式中含有自变量和系数。

自变量就是字母,通常用x,y等表示。

系数就是字母前面的数字,例如:3x中的系数是3。

二、方程方程是等式的一种,它的形式为:ax+b=c,其中a、b、c 是已知数,x是未知数。

方程的解就是使等式成立的未知数的值。

例如:3x+2=5,x=1,x=1就是这个方程的解。

解方程的方法有加减消法、积分消法、代入法和配方法等。

三、函数函数的概念是一个自变量的取值对应一个函数值。

函数由自变量x和函数值y组成,通常用y=f(x)表示。

例如:y=x²-1,当x=2时,y=3。

函数有最大值、最小值、零点、单调性、奇偶性等概念。

四、初中数学常用公式1. 一元二次方程的根公式:x1、x2 = (-b±√(b²-4ac))/2a2. 数列通项公式:an = a1+(n-1)d3. 平面图形面积公式:(1)三角形面积公式:S=1/2bh(2)矩形面积公式:S=lw(3)平行四边形面积公式:S=bh(4)梯形面积公式:S=1/2(a+b)h以上就是初三数学中考复习之代数基础的知识点,希望同学们认真复习,顺利通过中考。

第二篇:初三数学中考复习之几何基础初中数学中的几何是重要的部分,包含了图形、空间、证明等知识点。

以下是几何基础的知识点。

一、平面几何平面几何包括了线段、角、三角形、四边形、多边形、圆等图形的分类、性质、判定和计算等。

1. 直角三角形的勾股定理直角三角形中,直角边的平方等于斜边上两条线段平方和。

即:a²+b²=c²。

2. 极角的概念平面直角坐标系原点引一条射线,叫做极轴。

极轴与射线的夹角叫做极角,记作θ。

二、立体几何立体几何包括了立体图形的分类、性质、判定和计算等。

中考数学总复习资料大全(精华版)

中考数学总复习资料大全(精华版)

中考数学总复习资料大全第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆ 一、 重要概念 1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏) 2)有标准2.非负数:正实数与零的统称。

(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。

4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示: 奇数:2n-1偶数:2n (n 为自然数) 7.绝对值:①定义(两种): 代数定义:实数 无理数(无限不循环小数)0 (有限或无限循环性数) 整数分数正无理数负无理数0 实数 负数 整数 分数无理数 有理数正数整数分数无理数 有理数│a │ 2a a (a ≥0) (a 为一切实数) a(a≥0)-a(a<0)│a │=几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。

②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、 实数的运算 1. 运算法则(加、减、乘、除、乘方、开方) 2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律) 3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。

初三中考数学数与式

初三中考数学数与式

第一部分 中考基础复习第一章 数与式第1讲 实数A 级 基础题1.(2015年广东梅州)12的相反数是( )A .2B .-2 C.12 D .-122.(2015年广东佛山)-3的倒数是( )A .-13 B.13C .3D .-33.(2015年广东广州)四个数-3.14,0,1,2中为负数的是( ) A .-3.14 B .0 C .1 D .24.(2015年内蒙古呼和浩特)以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A .-3 ℃B .15 ℃C .-10 ℃D .-1 ℃5.(2015年广东汕尾)今年五月份香港举办“保普选反暴力”大联盟大型签名行动,9天共收集超121万个签名,将121万用科学记数法表示为( )A .1.21×106B .12.1×105C .0.121×107D .1.21×1056.(2015年湖南永州)在数轴上表示数-1和2014的两点分别为A 和B ,则A ,B 两点间的距离为( )A .2013B .2014C .2015D .20167.(2015年黑龙江绥化)在实数0,π,227, 2 ,-9中,无理数的个数有( )A .1个B .2个C .3个D .4个 8.(2015年山东威海)已知实数a ,b 在数轴上的位置如图1-1-2,下列结论错误的是( )图1-1-2A.||a <1<||b B .1 <-a <b C .1 < ||a <b D .-b <a <-1 9.(2015年湖北武汉)计算:-10+(+6)=________.10.(2015年吉林长春)比较大小:2__________1.(填“>”“=”或“<”) 11.(2015年江苏镇江)已知一个数的绝对值是4,则这个数是__________. 12.计算:(1)(2015年广东梅州)计算:8+|2 2-3|-⎝⎛⎭⎫13-1-(2015+2)°. (2)(2015年广东佛山)计算:9+20150+(-2)3+2 3×sin60°.B 级 中等题13.(2015年山东青岛)某种计算机完成一次基本运算的时间约为0.000 000 001 s ,将0.000 000 001 s 用科学记数法表示为( )A .0.1×10-8 sB .0.1×10-9 sC .1×10-8 sD .1×10-9 s 14.(2015年山东菏泽)如图1-1-3,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )图1-1-3A .点MB .点NC .点PD .点Q 15.(2015年重庆)下列图形都是由几个黑色和白色的正方形按一定规律组成.在图1-1-4中,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,按此规律,图⑩中黑色正方形的个数是( )图1-1-4A .32B .29C .28D .2616.(2015年贵州遵义)按一定规律排列的一列数依次为:45,48,411,414,…,按此规律,这列数中的第10个数与第16个数的积是__________.C 级 拔尖题17.(2015年湖南娄底)下列数据是按一定规律排列的(如图1-1-5),则第7行的第一个数为__________.图1-1-5第2讲 代数式A 级 基础题1.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4 C.32 D.122.(2015年吉林)购买1个单价为a 元的面包和3瓶单价为b 元的饮料,所需要钱数为( )A .(a +b )元B .3(a +b )元C .(3a +b )元D .(a +3b )元3.(2015年四川自贡)为庆祝抗战胜利70周年,我市某楼盘让利于民,决定将原价为a 元/米2的商品房价降价10%销售,降价后的销售价为( )A .a -10%元/米2B .a ·10%元/米2C .a (1-10%)元/米2D .a (1+10%)元/米24.(2015年福建厦门)某商店举办促销活动,促销的方法是将原价x 元的衣服以⎝⎛⎭⎫45x -10元出售,则下列说法中,能正确表达该商店促销方法的是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元5.(2015年海南)某企业今年1月份产值为x 万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是( )A .(1-10%)(1+15%)x 万元B .(1-10%+15%)x 万元C .(x -10%)(x +15%)万元D .(1+10%-15%)x 万元 6.(2015年重庆)如图1-2-4所示的图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第④个图形中小圆圈的个数为( )图1-2-4A .21个B .24个C .27个D .30个7.(2015年湖南株洲)如果手机通话每分钟收费m 元,那么通话a 分钟,收费________元.8.(2014年江苏苏州)若a -2b =3,则9-2a +4b 的值为________. 9.(2015年湖南益阳)如图1-2-5是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n 个图案中有________根小棒.图1-2-510.(2015年四川内江)如图1-2-6是由火柴棒搭成的几何图案,则第n 个图案中有________根火柴棒.(用含n 的代数式表示)图1-2-611.已知a=3,b=|-2|,c=12,求代数式a2+b-4c的值.12.已知a,b互为相反数,c,d互为倒数,m的绝对值是2,求|| a+b2m2+1+4m-3cd的值.B级中等题13.按如图1-2-7所示的程序计算,若开始输入n的值为1,则最后输出的结果是()图1-2-7A.3 B.15 C.42 D.6314.(2015年黑龙江绥化)如图1-2-8,填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=________.图1-2-815.(2015年江苏淮安)将连续正整数按如下规律排列(如图1-2-9):图1-2-9若正整数565位于第a 行,第b 列,则a +b =________. 16.(2014年四川达州)《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图1-2-10.图1-2-10由图易得:12+122+123+…+12n =________.C 级 拔尖题17.(2014年安徽)观察下列关于自然数的等式: 32-4×12=5;① 52-4×22=9;② 72-4×32=13;③ ……根据上述规律解决下列问题:(1)完成第四个等式:92-4×________2=________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.(列代数式)第3讲 整式与分式 第1课时 整式A 级 基础题1.(2015年浙江台州)单项式2a 的系数是( ) A .2 B .2a C .1 D .a2.(2015年广东珠海)计算-3a 2×a 3的结果为( ) A .-3a 5 B .3a 6 C .-3a 6 D .3a 53.(2015年四川巴中)若单项式2x 2y a +b 与-13x a -b y 4是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-1 4.(2015年湖南邵阳)已知a +b =3,ab =2,则a 2+b 2的值为( ) A .3 B .4 C .5 D .65.(2015年广东佛山)若(x +2)(x -1)=x 4+mx +n ,则m +n =( ) A .1 B .-2 C .-1 D .26.(2015年广东深圳)下列说法错误的是( )A .a ·a =a 2B .2a +a =3aC .(a 3)2=a 5D .a 3÷a -1=a 47.(2015年浙江金华)已知a +b =3,a -b =5,则代数式a 2-b 2=________. 8.(2015年广东珠海)填空:x 2+10x +________=(x +________)2. 9.(2015年四川绵阳)计算:a (a 2÷a )-a 2=________.10.(2015年山东菏泽)若x 2+x +m =(x -3)(x +n )对x 恒成立,则n =__________. 11.(2015年广东梅州)已知a +b =-2,求代数式(a -1)2+b (2a +b )+2a 的值.12.(2015年北京)已知2a 2+3a -6=0.求代数式3a ()2a +1-()2a +1()2a -1的值.B 级 中等题13.(2015年山东临沂)观察下列关于x 的单项式,探究其规律: x,3x 2,5x 3,7x 4,9x 5,11x 6,…,按照上述规律,第2015个单项式是( ) A .2015x 2015 B .4029x 2014 C .4029x 2015 D .4031x 201514.(2015年安徽)按一定规律排列的一列数:21,22,23,25,28,213,…,若x,y,z表示这列数中的连续三个数,猜想x,y,z满足的关系式是____________.15.(2014年浙江宁波)一个大正方形和四个全等的小正方形按图1-3-2(1)(2)两种方式摆放,则图(2)的大正方形中未被小正方形覆盖部分的面积是________.(用a,b的代数式表示)图1-3-216.(2015年河北)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:-3x=x2-5x+1(1)求所捂住的二次三项式;(2)若x=6+1,求所捂住的二次三项式的值.C级拔尖题17.利民商店出售一种原价为a的商品,有如下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问:用这三种方案调价的结果是否一样,最后是不是都恢复了原价?第2课时 因式分解A 级 基础题1.(2014年海南)下列式子从左到右变形是因式分解的是( ) A .a 2+4a -21=a (a +4)-21 B .a 2+4a -21=(a -3)(a +7) C .(a -3)(a +7)=a 2+4a -21 D .a 2+4a -21=(a +2)2-25 2.(2015年湖北武汉)把a 2-2a 分解因式,正确的是( ) A .a (a -2) B .a (a +2) C .a (a 2-2) D .a (2-a ) 3.(2014年辽宁葫芦岛)计算:552-152=( ) A .40 B .1600 C .2400 D .28004.(2015年浙江台州)把多项式2x 2-8分解因式,结果正确的是( ) A .2()x 2-8 B .2()x -22C .2()x +2()x -2D .2x ⎝⎛⎭⎫x -4x 5.(2015年贵州毕节)下列因式分解正确的是( )A .a 4b -6a 3b +9a 2b =a 2b (a 2-6a +9)B .x 2-x +14=⎝⎛⎭⎫x -122 C .x 2-2x +4=(x -2)2 D .4x 2-y 2=(4x +y )(4x -y )6.(2015年广西贺州)把多项式4x 2y -4xy 2-x 3分解因式的结果是( ) A .4xy (x -y )-x 3 B .-x (x -2y )2C .x (4xy -4y 2-x 2)D .-x (-4xy +4y 2+x 2) 7.(2015年山东枣庄)如图1-3-3,边长为a ,b 的矩形的周长为14,面积为10,则a 2b+ab 2的值为( )图1-3-3A .140B .70C .35D .248.(2015年广东梅州)分解因式:m 3-m =________. 9.(2015年广东广州)分解因式:2mx -6my =________. 10.(2015年广东深圳)分解因式:3a 2-3b 2________.11.(2015年山东东营)分解因式:4+12(x -y )+9(x -y )2=________. 12.已知ab =-3,a +b =2.求代数式a 3b +ab 3的值.B 级 中等题13.(2015年湖南衡阳)已知a +b =3,a -b =-1,则a 2-b 2的值为________. 14.(2015年湖北孝感)分解因式:(a -b )2-4b 2__________. 15.(2015年甘肃平凉)分解因式:x 3y -2x 2y +xy =________.16.(2015年湖南株洲)分解因式:x 2()x -2-16()x -2=____________________.C 级 拔尖题17.分解因式:x 2-y 2-3x -3y .第3课时 分式A 级 基础题1.(2015年浙江丽水)分式-11-x可变形为( )A .-1x -1 B.11+x C .-11+x D.1x -12.(2015年浙江金华)要使分式xx +4有意义,则x 的取值应满足( )A .x =-4B .x ≠4C .x >-4D .x ≠-43.(2015年湖南)若分式3-xx +1的值为0,则x 的值为( )A .3或-1B .0C .3D .-14.(2014年内蒙古赤峰)化简a 2b -ab 2b -a的结果正确的是( )A .abB .-abC .a 2-b 2D .b 2-a 25.(2015年山东济南)化简 m 2m -3-9m -3 的结果是( )A .m +3B .m -3 C.m -3m +3 D.m +3m -36.(2015年湖南益阳)下列等式成立的是( ) A.1a +2b =3a +b B.22a +b =1a +b C.ab ab -b 2=a a -b D.a -a +b =-a a +b7.(2015年广东珠海)若分式3x -5有意义,则x 应满足________.8.(2015年江苏镇江)当x =__________时,分式x +1x -2的值为0.9.(2015年吉林)计算:x x -y ·x 2-y 2x=________.10.(2015年贵州六盘水)已知c 4=b 5=a6≠0,则b +c a 的值为________.11.(2015年广东佛山)计算:2x -2-8x 2-4.12.(2015年广东广州)已知A =x 2+2x +1x 2-1-xx -1.(1)化简A ;(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,且x 为整数时,求A 的值.B 级 中等题 13.(2015年山东临沂)计算:a a +2-4a 2+2a = ______________.14.(2015年湖南邵阳)先化简⎝⎛⎭⎫1x -2-2x ·x 2-2x 2,再从0,1,2中选取一个合适的x 的值代入求值.15.(2015年湖北襄阳)先化简,再求值:⎝ ⎛⎭⎪⎫5x +3yx 2-y 2+2x y 2-x 2÷1x 2y -xy 2,其中x =3+2,y =3- 2.16.(2015年贵州黔东南州)先化简,再求值:m -33m 2-6m ÷⎝⎛⎭⎫m +2-5m -2,其中m 是方程x 2+2x -3=0的根.C 级 拔尖题 17.(2015年广东梅州)若1(2n -1)(2n +1)=a 2n -1+b2n +1,对任意自然数n 都成立,则a=______,b =______;计算:m =11×3+13×5+15×7+…+119×21=________.第4讲 二次根式A 级 基础题1.(2015年重庆)计算3 2-2的值是( )A .2B .3 C. 2 D .2 22.(2015年安徽)计算8×2的结果是( )A.10 B .4 C. 6 D .23.(2015年江苏无锡)函数y =x -4中自变量x 的取值范围是( )A .x >4B .x ≥4C .x ≤4D .x ≠44.(2015年四川凉山州)下列根式中,不能与3合并的是( ) A.13 B.33C.23D.12 5.(2015年江苏淮安)下列式子为最简二次根式的是( )A. 3B. 4C.8D.126.(2015年湖北潜江)下列各式计算正确的是( )A.2+3= 5 B .4 3-3 3=1 C .2 3×3 3=6 3 D.27÷3=37.(2015年湖南衡阳)计算8-2=________.8.(2015年江苏南京)计算5×153的结果是________. 9.(2015年江苏泰州)计算:18-2 12等于________. 10.(2015年湖北荆门)当1<a <2时,代数式()a -22+||1-a 的值是________.11.(2014年广东佛山)计算:8÷2-1+327×[2+(-2)3].12.(2014年湖北荆门)计算:24×13-4×18×(1-2)0.B 级 中等题13.(2014年安徽)设n 为正整数,且n <65<n +1,则n 的值为( )A .5B .6C .7D .814.(2014年山东济宁)如果ab>0,a+b<0,那么下面各式:①ab=ab;②ab·ba=1;③ab÷ab=-b,其中正确的是()A.①②B.②③C.①③D.①②③15.(2015年四川攀枝花)若y=x-3+3-x+2,则x y=________.16.(2014年山东德州)若y=x-4+4-x2-2,则(x+y)y=________.C级拔尖题17.(2015年山西)阅读与计算:阅读以下材料,并完成相应的任务.斐波那契(约1170—1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰好是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用:斐波那契数列中的第n个数可以用15⎝⎛⎭⎪⎫1+52n-⎝⎛⎭⎪⎫1-52n表示.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.第一章基础题强化提高测试时间:45分钟 满分:100分一、选择题(本大题共6小题,每小题5分,共30分)1.-15的相反数是( )A .15B .-15 C.115 D .-1152.用科学记数法表示316 000 000为( )A .3.16×107B .3.16×108C .31.6×107D .31.6×1063.下列二次根式中的最简二次根式是( ) A.30 B.12 C.8 D.124.下列运算正确的是( )A .a 2+a 3=a 5 B.()-a 32=a 6C .ab 2·3a 2b =3a 2b 2D .-2a 6÷a 2=-2a 35.下列计算正确的是( )A .ab ·ab =2abB .(2a )3=2a 3C .3 a -a =3(a ≥0) D.a ·b =ab (a ≥0,b ≥0)6.下列运算正确的是( )A.2+3= 5 B .3x 2y -x 2y =3C.a 2+b 2a +b=a +b D.()a 2b 3=a 6b 3 二、填空题(本大题共4小题,每小题5分,共20分)7.若分式1x -5有意义,则实数x 的取值范围是________. 8.81的平方根是________.9.若a 2-3b =5,则6b -2a 2+2015=________.10.化简:2(8-2)=________.三、解答题(本大题共5小题,每小题10分,共50分)11.分解因式:m 3n -4mn .12.化简:1x +3+6x 2-9.13.先化简,再求值:(2a +b )(2a -b )+(4ab 3-8a 2b 2)÷4ab ,其中a =-2,b =1.14.计算:|-3|+2sin45°+tan60°-⎝⎛⎭⎫-13-1-12+(π-3)0.15.先化简,再求值:⎝ ⎛⎭⎪⎫a 2-b 2a 2-2ab +b 2+a b -a ÷b 2a 2-ab,其中a ,b 满足a +1+|b -3|=0.第一部分 中考基础复习第一章 数与式第1讲 实数【演练·巩固提升】1.D 2.A 3.A 4.C 5.A 6.C 7.B 8.A9.-4 10.> 11.±412.解:(1)原式=2 2+3-2 2-3-1=-1.(2)原式=3+1-8+2 3×32=-4+3=-1. 13.D 14.C 15.B 16.110017.22 解析:由排列的规律可得,第n -1行结束的时候排了1+2+3+…+n -1=12n (n -1)个数.所以第n 行的第1个数为12n (n -1)+1.所以n =7时,第7行的第1个数为22. 第2讲 代数式【演练·巩固提升】1.B 2.D 3.C 4.B 5.A6.B 7.am 8.3 9.5n +1 10.2n (n +1)11.解:当a =3,b =|-2|=2,c =12时,a 2+b -4c =3+2-2=3. 12.解:根据题意,可知:a +b =0,①cd =1,②|m |=2,即m =±2.③把①②代入原式,可得原式=0+4m -3×1=4m -3.当m =2时,4m -3=2×4-3=5;当m =-2时,4m -3=-2×4-3=-11.所以,原式的值是5或-11.13.C 解析:把n =1代入,得n (n +1)=2<15,把n =2代入,得n (n +1)=6<15,把n =6代入,得n (n +1)=42>15,则最后输出的结果为42.14.110 解析:根据左上角+4=左下角,左上角+3=右上角,右下角的数是左下角与右上角两个数的乘积加上1的和,可得6+4=a,6+3=c ,ac +1=b ,可得a =10,c =9,b =91,所以a +b +c =10+9+91=110.15.147 解析:∵565÷4=141……1,∴正整数565位于第142行,即a =142.∵奇数行的数字在前四列,数字逐渐增加;偶数行的数字在后四列,数字逐渐减小,∴正整数565位于第五列,即b =5.∴a +b =142+5=147.16.2n -12n 解析:取n 天后剩下12n ,所以n 天共取走1-12n ,即12+122+123+…+12n =1-12n=2n -12n . 17.解:(1)4 17(2)第n 个等式为(2n +1)2-4n 2=4n +1.证明如下:左边=(2n +1)2-4n 2=4n 2+4n +1-4n 2=4n +1=右边.∴(2n +1)2-4n 2=4n +1.第3讲 整式与分式第1课时 整式【演练·巩固提升】1.A 2.A 3.A 4.C 5.C 6.C7.15 8.25 5 9.0 10.411.解:原式=a 2-2a +1+2ab +b 2+2a =()a +b 2+1,当a +b =-2时,()a +b 2+1=()-22+1=3.12.解:原式=6a 2+3a -(4a 2-1)=6a 2-4a 2+3a +1=2a 2+3a +1.因为2a 2+3a -6=0,所以2a 2+3a =6,所以原式=7.13.C 解析:先看x 的指数,第一个指数是1,第二个指数是2,第2015个单项式的指数是2015;再看系数,系数是连续的奇数,所以第2015个奇数为4029,所以第2015个单项式为4029x 2015.14.xy =z 解析:∵a m a n =a m +n ,21×22=23,22×23=25,23×25=28,25×28=213,故答案为xy =z .15.ab 解析:设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得⎩⎪⎨⎪⎧ x 1+2x 2=a ,x 1-2x 2=b ,解得⎩⎨⎧ x 1=a +b 2,x 2=a -b 4.图②的大正方形中未被小正方形覆盖部分的面积=⎝⎛⎭⎫a +b 22-4×⎝⎛⎭⎫a -b 42=ab .16.解:(1)设所捂的二次三项式为A ,则A =x 2-5x +1+3x =x 2-2x +1.(2)若x =6+1,则A =()x -12=()6+1-12=6.17.解:方案(1)的调价结果为(1+10%)(1-10%)a =0.99a ;方案(2)的调价结果为(1-10%)(1+10%)a =0.99a ;方案(3)的调价结果为(1+20%)(1-20%)a =0.96a .由此可以得到方案(1)(2)的调价结果是一样的,方案(3)的调价结果与(1)(2)不一样.最后都没有恢复原价. 第2课时 因式分解【演练·巩固提升】1.B 2.A 3.D 4.C 5.B 6.B 7.B8.m ()m +1()m -1 9.2m ()x -3y10.3()a +b ()a -b 11.(3x -3y +2)212.解:∵a +b =2,∴(a +b )2=4.∴a 2+2ab +b 2=4.又∵ab =-3,a 2+2ab +b 2=4,∴a 2+b 2=10.∴a 3b +ab 3=ab (a 2+b 2)=-30.13.-3 14.(a +b )(a -3b ) 15.xy (x -1)216.(x -2)(x -4)(x +4)17.解:原式=(x +y )(x -y )-3(x +y )=(x +y )(x -y -3)第3课时 分式【演练·巩固提升】1.D 2.D 3.C 4.B 5.A 6.C 7.x ≠5 8.-1 9.x +y10.32 解析:由题意,可设a =6k ,b =5k ,c =4k ,则b +c a =5k +4k 6k =32. 11.解:原式=2()x +2-8()x +2()x -2=2()x -2()x +2()x -2=2x +2. 12.解:(1)A =x 2+2x +1x 2-1-x x -1=()x +12()x +1()x -1-x x -1=x +1x -1-x x -1=1x -1. (2)解x -1≥0,得x ≥1.解x -3<0,得x <3.∴⎩⎪⎨⎪⎧x -1≥0,x -3<0的解为1≤x <3. ∵x 为整数,∴x =1,2.当x =1时,分式无意义;当x =2时,A =12-1=1. 13.a -2a 解析:原式=a a +2-4a (a +2)=a 2a (a +2)-4a (a +2)=a 2-4a (a +2)=(a +2)(a -2)a (a +2)=a -2a. 14.解:原式=⎣⎢⎡⎦⎥⎤x x (x -2)-2(x -2)x (x -2)·x (x -2)2=x -2(x -2)x (x -2)·x (x -2)2=x -2x +42=-x +42, 由于x ≠0,且x ≠2,因此只能取x =1.所以当x =1时,原式的值为-x +42=-1+42=32. 15.解:原式=⎝ ⎛⎭⎪⎫5x +3y x 2-y 2-2x x 2-y 2÷1xy (x -y )=3(x +y )(x +y )(x -y )·xy (x -y ) =3xy .把x =3+2,y =3-2代入,可得:原式=3(3+2)(3-2)=3.16.解:原式=m -33m (m -2)÷⎝ ⎛⎭⎪⎫m 2-4m -2-5m -2=m -33m (m -2)·m -2(m +3)(m -3)=13m (m +3). ∵m 是方程x 2+2x -3=0的根,∴m =-3或m =1.当m =-3时,原式无意义;当m =1时,原式=13m (m +3)=13×1×(1+3)=112. 17.12 -12 1021. 解析:∵1()2n -1()2n +1=12()2n -1-12()2n +1 =a 2n -1+b 2n +1, ∴a =12,b =-12. ∴m =11×3+13×5+15×7+…+119×21=⎝⎛⎭⎫12-16+⎝⎛⎭⎫16-110+…+⎝⎛⎭⎫138-142=1021. 第4讲 二次根式【演练·巩固提升】1.D 2.B 3.B 4.C 5.A 6.D 7.2 8.5 9.2 210.1 解析:原式=||a -2+||1-a =2-a +a -1=1.11.解:原式=2 2÷12+3×(2-2 2)=4 2+6-6 2 =6-2 2.12.解:(1)原式=24×13-4×24×1=2 2-2= 2. 13.D 14.B15.9 解析:由题意,得x -3≥0,且3-x ≥0,得x =3,故y =2.∴x y =9. 16.14解析:由题意,得x -4≥0,且4-x ≥0. 解得x ≥4,且x ≤4.所以x =4.所以y =-2.所以(x +y )y =(4-2)-2=14. 17.解:第1个数:当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤1+52-1-52 =15×5=1. 第2个数:当n =2时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52-1-52⎝ ⎛⎭⎪⎫1+52+1-52 =15×5×1=1. 第一章基础题强化提高测试1.A 2.B 3.A 4.B 5.D 6.D7.x ≠5 8.±3 9.2005 10.211.解:原式=mn ()m 2-4= mn (m +2)(m -2).12.解:原式=x -3(x +3)(x -3)+6(x +3)(x -3)=x -3+6(x +3)(x -3)=x +3(x +3)(x -3)=1x -3. 13.解:原式=4a 2-b 2+b 2-2ab =2a (2a -b ). 当a =-2,b =1时,原式=2×(-2)×[2×(-2)-1]=20.14.解:原式=3+2×22+3-(-3)-2 3+1 =3+1+3+3-2 3+1=5.15.解:原式=⎣⎢⎡⎦⎥⎤(a +b )(a -b )(a -b )2-a a -b ·a (a -b )b 2 =⎝ ⎛⎭⎪⎫a +b a -b -a a -b ·a (a -b )b2=b a -b ·a (a -b )b 2=a b . ∵a +1+|b -3|=0,∴a +1=0,b -3=0.解得a =-1,b = 3.∴原式=-13=-33.。

初三中考必考数学知识点资料2023

初三中考必考数学知识点资料2023

初三中考必考数学知识点资料2023初三中考必考数学知识点资料2023进入了初三之后数学成为拉分的科目,想要提高成绩,首先要学好数学。

对于很多数学基础差的同学,一定要平时多用功。

下面是小编为大家整理的关于初三中考必考数学知识点资料,欢迎大家来阅读。

初中数学必背中考知识点一、有理数。

1、大于0的数叫做正数。

2、在正数前面加上负号“-”的数叫做负数。

3、整数和分数统称为有理数。

4、人们通常用一条直线上的点表示数,这条直线叫做数轴。

5、在直线上任取一个点表示数0,这个点叫做原点。

6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

8、正数大于0,0大于负数,正数大于负数。

9、两个负数,绝对值大的反而小。

10、有理数加法法则。

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

(3)一个数同0相加,仍得这个数。

二、整式的加减。

1、都是数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式。

2、单项式中的数字因数叫做这个单项式的系数。

3、一个单项式中,所有字母的指数的和叫做这个单项式的次数。

4、几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

5、多项式里次数最高项的次数,叫做这个多项式的次数。

6、把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。

8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

三、一元一次方程。

1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程。

初三中考总复习资料数学

初三中考总复习资料数学

初三中考总复习资料数学初三中考总复习资料数学数学作为一门科学,是我们日常生活中必不可少的一部分。

在初三的学习生涯中,数学也是我们最重要的一门学科之一。

为了帮助同学们更好地复习数学,我整理了一些中考总复习资料,希望对大家有所帮助。

一、代数部分代数是数学中的一个重要分支,包括了方程、函数、不等式等内容。

在中考中,代数占据了相当大的比重。

下面是一些常见的代数题型及解题方法。

1. 方程题方程题是代数中的基础题型之一。

常见的方程题有一元一次方程、一元二次方程等。

解方程的关键是找到未知数的值。

对于一元一次方程,可以通过移项和合并同类项的方法求解。

对于一元二次方程,可以通过配方法、因式分解、求根公式等方法求解。

2. 函数题函数是代数中的重要概念,也是中考中常见的题型之一。

函数题要求我们根据给定的函数关系,求解函数的值、函数的定义域、函数的图像等。

对于函数的值,可以通过代入法求解。

对于函数的定义域,需要根据函数的性质进行分析。

对于函数的图像,可以通过画出函数的坐标轴图像或者利用计算机软件进行绘制。

3. 不等式题不等式是代数中的另一个重要概念,也是中考中常见的题型之一。

不等式题要求我们求解不等式的解集。

对于一元一次不等式,可以通过画数轴、代入法等方法求解。

对于一元二次不等式,可以通过求解对应的一元二次方程的解集,再根据不等式的性质求解。

二、几何部分几何是数学中的另一个重要分支,包括了平面几何和立体几何。

在中考中,几何也是占据了相当大的比重。

下面是一些常见的几何题型及解题方法。

1. 直线与角直线和角是几何中的基本概念。

直线题要求我们根据给定的条件,求解直线的斜率、方程等。

角题要求我们根据给定的条件,求解角的度数、性质等。

对于直线题,可以通过计算斜率、利用点斜式、两点式等方法求解。

对于角题,可以通过计算角度、利用角的性质等方法求解。

2. 三角形与四边形三角形和四边形是几何中的重要概念,也是中考中常见的题型之一。

三角形题要求我们根据给定的条件,求解三角形的周长、面积等。

九年级数学中考总复习资料

九年级数学中考总复习资料

九年级数学中考总复习资料--------数与式实数与代数式1、数的分类及概念:整数和分数统称有理数(有限小数和无限循环小数),像√3,π,0.101001∙∙∙叫无理数;有理数和无理数统称实数。

实数按正负也可分为:正整数、正分数、0、负整数、负分数,正无理数、负无理数。

2、实数和数轴上的点是一一对应的.2.(1)互为倒数的积为1;(2)互为相反数的和为0,商为-1;(3)绝对值是距离,非负数。

3、相反数:只有符号不同的两个数互为相反数.若a 、b 互为相反数,则a+b=0,1-=ab (a 、b ≠0) 4、绝对值:从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 去绝对值法则:正数的绝对值是它本身;零的绝对值是零; 负数的绝对值是它的相反数⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a数轴:①定义(三要素:原点、正方向,单位长度);②点与实数的一一对应关系。

(2)性质:若干个非负数的和为0,则每个非负数均为0。

5、近似数和有效数字:测量的结果都是近似的;利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。

6、科学记数法;一般地,一个大于10的数可以表示成a×10 n 的形式,其中 1≤a ﹤10,n 是正整数,这种记数方法叫做科学记数法。

7、整指数幂的运算:()()m m mmn n m n m n m b a ab a a a a a ⋅===⋅+,, (a ≠0) 负整指数幂的性质:pp p a a a ⎪⎭⎫ ⎝⎛==-11 零整指数幂的性质:10=a (a ≠0)正数的任何次幂为正数;负数的奇次幂为负数,负数的偶次幂为正数8、实数的开方运算:()a a a a a =≥=22;0)(9、实数的混合运算顺序10、无理数的错误认识:⑴无限小数就是无理数如1.414141···(41 无限循环);(2;(3)两个无理数的和、差、积、商也还(4)无理数是无限不循环小数,所以无法在数轴上表示出来,这种说法错误,每一个轴上把它找出来,其他的无理数也是如此.11、实数的大小比较:(1).数形结合法(2).作差法比较(3).作商法比较整式1、代数式的有关概念.(1)代数式是由运算符号把数或表示数的字母连结而成的式子.(2)求代数式的值的方法:①化简求值,②整体代入2、整式的有关概念(1)单项式:只含有数与字母的积的代数式叫做单项式.(2)多项式:几个单项式的和,叫做多项式(3)多项式的降幂排列与升幂排列(4)同类项:所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷.3、整式的运算(1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是:(2)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三中考复习函数及图象学校:姓名:一、学习的目标:掌握正、反比例、一次函数、二次函数的图象及性质二、知识点归纳:1、平面直角坐标系:平面内两条有公共原点且互相垂直的数轴构成了平面直角坐标系,坐标平面内一点对应的有序实数对叫做这点的坐标.在平面内建立了直角坐标系,就可以把“形”(平面内的点)和“数”(有序实数对)紧密结合起来.2、函数的概念:设在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它相对应,那么就说y是x的函数,x叫做自变量.3、自变量的取值范围:对于实际问题,自变量取值必须使实际问题有意义.对于纯数学问题,自变量取值应保证数学式子有意义.4、正比例函数:如果y=kx(k是常数,k≠0),那么,y叫做x的正比例函数.5、、正比例函数y=kx的图象:过(0,0),(1,K)两点的一条直线.6、正比例函数y=kx的性质(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小7、反比例函数及性质(1)当k>0时,在每个象限内分别是y随x的增大而减小;(2)当k<0时,在每个象限内分别是y随x的增大而增大.8、一次函数 如果y =kx +b (k ,b 是+常数,k ≠0),那么y 叫做x 的一次函数.9、一次函数y =kx +b 的图象10、一次函数y =kx +b 的性质(1)当k >0时,y 随x 的增大而增大;(2)当k <0时,y 随x 的增大而减小.9、二次函数的性质(1)函数y =ax 2+bx +c (其中a 、b 、c 是常数,且a ≠0)叫做的二次函数.(2)利用配方,可以把二次函数表示成y =a (x +ab 2)2+a b ac 442-或y =a (x -h )2+k 的形式 (3)二次函数的图象是抛物线,当a >0时抛物线的开口向上,当a <0时抛物线开口向下.抛物线的对称轴是直线x =-ab 2或x =h 抛物线的顶点是(-ab 2,a b ac 442-)或(h ,k ) 三、学习的过程:分层练习(A 组)一、选择题:1.函数1-=x y 中,自变量x 的取值范围是( )A .x <1B .x >1C .x ≥1D .x ≠12.在函数 中,自变量的取值范围是( )A .B .C .D .3.在函数35-=x y 中,自变量x 的取值范围是4. 点P (-1,2)关于y 轴对称的点的坐标是( ).A .(1,2)B .(-1,2)C .(1,-2)D .(-1,-2)5. 点M (1,2)关于x 轴对称点的坐标为( ) A 、(-1,2) B 、(-1,-2) C 、(1,-2) D 、(2,-1)6.在直角坐标系中,点 一定在( )A . 抛物线上 B . 双曲线 上 C . 直线上 D . 直线 上 7. 若反比例函数)0(≠=k xk y 的图象经过点(-1,2),则k 的值为 A .-2 B .21- C .2 D .219.函数y =2x -1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限10、如图所示,函数2-=x y 的图象最可能是( )11.为解决药价虚高给老百姓带来的求医难的问题,国家决定对某药品分两次降价.若设平均每13.一辆汽车由淮安匀速驶往南京,下列图象中,能大致反映汽车距南京的路程s (千米)和行驶时间t (小时)的关系的是( )14. 8、某小工厂现在年产值150万元,计划今后每年增加20万元,年产值y (万元)与年数x 的函数关系式是( )A .20150+=x yB . x y 215+=C .x y 20150+=D .x y 20=15.关于函数12+-=x y ,下列结论正确的是( )16.一次函数y =ax +b 的图像如图所示,则下面结论中正确的是( )A .a <0,b <0B .a <0,b >0C .a >0,b >0D .a >0,b <017.若反比例函数 xk y 3-= 的图象在每一象限内,y 随x 的增大而增大,则有( ) s t B O s t A O s t C O s t D OA .k ≠0B .k ≠3C .k <3D .k >318. 函数121--=x y 的图象与坐标轴围成的三角形的面积是( ) A .2 B .1 C .4 D .319.抛物线4412-+-=x x y 的对称轴是( ) A 、x =-2 B 、x =2 C 、x =-4 D 、x =420.抛物线y =2(x -3)2的顶点在( )A . 第一象限B . 第二象限C . x 轴上D . y 轴上二、填空题:1.抛物线322--=x x y 与x 轴分别交A 、B 两点,则AB 的长为________.2.直线2132+-=x y 不经过第_______象限.3.若反比例函数x ky =图象经过点A (2,-1),则k =_______.4.若将二次函数y =x 2-2x +3配方为y =(x -h )2+k 的形式,则y =__________.5.若反比例函数k y x=的图象过点(3,-4),则此函数的解析式为__________.6.函数123y x =-的自变量x 的取值范围是__________.7.写出一个图象经过点(1,一1)的函数解析式: __________________.8.已知一次函数b x y +-=2,当x =3时,y =1,则b =__________9.已知点P (-2,3),则点P 关于x 轴对称的点坐标是(____,____).10.函数b ax y +=的图像如图所示,则y 随 x 的增大而______.11.反比例函数 x y 5-= 的图像在___________象限. 12.函数2y 3x=中自变量x 的取值范围是______________.13.当k = ________时,反比例函数k y (x 0)x=->的图象在第一象限.(只需填一个数) 14.函数y =中自变量x 的取值范围是_____.15.若正比例函数y =mx (m ≠0)和反比例函数y =n x(n ≠0)的图象都经过点(2,3),则m =______, n =_________ .三、解答题:1、求下列函数中自变量x 的取值范围:(1)y =275+x ; (2)y =x 2-x -2; (3)y =843+x ; (4)y =3+x 解:(1)________________________________________________________________(2)________________________________________________________________(3)________________________________________________________________(4)________________________________________________________________2、分别写出下列各问题中的函数关系式及自变量的取值范围:(1)某市民用电费标准为每度0.50元,求电费y (元)关于用电度数x 的函数关系式;(2)已知等腰三角形的面积为20cm 2,设它的底边长为x (cm ),求底边上的高y (cm )关于x 的函数关系式;(3)在一个半径为10 cm 的圆形纸片中剪去一个半径为r (cm )的同心圆,得到一个圆环.设圆环的面积为S (cm 2),求S 关于r 的函数关系式.3.已知弹簧的长度 y (厘米)在一定的限度内是所挂重物质量 x (千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米.求这个一次函数的关系式.分析 已知y 与x 的函数关系是一次函数,则解析式必是=y __________的形式,所以要求的就是_____和b 的值.而两个已知条件就是x 和y 的两组对应值,也就是当x =______时,y =6,即得到点(____,6);当x =4时,y =7.2,即得到点(4,7.2).可以分别将两个点的坐标代入函数式,得到一个关于k ,b 的方程组,进而求得_____和b 的值.解 设所求函数的关系式是y =kx +b ,根据题意,得⎪⎩⎪⎨⎧解这个方程组,得⎩⎨⎧==b k 所以所求函数的关系式是_____________________.运用待定系数法求解下题4.已知一次函数的图象如下图,写出它的关系式.分析:由图可知直线经过两点(___,___)、(___,___)解:5、一次函数中,当1=x 时,3=y ;当1-=x 时,7=y ,求出相应的函数关系式.解:设所求一次函数为___________,则依题意得∴解方程组得⎩⎨⎧==b k ∴所求一次函数为_____________6、已知一次函数y =_kx +b 的图象经过点(-1,1)和点(1,-5),求(1)函数的解析式 (2)当x =5时,函数y 的值.四.综合题:(3分+2分+3分+4分)已知一个二次函数的图象经过A (-2,25)、B (0,23-)和C (1,-2)三点. (1)求出这个二次函数的解析式;(2)通过配方,求函数的顶点P 的坐标;(3)若函数的图象与x 轴相交于点E 、F ,(E 在F 的左边),求出E 、F 两点的坐标.(4)作出函数的图象并根据图象回答:当x 取什么时,y >0,y <0,y =0函数及图象答案分层练习(A 组)一.选择题:C B C A C D A D B C C B C D A C C B C二.填空题:1.4 2. 三 3. –2 4.y =(x -1)+2 5. y = - x12 6. x ≠23 7. y =-x 等 8.7 9. (-2,-3) 10. 减小 11. 二、四 13. -1等 14.x >21 且x ≠1 15. 23 6 三.解答题:1.(1)一切实数 (2)一切实数 (3)x ≠2 (4)x >-32. (1)y =0.5x (x >0) (2)y =x40 (3)s =100π-πr 2(0<r <10)3.分析:kx +b k 0 0 k 解:⎩⎨⎧=+=2.746b k b ⎩⎨⎧==63.0b k y =0.3x +6 4.分析:(2,0) (0,-3)解:y =kx +b ⎩⎨⎧-==+33b b kx ⎪⎪⎩⎪⎪⎨⎧-==323b k ∴y =23x -35.解:y =kx +b ⎩⎨⎧=+-=+73b k b kx ⎩⎨⎧==25k b ∴y =-2x +55.(1)⎩⎨⎧-=+=+-51b k b k ⎩⎨⎧-=-=32k b y =-3x -2(2) y =-17四. ① y =0.5x 2-x -1.5 ② y =0.5(x -1)2-2 p (1,-2)③ E ( -1,0 ) F (3,0) ④ 图略.当X <-1或X >3时y >0 .当-1<X <3时y <0当X=-1,X=3时y=0。

相关文档
最新文档