全等三角形重点题型

合集下载

全等三角形经典题型50题(含答案)

全等三角形经典题型50题(含答案)

全等三角形证明经典50 题(含答案)1. 已知: AB=4, AC=2, D 是 BC 中点, AD 是整数,求ADAB CD延伸 AD 到 E,使 DE=AD,则三角形ADC全等于三角形EBD即 BE=AC=2 在三角形 ABE 中 ,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又 AD 是整数 ,则 AD=512. 已知: D 是 AB 中点,∠ ACB=90°,求证:CD AB2ADC B3.已知: BC=DE,∠ B=∠ E,∠ C=∠ D, F 是 CD中点,求证:∠ 1=∠ 2A21B EC F D证明:连结 BF 和 EF。

由于 BC=ED,CF=DF,∠ BCF=∠ EDF。

因此三角形 BCF 全等于三角形 EDF(边角边 )。

因此 BF=EF,∠ CBF=∠ DEF。

连结 BE。

在三角形BEF 中 ,BF=EF。

因此∠ EBF=∠ BEF。

又由于∠ ABC=∠AED。

因此∠ABE=∠AEB。

因此 AB=AE。

在三角形 ABF 和三角形 AEF中, AB=AE,BF=EF,∠ABF=∠ ABE+∠ EBF=∠ AEB+∠ BEF=∠ AEF。

因此三角形 ABF 和三角形 AEF全等。

因此∠ BAF=∠ EAF (∠ 1=∠ 2)。

A4. 已知:∠ 1=∠ 2, CD=DE, EF//AB,求证: EF=AC 1 2证明:过 E 点,作 EG//AC,交 AD 延伸线于 G 则∠ DEG=∠ DCA,F ∠DGE=∠ 2又∵CD=DE∴ ⊿ADC≌ ⊿ GDE(AAS)∴EG=AC∵ EF//AB∴∠ DFE=∠ 1∵ ∠ 1=∠ 2∴ ∠ DFE=∠ DGE∴ EF=C EG∴ EF=AC DEB5.已知:AD均分∠ BAC,AC=AB+BD,求证:∠B=2∠C ACB D证明:在 AC上截取AD=AD∴ ⊿ AED≌ ⊿ ABD AE=AB,连结(SASED∵ AD)均分∠ BAC∴ ∠∴ ∠ AED=∠ BEAD=∠ BAD 又∵ AE=AB,,DE=DB∵ AC=AB+BDAC=AE+CE∴ CE=DE∴ ∠ C=∠ EDC∵∠ AED=∠ C+∠ EDC=2∠ C∴∠ B=2∠C6. 已知: AC 均分∠ BAD,CE⊥ AB,∠ B+∠ D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连结 CF 由于 CE⊥AB 因此∠CEB=∠ CEF= 90 °由于 EB= EF, CE= CE,所以△CEB≌△CEF 所以∠B =∠ CFE 由于∠ B+∠ D= 180 ,°∠CFE+∠ CFA= 180°因此∠ D=∠ CFA 由于AC 均分∠ BAD 因此∠ DAC=∠ FAC 又由于AC= AC因此△ ADC≌ △ AFC( SAS)因此 AD= AF 因此 AE= AF+ FE= AD+ BE12.如图,四边形 ABCD 中, AB∥ DC, BE、 CE 分别均分∠ ABC、∠ BCD,且点 E 在 AD 上。

三角形全等的判定方法5种例题+练习全面

三角形全等的判定方法5种例题+练习全面

教学内容全等三角形的判定教学目标掌握全等三角形的判定方法重点全等三角形的判定探索三角形全等的条件(5种)1边角边(重点)两边及其夹角分别分别相等的两个三角形全等,可以简写成“边角边”或“SAS”.注:必须是两边及其夹角,不能是两边和其中一边的对角.原因:如图:在A ABC和A ABD中,/ A= / A,AB=AB,BC=BD,显然这两个三角形不全等.A例 1 如图,AC=AD, / CAB= / DAB,求证:A ACB义A ADB.AD例 2 如图,在四边形 ABCD 中,AD〃BC, / ABC= /DCB, AB=DC, AE=DF 求证:BF=CE.例3.(1)如图①,根据“SAS",如果BD=CE, =,那么即可判定4BDC24CEB; (2)如图②,已知BC=EC, NBCE二ACD,要使4ABC2△口£&则应添加的一个条件为例4. 如图,已知AD=AE,N1=N2, BD=CE,则有4ABD2,理由是△ABE义,理由是.例5.如图,在4ABC和4DEF中,如果AB=DE, BC=EF,只要找出N=N 或〃,就可得到4ABC2△DEF.A D例6.如图,已知AB〃DE, AB=DE, BF=CE,求证:4ABC24口£艮例 7.如图,点B 在线段AD 上,BC〃DE, AB=ED, BC=DB. 求证:NA二NE 例8.如图,点E, F 在BC 上,BE=CF, AB=DC, NB=NC.求证: NA=ND.2.角边角两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例1.如图,在4ABC中,点D是BC的中点,作射线AD,线段AD及其延长线上分别取点E, F,连接CE,BF.添加一个条件,使得4BDF24CDE,你添加的条件是:.(不添加辅助线)例2. 如图,已知人口平分/8人&且N ABD=N ACD,则由“AAS”可直接判定△^A.B例 3.如图,在 RtA ABC 中,N ACB=90°, BC=2cm, CD^AB,在AC 上取一点E,使EC二BC, 过点E作EF^AC交CD的延长线于点F,若EF=5cm,那么AE=cm.例4.如图,AD〃BC,N ABC的角平分线BP与/8人口的角平分线AP相交于点P,作PE L AB于点E.若PE=2,则两平行线AD与BC间的距离为.例 5.如图,已知EC=AC, ZBCE=ZDCA, NA=NE.求证:BC=DC.例6.如图,在4ABC中,D是BC边上的点(不与B, C重合),F, E分别是AD及其延长线上的点,CF〃BE.请你添加一个条件,使4BDE24CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:;(2)证明:例7.如图,A在DE上,F在AB上,且BC=DC,N1=N2=N3,则DE的长等于()A. DCB. BCC. ABD. AE+AC【基础训练】1 .如图,已知 AB = DC,NABC=NDCB,则有4ABC2,理由是;且有2 .如图,已知AD=AE,N1 = N2, BD = CE,则有4ABD2,理由是;△ ABF /,理由是.3 .如图,在4ABC 和ABAD 中,因为 AB = BA,NABC=NBAD, =,根 据“SAS”可以得到4ABC2ABAD.4 .如图,要用“SAS”证4ABC2AADE,若AB=AD, AC=AE,则还需条件( ).5 .如图,OA=OB, OC = OD,NO=50°,N D = 35°,则NAEC 等于( ).A. 60°B. 50°C. 45°D. 30°A.NB = ND C.N1 = N2 BNC=NED.N3 = N4(第4皿(第56.如图,如果AE=CF, AD〃BC, AD = CB,那么^ADF和ACBE全等吗?请说明理由.律f题)7.如图,已知AD与BC相交于点O,NCAB = NDBA, AC = BD.求证: (1)NC=ND;(2)AAOC^ABOD.C第T题)8.如图,AACD和4BCE都是等腰直角三角形,NACD=NBCE=90°, AE交DC于F, BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.(第8题)9.如图,在4ABC 中,AB=AC, AD 平分/BAC.求证:NDBC=NDCB.(第KJ题)10.如图,4ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE〃BC.(第门题)角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“AAS”. 例1、如图,在4ABC中,N ABC=45°, H是高AD和高BE的交点,试说明BH=AC.例 2、如图,N ACB=90°, AC二BC, BE±CE, AD±CE 于 D, AD=2.5cm, DE=1.7cm. 求BE的长.例3、如图,在4ABC中,AC±BC, CE±AB于E, AF平分/CAB交CE于点F,过F作FD〃 BC交AB于点D.求证:AC=AD.例 3.如图,AD 平分/BAC, DEXAB 于 E, DFXAC 于 F,且 DB二DC,求证:EB=FC例4.如图,在4ABC中,D是BC的中点,DELAB, DFXAC,垂足分别是E, F, BE=CF. 求证:AD 是4ABC的角平分线.例5.如图,在4ABC中,AB二CB,N ABC=90°, D为AB延长线上的一点,点E在BC 边上,连接 AE, DE, DC, AE二CD.求证:NBAE二NBCD.例6.如图,D是BC上一点,DEL AB, DF±AC, E, F分别为垂足,且AE=AF.(1)AAED与4AFD全等吗?为什么?(2)AD平分/BAC吗?为什么?例 7.如图,已知 ACLBC, BDLAD, BC 与 AD 交于 O, AC=BD.试说明:ZOAB=ZOBA.例8.如图,NACB 和/ADB都是直角,BC二BD, E是AB上任意一点.求证:CE=DE.例 9.如图,已知RtAABC^RtAADE,ZABC=Z ADE=90°, BC 与 DE 相交于点 F, CD, EB.连接(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.例10.如图,在四边形ABCD中,AC 平分/BAD,并且CB=CD.求/ABC+NADC的度数.例11. (1)如图①,A, E, F, C四点在一条直线上,AE二CF,过点E, F分别作DELAC, 8尸,八0连接BD交AC于点G,若AB二CD,试说明FG=EG.(2)若将4DCE沿AC方向移动变为如图②的图形,(1)中其他条件不变,上述结论是否仍成立?请说明理由.B BD D①. ②课后练习:1.如图,点C在线段AB的延长线上,AD = AE, BD = BE, CD = CE,则图中共有对全等三角形,它们是2.如图,若AB = CD, AC=BD,则可用“SSS”证 23.如图,已知 AB = DC, BE=CF,若要利用“SSS”得到4ABE2△DCF,还需增加的一个条件是.i第3题)(第-I题)4.如图所示是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若想固定其形状不变,需要加钉一根木条,可钉在().A. AE 上B. EF 上C. CF 上D. AC 上5.如图,已知E、C两点在线段BF上,BE=CF, AB=DE, AC=DF.求证:AABC2A DEF.& E C F(第三⑦6.如图,在4ABC和4DCB中,AC与BD相交于点O, AB=DC, AC=BD.(1)求证:4ABC 2ADCB;(2)AOBC的形状是.(直接写出结论,不需证明)<第6题)7、如图,在口ABCD中,点E、F分别是AD、BC的中点,AC 与EF相交于点O.(1)过点B作AC的平行线BG,延长EF交BG于点H;(2)在(1)的图中,找出一个与4BFH全等的三角形,并证明你的结论.8、如图,已知BD±AB, DC,AC,垂足分别为点B、C, CD=BD, AD 平分/BAC吗,为什么?9.如图,四边形ABCD是正方形,点G是BC上的任意一点,DELAG于E, BF#DE,交 AG于F.那NAF与BF+EF相等吗?请说明理由.B G C10.如图,BD、CE分别是4ABC的边AC和边AB上的高,如果BD = CE,试证明AB = AC.11.如图,在RtAABC和RtABAD中,AB为斜边,AC=BD, BC、AD相交于点E (1)请说明AE=BE 的理由;(2)若N AEC=45°, AC = 1,求 CE 的长.12.如图,在4ABC中,D是BC的中点,DELAB, DFLAC,垂足分别是点E、F, BE= CF.(1)图中有几对全等的三角形?请一一列出;(2)选择一对你认为全等的三角形进行证明.4练习21.如图,已知NB = NDEF, AB=DE,要证明△ ABC2△DEF.(1)若以“ASA”为依据,还缺条件;(2)若以“AAS”为依据,还缺条件£(第1期】《第2题)2.如图,已知AD平分/BAC,且NABD=NACD,则由“AAS”可直接判定△2 △.3.如图,已知AB=AC,要根据“ASA”得到以BE2AACD,应增加一个条件是 _______________(第3 (第4(第54.如图,点P是/AOB的平分线OC上的一点,PD±OA, PE LOB,垂足分别为点D、E, 则图中有对全等三角形,它们分别是.5.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是().A.带①去B.带②去C.带③去D.带①和②去6.如图,已知AC平分/8八口,/1 = /2, AB与AD相等吗?请说明理由.C£第67.如图,点B、E、F、C在同一直线上,已知NA=ND, 需要补充的一个条件是.(写出一个即可)NB = NC,要使4ABF 2ADCE,8.如图,在4ABC中,N ABC=45°, H是高AD和高BE的交点,试说明BH=AC.A9.如图,已知点A、D、B、E在同一条直线上,且AD=BE,NA=NFDE,则AABC2A DEF.请你判断上面这个判断是否正确,如果正确,请给出说明;如果不正确,请添加一个适当条件使它成为正确的判断,并加以说明.10.已知:如图,AB=AE,N1 = N2,NB = NE.求证:BC=ED.21。

初二数学上册:全等三角形常考题型+解题思路

初二数学上册:全等三角形常考题型+解题思路

初二数学上册:全等三角形常考题型+解题思路全等三角形的性质对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等。

寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边。

(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

(3)有公共边的,公共边常是对应边。

(4)有公共角的,公共角常是对应角。

(5)有对顶角的,对顶角常是对应角。

(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角)。

【解题关键】要想正确地表示两个三角形全等,找出对应的元素是关键。

全等三角形的判定方法(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等。

(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等。

(3)边边边定理(SSS):三边对应相等的两个三角形全等。

(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等。

(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等。

全等三形的应用运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线。

【拓展】通过判定两个三角形全等,可证明两条线段间的位置关系和大小关系。

而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础。

找全等三角形的方法(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。

专题02 全等三角形重难点题型(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)

专题02 全等三角形重难点题型(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)

专题02高分必刷题-全等三角形重难点题型分类(解析版)题型1:全等三角形的性质1.下列说法正确的是()A.两个等边三角形一定全等B.形状相同的两个三角形全等C.面积相等的两个三角形全等D.全等三角形的面积一定相等【解答】解:A、两个边长不相等的等边三角形不全等,故本选项错误;B、形状相同,边长不对应相等的两个三角形不全等,故本选项错误;C、面积相等的两个三角形不一定全等,故本选项错误;D、全等三角形的面积一定相等,故本选项正确.故选:D.2.如图,△ABC≌△DCB,△A=80°,△DBC=40°,则△DCA的度数为()A.20°B.25°C.30°D.35°【解答】解:△△ABC≌△DCB,∴∠D=△A=80°,△ACB=DBC=40°,∴∠DCB=180°﹣∠D﹣∠DBC=60°,∴∠DCA=△DCB﹣∠ACB=20°,故选:A.3.如图,△ABC≌△DEF,BE=7,AD=3,则AB=.【解答】解:△△ABC≌△DEF,∴AB=DE,∴AB﹣AD=DE﹣AD,即BD=AE,∵BE=7,AD=3,∴BD=AE==2∴AB=AD+DB=3+2=5.故答案为:5.题型2:添加一个条件,是两三角形全等4.如图,已知MB=ND,△MBA=△NDC,下列条件中不能判定△ABM≌△CDN的是()A.△M=△N B.AM∥CN C.AB=CD D.AM=CN【解答】解:A、△M=△N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、AM∥CN,得出△MAB=△NCD,符合AAS,能判定△ABM≌△CDN,故B选项不符合题意.C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、根据条件AM=CN,MB=ND,△MBA=△NDC,不能判定△ABM≌△CDN,故D选项符合题意;故选:D.5.如图,已知△ADB=△CBD,下列所给条件不能证明△ABD≌△CDB的是()A.△A=△C B.AD=BC C.△ABD=△CDB D.AB=CD【解答】解:在△ABD和△CDB中,,∴△ABD≌△CDB(AAS)∴选项A能证明;在△ABD和△CDB中,,∴△ABD≌△CDB(SAS),∴选项B能证明;在△ABD和△CDB中,,∴△ABD≌△CDB(ASA),∴选项C能证明;选项D不能证明△ABD≌△CDB;故选:D.6.如图,已知△1=△2,要使△ABC≌△CDA,还需要补充的条件不能是()A.AB=CD B.BC=DA C.△B=△D D.△BAC=△DCA 【解答】解:A、根据AB=CD和已知不能推出两三角形全等,错误,故本选项正确;B、△在△ABC和△CDA中∴△ABC≌△CDA(SAS),正确,故本选项错误;C、△在△ABC和△CDA中∴△ABC≌△CDA(AAS),正确,故本选项错误;D、△在△ABC和△CDA中∴△ABC≌△CDA(AAS),正确,故本选项错误;故选:A.题型三:尺规作图的依据7.如图,是用直尺和圆规作一个角等于已知角的示意图,则说明△A′O′B′=△AOB的依据是()A.SSS B.SAS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:A.8.工人师傅常用角尺平分一个任意角.做法如下:如图,△AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是()A.SSS B.SAS C.ASA D.AAS【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.9.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A.SSS B.SAS C.ASA D.AAS【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.题型4:角平分线的性质10.如图,在△ABC中,△C=90°,AC=BC,AD平分△CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm【解答】解:△AD平分△CAB,DE⊥AB,△C=90°,∴DE=CD,又△AC=BC,AC=AE,∴AC=BC=AE,∴△DBE的周长=DE+BD+EB=CD+BD+EB=BC+EB=AE+EB=AB,∵AB =6cm,∴△DBE的周长=6cm.故选:A.11.如图,△ABC中,△C=90°,AD是角平分线,AB=14,S△ABD=28,则CD的长为.【解答】解:如图,过D作DE⊥AB于E,∵∠C=90°,AD是角平分线,∴由角平分线的性质,得DE=CD.∵AB=14,S△ABD=28,∴×AB×DE=28,即×14×DE=28,解得DE=4,∴CD=4,故答案为:4.12.如图,BD是△ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE=cm.【解答】解:过点D作DF⊥BC于点F,∵BD是△ABC的平分线,DE⊥AB,∴DE=DF,∵AB=18cm,BC=12cm,∴S△ABC=S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=36cm2,∴DE=2.4(cm).故答案为:2.4.题型五:全等三角形中档证明题考向1:重叠边技巧①短边相等+重叠边=长边相等②长边相等-重叠边=短边相等13.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,△A=△D,AF=DC.求证:(1)△ABC≌△DEF;(2)BC∥EF.【解答】证明:(1)△AF=DC,∴AF+CF=DC+CF,∴AC=DF,∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS);(2)△由(1)知△ABC≌△DEF,∴∠BCA=△EFD,∴BC∥EF.14.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:AB∥DE.【解答】证明:△AF=DC,∴AF﹣FC=DC﹣CF,即AC=DF.在△ACB和△DFE中,∴△ACB≌△DFE(SSS),∴∠A=△D,∴AB∥DE.考向2:重叠角技巧重叠角技巧:①小角相等+重叠角=大角相等②大角相等-重叠角=小角相等15.如图,AB=AD,△C=△E,△1=△2,求证:△ABC≌△ADE.【解答】证明:△△1=△2,∴∠1+∠EAC=△2+∠EAC,即△BAC=△DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).16.如图,△ABC和△ADE都是等腰三角形,且△BAC=90°,△DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:△△ABC和△ADE都是等腰直角三角形,∴AD=AE,AB=AC,又△△EAC =90°+∠CAD,△DAB=90°+∠CAD,∴∠DAB=△EAC,∵在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴BD=CE.考向三:等角的余角相等技巧:∠1+∠2=90,∠2+∠3=90, ∠1=∠3技巧:把全等三角形中一个三角形的两个锐角分别随意标上∠1、∠2,再从第二个三角形的两个锐角中挑一个和∠1或∠2互余的角标上∠3。

专题1-3 全等三角形-重难点题型(举一反三)(苏科版)(解析版)

专题1-3 全等三角形-重难点题型(举一反三)(苏科版)(解析版)

专题1.3 全等三角形-重难点题型【苏科版】【题型1 全等三角形的对应元素判断】【例1】(2020秋•潍城区期中)如图,△ABC≌△DEF,点E、C、F、B在同一条直线上.下列结论正确的是()A.∠B=∠D B.∠ACB=∠DEF C.AC=EF D.BF=CE【分析】根据全等三角形的对应边相等、对应角相等解答.【解答】解:∵△ABC≌△DEF,∴∠B=∠E,但∠B与∠D不一定相等,A选项结论错误,不符合题意;∵△ABC≌△DEF,∴∠ACB=∠EFD,当∠ACB与∠DEF不一定相等,B选项结论错误,不符合题意;∵△ABC≌△DEF,∴AC=DF,当AC与EF不一定相等,C选项结论错误,不符合题意;∵△ABC≌△DEF,∴BC=EF,∴BC﹣CF=EF﹣CF,即BF=CE,D选项结论正确,符合题意;故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.【变式1-1】(2020秋•合江县月考)如图,已知△ABC≌△CDA,下面四个结论中,不正确的是()A.△ABC和△CDA的面积相等B.△ABC和△CDA的周长相等C.∠B+∠ACB=∠D+∠ACD D.AD∥BC,且AD=CB【分析】由全等三角形的性质可得S△ABC=S△CDA,△ABC和△CDA的周长相等,AD=CB,∠B=∠D,∠ACB=∠DAC,进而可得AD∥BC,即可求解.【解答】解:∵△ABC≌△CDA,∴S△ABC=S△CDA,△ABC和△CDA的周长相等,AD=CB,∠B=∠D,∠ACB=∠DAC,∴AD∥BC,故选项A、B、D都不符合题意,∵∠ACB不一定等于∠ACD,∴∠B+∠ACB不一定等于∠D+∠ACD,故选项C符合题意,故选:C.【点评】本题考查了全等三角形的性质,掌握全等三角形的性质是本题的关键.【变式1-2】(2020秋•海珠区校级期中)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于下列结论:①AC=AF;②∠F AB=∠EAB;③EF=BC;④∠EAB=∠F AC.其中正确结论的个数是()A.1个B.2个C.3个D.4个【分析】利用全等三角形的性质可得答案.【解答】解:∵△ABC≌△AEF,∴AF=AC,EF=CB,∠F AE=∠BAC,∴∠F AE﹣∠F AB=∠BAC﹣∠BAF,即∠BAE=∠F AC,∴正确的结论是①③④,共3个,故选:C.【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形,对应边相等,对应角相等.【变式1-3】(2020秋•北碚区期中)如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C在一条直线上.下列结论:①BD是∠ABE的平分线;②AB⊥AC;③∠C=30°;④线段DE是△BDC的中线;⑤AD+BD=AC其中正确的有()个.A.2B.3C.4D.5【分析】根据全等三角形的对应角相等得出∠ABD=∠EBD,即可判断①;先由全等三角形的对应边相等得出BD=CD,BE=CE,再根据等腰三角形三线合一的性质得出DE⊥BC,则∠BED=90°,再根据全等三角形的对应角相等得出∠A=∠BED=90°,即可判断②;根据全等三角形的对应角相等得出∠ABD=∠EBD,∠EBD=∠C,从而可判断∠C,即可判断③;根据全等三角形的对应边相等得出BE=CE,再根据三角形中线的定义即可判断④;根据全等三角形的对应边相等得出BD=CD,但A、D、C 可能不在同一直线上,所以AD+CD可能不等于AC.【解答】解:①∵△ADB≌△EDB,∴∠ABD=∠EBD,∴BD是∠ABE的平分线,故①正确;②∵△BDE≌△CDE,∴BD=CD,BE=CE,∴DE⊥BC,∴∠BED=90°,∵△ADB≌△EDB,∴∠A=∠BED=90°,∴AB⊥AD,∵A、D、C可能不在同一直线上∴AB可能不垂直于AC,故②不正确;③∵△ADB≌△EDB,△BDE≌△CDE,∴∠ABD=∠EBD,∠EBD=∠C,∵∠A=90°若A、D、C不在同一直线上,则∠ABD+∠EBD+∠C≠90°,∴∠C≠30°,故③不正确;④∵△BDE≌△CDE,∴BE=CE,∴线段DE是△BDC的中线,故④正确;⑤∵△BDE≌△CDE,∴BD=CD,若A、D、C不在同一直线上,则AD+CD>AC,∴AD+BD>AC,故⑤不正确.故选:A.【点评】本题考查了全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.也考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,难度适中.【题型2 利用全等三角形的性质求角度】【例2】(2020秋•兰山区期末)如图,已知△ABC≌△DEF,CD平分∠BCA,若∠A=30°,∠CGF=88°,则∠E的度数是()A.30°B.50°C.44°D.34°【分析】根据角平分线的性质得到∠ACD=∠BCD=12∠BCA,根据全等三角形的性质得到∠D=∠A=30°,根据三角形的外角性质、全等三角形的性质解答即可.【解答】解:∵CD平分∠BCA,∴∠ACD=∠BCD=12∠BCA,∵△ABC≌△DEF,∴∠D=∠A=30°,∵∠CGF=∠D+∠BCD,∴∠BCD=∠CGF﹣∠D=58°,∴∠BCA=116°,∴∠B=180°﹣30°﹣116°=34°,∵△ABC≌△DEF,∴∠E=∠B=34°,故选:D.【点评】本题考查的是全等三角形的性质、三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.【变式2-1】(2020春•沙坪坝区校级期末)如图,△ABC≌△ADE,且AE∥BD,∠BAD=130°,则∠BAC 度数的值为.【分析】根据全等三角形的性质,可以得到AB=AD,∠BAC=∠DAE,从而可以得到∠ABD=∠ADB,再根据AE∥BD,∠BAD=130°,即可得到∠DAE的度数,从而可以得到∠BAC的度数.【解答】解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠ABD=∠ADB,∵∠BAD=130°,∴∠ABD=∠ADB=25°,∵AE∥BD,∴∠DAE=∠ADB,∴∠DAE=25°,∴∠BAC=25°,故答案为:25°.【点评】本题考查全等三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.【变式2-2】(2020秋•覃塘区期中)如图,已知△AEF≌△ABC,点E在BC边上,EF与AC交于点D.若∠B=64°,∠C=30°,求∠CDF的度数.【分析】根据全等三角形的性质和三角形外角性质解答即可.【解答】解:∵△AEF≌△ABC,∴AE=AB,∠AEF=∠B=64°,∵点E在BC边上,∴∠AEB=∠B=64°,∴∠DEC=180°﹣∠AEB﹣∠AEF=180°﹣64°﹣64°=52°,又∵∠C=30°,且∠CDF是△CDE的外角,∴∠CDF=∠DEC+∠C=52°+30°=82°.【点评】此题考查全等三角形的性质,关键是根据全等三角形的对应角相等解答.【变式2-3】(2020秋•西湖区校级月考)如图,△ABC≌△ADE,BC的延长线分别交AD,DE于点F,G,且∠DAC=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.【分析】先根据全等三角形的性质得∠BAC=∠DAE,由于∠DAE+∠CAD+∠BAC=120°,则可计算出∠BAC=55°,所以∠BAF=∠BAC+∠CAD=65°,根据三角形外角性质可得∠DFB=∠BAF+∠B=90°,∠DGB=65°.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∵∠EAB=120°,∴∠DAE+∠CAD+∠BAC=120°,∵∠CAD=10°,∴∠BAC=12(120°﹣10°)=55°,∴∠BAF=∠BAC+∠CAD=65°,∴∠DFB=∠BAF+∠B=65°+25°=90°;∵∠DFB=∠D+∠DGB,∴∠DGB=90°﹣25°=65°.【点评】本题考查了全等三角形的性质:全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.【题型3 利用全等三角形的性质求线段长度】【例3】(2020秋•永吉县期中)如图,△EFG≌△NMH,E,H,G,N在同一条直线上,EF和NM,FG 和MH是对应边,若EH=1.1cm,NH=3.3cm.求线段HG的长.【分析】由△EFG≌△NMH,EF和NM,FG和MH是对应边,得到EG和NH是对应边,根据全等三角形的性质得到EG=NH,根据线段的和差计算即可得到结果.【解答】解:∵△EFG≌△NMH,EF和NM,FG和MH是对应边,∴EG和NH是对应边,∴EG=NH,∴EH+HG=HG+NG,∴EH=NG,∵EH=1.1,∴NG=1.1∵NH=3.3cm,∴HG=NH﹣NG=3.3﹣1.1=2.2(cm).【点评】本题主要考查了全等三角形全等的性质,熟练找出两个全等三角形的对应边是解此题的关键.【变式3-1】(2020秋•永定区期中)如图,△ADE≌△BCF,AD=8cm,CD=6cm,则BD的长为cm.【分析】根据全等三角形的性质得出AD=BC=8cm,进而即可求得BD=BC﹣CD=2cm.【解答】解:∵△ADE≌△BCF,∴AD=BC=8cm,∵BD=BC﹣CD,CD=6cm,∴BD=8﹣6=2(cm).故答案为:2.【点评】本题考查了全等三角形的性质,熟记性质是解题的关键.【变式3-2】(2020秋•东莞市校级月考)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知△AEH≌△CEB,EB=5,AE=7,则CH的长是.【分析】根据全等三角形的性质分别求出EC、EH,结合图形计算,得到答案.【解答】解:∵△AEH≌△CEB,∴EC=AE=7,EH=EB=5,∴CH=EC﹣EH=7﹣5=2,故答案为:2.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.【变式3-3】(2020秋•中山市期中)一个三角形的三条边的长分别是3,5,7,另一个三角形的三条边的长分别是3,3x ﹣2y ,x +2y ,若这两个三角形全等,则x +y 的值是 .【分析】根据全等三角形的性质可得方程组{3x −2y =5x +2y =7,或{x +2y =53x −2y =7,解方程组可得答案. 【解答】解:由题意得{3x −2y =5x +2y =7,或{x +2y =53x −2y =7, 解得:{x =3y =2或{x =3y =1, x +y =5或x +y =4,故答案为:5或4【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形对应边相等.【题型4 与全等三角形性质有关的证明】【例4】(2020秋•安徽月考)如图,△ABC ≌△ADE ,点E 在边BC 上,求证:∠BED =∠BAD .【分析】根据全等三角形的性质和三角形的外角的性质即可得到结论.【解答】证明:∵△ABC ≌△ADE ,∴∠C =∠AED ,∠BAC =∠DAE ,∴∠BAC ﹣∠BAE =∠DAE ﹣∠BAE ,即∠CAE =∠BAD ,∵∠AEB =∠AED +∠DEB =∠CAE +∠C ,∴∠CAE =∠BED ,∴∠BED =∠BAD .【点评】本题考查了三角形全等的性质,三角形的外角的性质,关键是熟练掌握全等三角形的性质.【变式4-1】(2020秋•大安市校级期中)已知△ABF ≌△DCE ,E 与F 是对应顶点.证明AF ∥DE .【分析】根据全等三角形的性质得出∠B =∠C ,∠BAF =∠CDE ,根据三角形外角性质求出∠AFE =∠DEF ,根据平行线的判定得出即可.【解答】证明:∵△ABF≌△DCE,∴∠B=∠C,∠BAF=∠CDE,∴∠B+∠BAF=∠C+∠CDE,∴∠AFE=∠DEF,∴AF∥DE.【点评】本题考查了全等三角形的性质,三角形外角性质,平行线的判定等知识点,能灵活运用定理机芯推理是解此题的关键.【变式4-2】(2020春•成都期中)如图,△ABC中,点E是AB边上一点,△BCE≌△ACE,ED∥AC,DF ⊥AB.(1)判断CE与AB是否垂直,并说明理由;(2)证明:∠EDF=∠BDF.【分析】(1)根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质和平行线的判定和性质即可得到结论.【解答】解:(1)CE⊥AB,理由:∵△BCE≌△ACE,∴BEC=∠AEC=12×180°=90°,∴CE⊥AB;(2)∵ED∥AC,∴∠DEC=∠ACE,∵△BCE≌△ACE,∴∠BCE=∠ACE,∴∠CED=∠DCE,∵DF⊥AB,∴DF∥CE,∴∠BDF=∠DCE,∠EDF=∠CED,∴∠EDF=∠BDF.【点评】本题考查了全等三角形的性质,平行线的性质,正确的识别图形是解题的关键.【变式4-3】(2020秋•定远县月考)如图所示,A,C,E三点在同一直线上,且△ABC≌△DAE.(1)求证:BC=DE+CE;(2)当△ABC满足什么条件时,BC∥DE?【分析】(1)根据全等三角形的性质得出AE=BC,AC=DE,再求出答案即可;(2)根据平行线的性质得出∠BCE=∠E,根据全等三角形的性质得出∠ACB=∠E,求出∠ACB=∠BCE,再求出答案即可.【解答】(1)证明:∵△ABC≌△DAE,∴AE=BC,AC=DE,又∵AE=AC+CE,∴BC=DE+CE;(2)解:∵BC∥DE,∴∠BCE=∠E,又∵△ABC≌△DAE,∴∠ACB=∠E,∴∠ACB=∠BCE,又∵∠ACB+∠BCE=180°,∴∠ACB=90°,即当△ABC满足∠ACB为直角时,BC∥DE.【点评】本题考查了全等三角形的判定定理和平行线的性质和判定,能灵活运用定理进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.【题型5 与全等三角形性质有关的综合】【例5】(2020秋•朔州月考)如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.【分析】(1)根据全等三角形的性质得到∠FCA=∠EBD=90°,根据直角三角形的性质计算即可;(2)根据全等三角形的性质得到CA=BD,结合图形得到AB=CD,计算即可.【解答】解:(1)∵BE⊥AD,∴∠EBD=90°,∵△ACF≌△DBE,∴∠FCA=∠EBD=90°,∴∠A=90°﹣∠F=27°;(2)∵△ACF≌△DBE,∴CA=BD,∴CA﹣CB=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB+CD=11﹣5=6cm,∴AB=3cm.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.【变式5-1】(2020秋•新罗区校级月考)如图,点A、B、C在同一直线上,点E在BD上,且△ABD≌△EBC,AB=2cm,BC=3cm.(1)求DE的长;(2)判断AC与BD的位置关系,并说明理由.(3)判断直线AD与直线CE的位置关系,并说明理由.【分析】(1)根据全等三角形的对应边相等得到BD=BC=5cm,BE=AB=2cm,计算即可;(2)根据全等三角形的对应角相等和平角的定义解答;(3)根据全等三角形的对应角相等和三角形内角和定理进行解答.【解答】解:(1)∵△ABD≌△EBC,∴BD=BC=3cm,BE=AB=2cm,∴DE=BD﹣BE=1cm;(2)DB与AC垂直,理由:∵△ABD≌△EBC,∴∠ABD=∠EBC,又A、B、C在一条直线上,∴∠EBC=90°,∴DB与AC垂直.(3)直线AD与直线CE垂直.理由:如图,延长CE交AD于F,∵△ABD≌△EBC,∴∠D=∠C,∵Rt△ABD中,∠A+∠D=90°,∴∠A+∠C=90°,∴∠AFC=90°,即CE⊥AD.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.【变式5-2】(2018春•德化县期末)如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,(1)当DE=8,BC=5时,线段AE的长为;(2)已知∠D=35°,∠C=60°,①求∠DBC的度数;②求∠AFD的度数.【分析】(1)根据全等三角形的性质得出AB=DE=8,BE=BC=5,即可求出答案;(2)①根据全等三角形的性质得出∠A=∠D=35°,∠DBE=∠C=60°,根据三角形内角和定理求出∠ABC,即可得出答案;②根据三角形外角性质求出∠AEF,根据三角形外角性质求出∠AFD即可.【解答】解:(1)∵△ABC≌△DEB,DE=8,BC=5,∴AB=DE=8,BE=BC=5,∴AE=AB﹣BE=8﹣5=3,故答案为:3;(2)①∵△ABC≌△DEB∴∠A=∠D=35°,∠DBE=∠C=60°,∵∠A+∠ABC+∠C=180°,∴∠ABC=180°﹣∠A﹣∠C=85°,∴∠DBC=∠ABC﹣∠DBE=85°﹣60°=25°;②∵∠AEF是△DBE的外角,∴∠AEF=∠D+∠DBE=35°+60°=95°,∵∠AFD是△AEF的外角,∴∠AFD=∠A+∠AEF=35°+95°=130°.【点评】本题考查了全等三角形的性质,三角形内角和定理,三角形外角性质的应用,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应边相等,对应角相等.【变式5-3】(2020春•铁西区期中)如图,点A、B、C、D在同一条直线上,点E、F是直线.AD上方的点,连接AE、CE、BF、DF,若△ACE≌△FDB,FD=3,AD=8.(1)判断直线CE与DF是否平行?并说明理由;(2)求CD的长;(3)若∠E=26°,∠F=53°,求∠ACE的度数.【分析】(1)根据全等三角形的性质和平行线的判定定理即可得到结论;(2)根据全等三角形的性质即可得到结论;(3)根据全等三角形的性质和三角形的内角和即可得到结论.【解答】解:(1)CE∥DF,理由:∵△ACE≌△FDB,∴∠ACE=∠D,∴CE∥DF;(2)∵△ACE≌△FDB,∴AC=DF=3,∵AD=8,∴CD=AD﹣AC=8﹣3=5;(3)∵△ACE≌△FDB,∴∠DBF=∠E=26°,∵CE∥DF,∴∠1=∠F=53°,∴∠ACE=180°﹣26°﹣53°=101°.【点评】本题考查了全等三角形的性质,平行线的判定,三角形的内角和,正确的识别图形是解题的关键.【题型6 与全等三角形性质有关的动点问题】【例6】(2020秋•丹徒区校级月考)如图,已知AB=3,AC=2,点D、E分别为线段BA、CA延长线上的动点,如果△ABC与△ADE全等,则AD为.【分析】分△ABC≌△ADE和△ABC≌△ADE两种情况,根据全等三角形的性质解答即可.【解答】解:当△ABC≌△ADE时,AD=AB=3,当△ABC≌△AED时,AD=AC=2,故答案为:2或3.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.【变式6-1】(2020秋•滨湖区期中)如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.【分析】由条件分两种情况,当△BPE≌△CQP时,则有BE=PC,由条件可得到关于t的方程,当△BPE≌△CPQ,则有BP=PC,同样可得出t的方程,可求出t的值.【解答】解:∵AB=20cm,AE=6cm,BC=16cm,∴BE=14cm,BP=2tcm,PC=(16﹣2t)cm,当△BPE≌△CQP时,则有BE=PC,即14=16﹣2t,解得t=1,当△BPE≌△CPQ时,则有BP=PC,即2t=16﹣2t,解得t=4,故答案为:1或4.【点评】本题主要考查全等三角形的性质,由条件分两种情况得到关于t的方程是解题的关键.【变式6-2】如图,∠C=∠CAM=90°,AC=8cm,BC=4cm,点P在线段AC上,以2cm/s速度从点A 出发向点C运动,到点C停止运动.点Q在射线AM上运动,且PQ=AB.若△ABC与△PQA全等,则点P运动的时间为()A.4s B.2s C.2s或3s或4s D.2s或4s【分析】分△ABC≌△PQA和△ABC≌△QP A两种情况,根据全等三角形的性质解答即可.【解答】解:当△ABC≌△PQA时,AP=AC=8,∵点P的速度为2cm/s,∴8÷2=4(s);当△ABC≌△QP A时,当AP=BC=4,∵点P的速度为2cm/s,∴4÷2=2(s)故选:D.【点评】此题考查的是全等三角形的性质,掌握全等三角形的对应边相等,全等三角形的对应角相等是解题的关键,注意分情况讨论思想的应用.【变式6-3】(2020春•广饶县期末)如图①,在Rt △ABC 中,∠C =90°,BC =9cm ,AC =12cm ,AB =15cm ,现有一动点P ,从点A 出发,沿着三角形的边AC →CB →BA 运动,回到点A 停止,速度为3cm /s ,设运动时间为ts .(1)如图(1),当t = 时,△APC 的面积等于△ABC 面积的一半;(2)如图(2),在△DEF 中,∠E =90°,DE =4cm ,DF =5cm ,∠D =∠A .在△ABC 的边上,若另外有一个动点Q ,与点P 同时从点A 出发,沿着边AB →BC →CA 运动,回到点A 停止.在两点运动过程中的某一时刻,恰好△APQ ≌△DEF ,求点Q 的运动速度.【分析】(1)分两种情况进行解答,①当点P 在BC 上时,②当点P 在BA 上时,分别画出图形,利用三角形的面积之间的关系,求出点P 移动的距离,从而求出时间即可;(2)由△APQ ≌△DEF ,可得对应顶点为A 与D ,P 与E ,Q 与F ;于是分两种情况进行解答,①当点P 在AC 上,AP =4,AQ =5,②当点P 在AB 上,AP =4,AQ =5,分别求出P 移动的距离和时间,进而求出Q 的移动速度.【解答】解:(1)①当点P 在BC 上时,如图①﹣1,若△APC 的面积等于△ABC 面积的一半;则CP =12BC =92cm ,此时,点P 移动的距离为AC +CP =12+92=332,移动的时间为:332÷3=112秒, ②当点P 在BA 上时,如图①﹣2若△APC 的面积等于△ABC 面积的一半;则PD =12BC ,即点P 为BA 中点,此时,点P 移动的距离为AC +CB +BP =12+9+152=572cm ,移动的时间为:572÷3=192秒, 故答案为:112或192;(2)△APQ ≌△DEF ,即,对应顶点为A 与D ,P 与E ,Q 与F ;①当点P 在AC 上,如图②﹣1所示:此时,AP =4,AQ =5,∴点Q 移动的速度为5÷(4÷3)=154cm /s ,②当点P 在AB 上,如图②﹣2所示:此时,AP =4,AQ =5,即,点P 移动的距离为9+12+15﹣4=32cm ,点Q 移动的距离为9+12+15﹣5=31cm ,∴点Q 移动的速度为31÷(32÷3)=9332cm /s , 综上所述,两点运动过程中的某一时刻,恰好△APQ ≌△DEF ,点Q 的运动速为154cm /s 或9332cm /s .【点评】考查直角三角形的性质,全等三角形的判定,画出相应图形,求出各点移动的距离是正确解答的关键.。

全等三角形必考题型

全等三角形必考题型

全等三角形必考题型
在数学中,判断两个三角形是否全等是一种常见的题型。

以下是几种常见的全等三角形必考题型:
1. SSS判定法:如果两个三角形的三条边分别相等,则可以判定这两个三角形全等。

2. SAS判定法:如果两个三角形的一个角相等,且它们所夹的两边分别相等,则可以判定这两个三角形全等。

3. ASA判定法:如果两个三角形的两个角分别相等,且它们的夹角所对的边也相等,则可以判定这两个三角形全等。

4. RHS判定法:如果两个三角形的一个直角相等,且它们的斜边相等,则可以判定这两个三角形全等。

这些判定法是基于全等三角形的性质和定义来推导的。

学生在解答全等三角形的题目时,通常需要根据提供的条件进行分析,并利用这些判定法来做出判断。

此外,还存在一些需要应用多种判断法的复合题型,考察学生对不同判定法的理解和运用能力。

为了顺利解答全等三角形的必考题型,学生需要掌握三角形的性质和各种判定法的条件,以及具备逻辑思维和推理能力。

平时的课堂学习和练习中,应注重对这些知识点的理解和掌握,并通过大量的练习题来提高解题能力。

三角形全等的经典题型

三角形全等的经典题型

1.下列哪个条件不能单独用来证明两个三角形全等?A.SSS(三边相等)B.SAS(两边及夹角相等)C.AAA(三角相等)(答案)D.ASA(两角及夹边相等)2.已知三角形ABC和三角形DEF,AB=DE,BC=EF,∠B=∠E,则这两个三角形全等吗?A.是(答案)B.否3.若两个三角形有两对相等的角和一对相等的边,且相等的边不是这两个相等角的夹边,则这两个三角形全等吗?A.是B.否(答案)4.在证明两个三角形全等时,至少需要几个元素对应相等?A.1个B.2个C.3个(答案)D.4个5.下列哪组条件可以证明三角形ABC和三角形DEF全等?A.AB=DE,BC=EF,∠A=∠DB.AB=DE,BC=DF,∠B=∠E(答案)C.∠A=∠D,∠B=∠E,∠C=∠FD.AB=DE,AC=DF,∠B=∠E6.已知三角形ABC和三角形DEF中,AB=DE,∠A=∠D,若证这两个三角形全等,还需要什么条件?A.∠B=∠EB.∠C=∠FC.BC=EF(答案)D.AC=DF7.在三角形ABC和三角形DEF中,如果AB=DE,BC=EF,且∠A=∠D,那么这两个三角形一定全等吗?A.是(答案)B.否8.下列哪个不是三角形全等的判定定理?A.HL定理(直角三角形的斜边和一条直角边相等)B.SSS定理(三边相等)C.AAA定理(三角相等)(答案)D.SAS定理(两边及夹角相等)9.已知三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E,若证这两个三角形全等,还需要什么条件?A.AB=DE(答案)B.BC=EFC.AC=DFD.∠C=∠F10.在证明两个三角形全等时,如果已知两对相等的角和一对非夹边的相等边,那么这两个三角形一定全等吗?A.是B.否(答案)。

全等三角形经典题型50题带答案

全等三角形经典题型50题带答案

全等三角形证明经典50题(含答案)1.已知:AB二4, AC=2, D是BC中点,AD是整数,求AD延长AD到E,使DE=AD,则三角形ADC全等于三角形EBD即BE=ΛC=2 在三角形ABE 中,AB-BE<ΛE<ΛB+BE即rl0-2<2ΛD<10+2 4<AD<6又AD是整数,则AD二52.已知:D 是AB 中点,ZACB二90°,求证:CD = -AB从D做辅助线3.已知:BC二DE, ZB=ZE, ZC=ZD, F 是CD 中点,求证:Z1=Z2证明:连接BF 和EF。

因为BC=ED,CF=DF, ZBCF=ZEDFO 所以三角形BCF全等于三角形EDF(边角边)。

所以BF=EF, ZCBF=ZDEFo连接BE。

在三角形BEF 中,BF=EF0所以ZEBF=ZBEFO 又因为ZABC二ZAED。

所以ZABE=ZAEBO 所以AB=AE o 在三角形ABF 和三角形AEF 中,ΛB-AE,BF=EF, ZABF=ZΛBE÷ZEBF=ZΛEB÷ZBEF=ZAEF o所以三角形ABF和三角形AEF全等。

所以ZBΛF= ZEΛF (ZI=Z2)o4.已知:Z1=Z2, CD二DE, EF//AB,求证:EF二AC 证明:过E点,作EG//AC,交AD延长线于G则ZDEG=ZDCA, ZDGE=Z2 又VCD-DEΛZ1ΛDC^ ZJGDE( AAS )ΛEG=ACVEF∕∕ΛBΛ ZDFE=Zr? Z1=Z2.∖ ZDFE=ZDGEΛEF=E G ∙∙∙ EF=AC5.已知:AD 平分ZBΛC, AC=AB÷BD,求证:ZB=2ZC证明:在AC 上截取AE 二AB,连接EDVAD 平分ZBΛC Λ ZEΛD-ZBAD 又TAE 二AB,AD=AD Λ ZlAED^ ZIABD ( SΛS ) ?. ZAED=ZB ,DE=DBVΛC=ΛB+BDΛC=AE÷CEΛCE=DEΛ ZC=ZEDCV ZΛED=ZC÷ZEDC=2ZCΛ ZB二2ZC6.已知:AC平分ZBAD, CE丄AB,ZB+ZD=180o,求证:AE=AD+BE证明:在AE上取F,使EF=EB, 连接CF因为CE丄AB所以ZCEB= ZCEF=90°因为EB=EF, CE=CE, 所以∕∖CEB9ZkCEF 所以ZB = ZCFE 因为ZB+ ZD = 180° , ZCFE + ZCFA = 180°所以ZD = ZCFA因为AC平分ZBAD所以ZDΛC=ZFΛC又因为AC=AC所以∆ΛDC^∆ΛFC (SAS) 所以AD=AF 所以AE=AF+FE=AD+BE12.如图,四边形ABCD中,AB〃DC, BE. CE分别平分ZΛBC. ZBCD,且点E在AD上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形知识点总结知识点总结一、全等图形、全等三角形:1.全等图形:能够完全的两个图形就是全等图形。

2.全等图形的性质:全等多边形的、分别相等。

3.全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。

同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。

说明:全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等。

这里要注意:(1)周长相等的两个三角形,不一定全等;(2)面积相等的两个三角形,也不一定全等。

二、全等三角形的判定:1.一般三角形全等的判定(1)三边对应相等的两个三角形全等(“边边边”或“”)。

(2)两边和它们的夹角对应相等的两个三角形全等(“边角边”或“”)。

(3)两个角和它们的夹边分别对应相等的两个三角形全等(“角边角”或“”)。

(4)有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“”)。

2.直角三角形全等的判定利用一般三角形全等的判定都能证明直角三角形全等.斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”或“”).注意:两边一对角(SSA)和三角(AAA)对应相等的两个三角形不一定全等。

3.性质1、全等三角形的对应角相等、对应边相等。

2、全等三角形的对应边上的高对应相等。

3、全等三角形的对应角平分线相等。

4、全等三角形的对应中线相等。

5、全等三角形面积相等。

6、全等三角形周长相等。

(以上可以简称:全等三角形的对应元素相等)三、角平分线的性质及判定:性质定理:角平分线上的点到该角两边的距离相等。

判定定理:到角的两边距离相等的点在该角的角平分线上。

四、证明两三角形全等或利用它证明线段或角相等的基本方法步骤:1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);2.回顾三角形判定公理,搞清还需要什么;3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。

初二数学第十一章全等三角形综合复习切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。

例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。

求证:ACF BDE ∆≅∆。

例 2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。

求证:21C ∠=∠+∠。

例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=o。

F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。

求证:AE CF =。

例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。

例5. 如图,,AP CP 分别是ABC ∆外角MAC ∠和NCA ∠的平分线,它们交于点P 。

求证:BP 为MBN ∠的平分线。

例6. 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。

求证:2AC AE =。

例7. 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。

求证:AB AC PB PC ->-。

同步练习一、选择题:1. 能使两个直角三角形全等的条件是( ) A. 两直角边对应相等 B. 一锐角对应相等 C. 两锐角对应相等D. 斜边相等2. 根据下列条件,能画出唯一ABC ∆的是( ) A. 3AB =,4BC =,8CA =B. 4AB =,3BC =,30A ∠=oC. 60C ∠=o,45B ∠=o,4AB =D. 90C ∠=o,6AB =3. 如图,已知12∠=∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D ∠=∠;④B E ∠=∠。

其中能使ABC AED ∆≅∆的条件有( )A. 4个B. 3个C. 2个D. 1个4. 如图,12∠=∠,C D ∠=∠,,AC BD 交于E 点,下列不正确的是( ) A. DAE CBE ∠=∠ B. CE DE =C. DEA ∆不全等于CBE ∆D. EAB ∆是等腰三角形5. 如图,已知AB CD =,BC AD =,23B ∠=o,则D ∠等于( )A. 67oB. 46oC. 23oD. 无法确定二、填空题:6. 如图,在ABC ∆中,90C ∠=o,ABC ∠的平分线BD 交AC 于点D ,且:2:3CD AD =,10AC cm =,则点D 到AB 的距离等于__________cm ;7. 如图,已知AB DC =,AD BC =,,E F 是BD 上的两点,且BE DF =,若100AEB ∠=o ,30ADB ∠=o ,则BCF ∠=____________;8. 将一张正方形纸片按如图的方式折叠,,BC BD 为折痕,则CBD ∠的大小为_________;9. 如图,在等腰Rt ABC ∆中,90C ∠=o,AC BC =,AD 平分BAC ∠交BC 于D ,DE AB ⊥于E ,若10AB =,则BDE ∆的周长等于____________;10. 如图,点,,,D E F B 在同一条直线上,AB //CD ,AE //CF ,且AE CF =,若10BD =,2BF =,则EF =___________;三、解答题: 11. 如图,ABC ∆为等边三角形,点,M N 分别在,BC AC 上,且BM CN =,AM 与BN 交于Q 点。

求AQN ∠的度数。

12. 如图,90ACB ∠=o,AC BC =,D 为AB 上一点,AE CD ⊥,BF CD ⊥,交CD 延长线于F 点。

求证:BF CE =。

答案例1. 思路分析:从结论ACF BDE ∆≅∆入手,全等条件只有AC BD =;由AE BF =两边同时减去EF 得到AF BE =,又得到一个全等条件。

还缺少一个全等条件,可以是CF DE =,也可以是A B ∠=∠。

由条件AC CE ⊥,BD DF ⊥可得90ACE BDF ∠=∠=o,再加上AE BF =,AC BD =,可以证明ACE BDF ∆≅∆,从而得到A B ∠=∠。

解答过程:Q AC CE ⊥,BD DF ⊥ ∴90ACE BDF ∠=∠=o 在Rt ACE ∆与Rt BDF ∆中 Q AE BF AC BD =⎧⎨=⎩ ∴Rt ACE Rt BDF ∆≅∆(HL) ∴A B ∠=∠Q AE BF =∴AE EF BF EF -=-,即AF BE =在ACF ∆与BDE ∆中 Q AF BE A B AC BD =⎧⎪∠=∠⎨⎪=⎩ ∴ACF BDE ∆≅∆(SAS)解题后的思考:本题的分析方法实际上是“两头凑”的思想方法:一方面从问题或结论入手,看还需要什么条件;另一方面从条件入手,看可以得出什么结论。

再对比“所需条件”和“得出结论”之间是否吻合或具有明显的联系,从而得出解题思路。

小结:本题不仅告诉我们如何去寻找全等三角形及其全等条件,而且告诉我们如何去分析一个题目,得出解题思路。

例2. 思路分析:直接证明21C ∠=∠+∠比较困难,我们可以间接证明,即找到α∠,证明2α∠=∠且1C α∠=∠+∠。

也可以看成将2∠“转移”到α∠。

那么α∠在哪里呢?角的对称性提示我们将AD 延长交BC 于F ,则构造了△FBD ,可以通过证明三角形全等来证明∠2=∠DFB ,可以由三角形外角定理得∠DFB=∠1+∠C 。

解答过程:延长AD 交BC 于F 在ABD ∆与FBD ∆中Q 90ABD FBD BD BD ADB FDB ⎧∠=∠⎪=⎨⎪∠=∠=⎩o ∴ABD FBD ∆≅∆(ASA ∴2DFB ∠=∠又Q 1DFB C ∠=∠+∠ ∴21C ∠=∠+∠。

解题后的思考:由于角是轴对称图形,所以我们可以利用翻折来构造或发现全等三角形。

例3. 思路分析:可以利用全等三角形来证明这两条线段相等,关键是要找到这两个三角形。

以线段AE 为边的ABE ∆绕点B 顺时针旋转90o到CBF ∆的位置,而线段CF 正好是CBF ∆的边,故只要证明它们全等即可。

解答过程:Q 90ABC ∠=o ,F 为AB 延长线上一点 ∴90ABC CBF ∠=∠=o 在ABE ∆与CBF ∆中 Q AB BC ABC CBF BE BF =⎧⎪∠=∠⎨⎪=⎩ ∴ABE CBF ∆≅∆(SAS) ∴AE CF =。

解题后的思考:利用旋转的观点,不但有利于寻找全等三角形,而且有利于找对应边和对应角。

小结:利用三角形全等证明线段或角相等是重要的方法,但有时不容易找到需证明的三角形。

这时我们就可以根据需要利用平移、翻折和旋转等图形变换的观点来寻找或利用辅助线构造全等三角形。

例4. 思路分析:关于四边形我们知之甚少,通过连接四边形的对角线,可以把原问题转化为全等三角形的问题。

解答过程:连接AC Q AB //CD ,AD //BC ∴12∠=∠,34∠=∠在ABC ∆与CDA ∆中 Q 1243AC CA ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴ABC CDA ∆≅∆(ASA) ∴AB CD =。

解题后的思考:连接四边形的对角线,是构造全等三角形的常用方法。

例5. 思路分析:要证明“BP 为MBN ∠的平分线”,可以利用点P 到,BM BN 的距离相等来证明,故应过点P 向,BM BN 作垂线;另一方面,为了利用已知条件“,AP CP 分别是MAC ∠和NCA ∠的平分线”,也需要作出点P 到两外角两边的距离。

解答过程:过P 作PD BM ⊥于D ,PE AC ⊥于E ,PF BN ⊥于FQ AP 平分MAC ∠,PD BM ⊥于D ,PE AC ⊥于E ∴PD PE =Q CP 平分NCA ∠,PE AC ⊥于E ,PF BN ⊥于F ∴PE PF =Q PD PE =,PE PF =∴PD PF =Q PD PF =,且PD BM ⊥于D ,PF BN ⊥于F ∴BP 为MBN ∠的平分线。

解题后的思考:题目已知中有角平分线的条件,或者有要证明角平分线的结论时,常过角平分线上的一点向角的两边作垂线,利用角平分线的性质或判定来解答问题。

例6. 思路分析:要证明“2AC AE =”,不妨构造出一条等于2AE 的线段,然后证其等于AC 。

因此,延长AE 至F ,使EF AE =。

解答过程:延长AE 至点F ,使EF AE =,连接DF 在ABE ∆与FDE ∆中Q AE FE AEB FED BE DE =⎧⎪∠=∠⎨⎪=⎩ ∴ABE FDE ∆≅∆(SAS)∴B EDF ∠=∠Q ADF ADB EDF ∠=∠+∠,ADC BAD B ∠=∠+∠又Q ADB BAD ∠=∠ ∴ADF ADC ∠=∠ Q AB DF =,AB CD = ∴DF DC =在ADF ∆与ADC ∆中 Q AD AD ADF ADC DF DC =⎧⎪∠=∠⎨⎪=⎩ ∴ADF ADC ∆≅∆(SAS) ∴AF AC =又Q 2AF AE = ∴2AC AE =。

相关文档
最新文档