全自动膜片钳技术及其在药物筛选中的应用

合集下载

膜片钳技术原理及在中药研究中的应用

膜片钳技术原理及在中药研究中的应用

HAN Xu-d n o g,W ANG —mi Yi n,L U n—q a g,MENG h—n I Ya in Ya i
( s t a d E up n d iirt n D pr n ,Taj nvri fTa io a C i s d— A s s n q imetA m ns ai e at t ini U iesy o r t nl hn eMe i e t o me n t di e
人体细胞的新陈代谢是维持人体生命活动的重 要物质基础 , 细胞要保持新陈代谢功能就要不断地 与周 围环境进行物质交换 , 细胞膜上 的离子通道 就 是这 种物 质交 换 的重 要 途 径 。离 子 通道 的活 性 , 反
映 了细胞 通过 离子 通道 的开 放 和关 闭来 调节相 应 物
器、 数模转换器 、 倒置显微镜 、 测量探头 、 微操纵器 、 计 算机数 据 采集及 分 析等 , 图 1 如 所示 。

!二





第1 4卷 第 4 期 21 年8 01 月
Vo . 4 No 4 11 . Au . 01 g2 1
CNl —1 5 /N 2 32
LAB0RAT0RY
SI C ENC E
膜 片钳技术原理及在 中药研究 中的应 用
韩旭 东,王益 民 ,刘彦 强 ,孟燕妮
质进出细胞速度的能力 。膜片钳技术即是通过记录 离子通道 中的离子 电流 , 反映细胞膜单一或多个 来
离子 通道 分子 活性 的技 术 , 进 行 细 胞 生 物 学研 究 是
的重 要技术 方 法之 一 。
图 1 膜 片 钳 实 验 装 置
1 膜片钳技术原理

patch clamp膜片钳技术的原理和应用(超全的哦)

patch clamp膜片钳技术的原理和应用(超全的哦)
1976年德国马普生物物理研究所Neher和Sakmann创 建了膜片钳技术(patch clamp recording technique)。这 是一种以记录通过离子通道的离子电流来反映细胞膜单 一的(或多个的离子通道分子活动的技术)。以后由于 吉欧姆阻抗封接(gigaohm seal, 109Ω)方法的确立和几种方 法的创建。这种技术点燃了细胞和分子水平的生理学研 究的革命之火,它和基因克隆技术(gene cloning)并架 齐驱,给生命科学研究带来了巨大的前进动力。 这一伟大的贡献,使Neher和Sakmann获得1991年度 的诺贝尔生理学与医学奖。
第二部分
一:应用学科
膜片钳技术的应用
膜片钳技术发展至今,已经成为现代细胞电生理的常规 方法,它不仅可以作为基础生物医学研究的工具,而且直 接或间接为临床医学研究服务, 目前膜片钳技术广泛应用于神经(脑)科学、心血管科 学、药理学、细胞生物学、病理生理学、中医药学、植物 细胞生理学、运动生理等多学科领域研究。 随着全自动膜片钳技术(Automatic patch clamp technology)的出现,膜片钳技术因其具有的自动化、高 通量特性,在药物研发、药物筛选中显示了强劲的生命 力。
5.对药物作用机制的研 在通道电流记录中,可分别于不同时间、不同部位(膜内 或膜外)施加各种浓度的药物,研究它们对通道功能的可 能影响,了解那些选择性作用于通道的药物影响人和动物 生理功能的分子机理。这是目前膜片钳技术应用最广泛的 领域,既有对西药药物机制的探讨,也广泛用在重要药理 的研究上。如开丽等报道细胞贴附式膜片钳单通道记录法 观测到人参二醇组皂苷可抑制正常和“缺血”诱导的大鼠大 脑皮层神经元L-型钙通道的开放,从而减少钙内流,对缺 血细胞可能有保护作用。陈龙等报道采用细胞贴附式单通 道记录法发现乌头碱对培养的Wistar大鼠心室肌细胞L-型 钙通道有阻滞作用。

膜片钳技术及其应用

膜片钳技术及其应用
细胞信号转导的研究
膜片钳技术可以用于研究细胞信号转导过程中离子通道和受体的变 化,了解信号转导的机制。
细胞功能调控的研究
膜片钳技术可以用于研究细胞功能调控的机制,例如细胞兴奋性的 调节和细胞内离子浓度的变化。
04 膜片钳技术的优势与局限 性
膜片钳技术的优势
高灵敏度
细胞无损
膜片钳技术具有高灵敏度,能够检测单 个离子通道的活动,从而提供关于细胞 膜电位和离子通道功能的重要信息。
膜片钳技术可以在保持细胞完整性的 情况下进行实验,不会对细胞造成严 重损伤或干扰细胞的正常功能。
实时监测
膜片钳技术可以对细胞膜电位进行实时 监测,从而了解离子通道的动态变化, 有助于深入理解细胞生理和病理过程。
膜片钳技术的局限性
1 2 3
实验条件要求高
膜片钳技术需要高精度的实验设备和条件,包括 低温、低噪声和低阻抗等,这增加了实验的难度 和成本。
03
04
05
膜片钳放大器
微操纵器
细胞培养皿或显 微镜载玻片
电极溶液
细胞内和细胞外 灌流液
用于放大细胞膜电信号, 提高信号的检测灵敏度。
用于精确控制电极的移动 ,以便在细胞膜上定位和 进行膜片钳实验。
用于培养和固定细胞,以 便进行膜片钳实验。
用于填充电极,以保持电 极的湿润和导电性。
用于维持细胞内外环境的 稳定,并排除干扰实验的 物质。
03
在单细胞水平上研究细胞信号转导和离子通道功能,深入了 解细胞生理和病理过程。
膜片钳技术与其他技术的联合应用
结合光学成像技术,利用膜片钳技术对神经元电生理特性进行同时监测和成像,实现多参数的同时测 量。
与基因编辑技术结合,利用膜片钳技术对特定基因表达的离子通道进行功能研究,深入了解基因与离子 通道的关系。

药物心脏毒性研究技术之膜片钳技术

药物心脏毒性研究技术之膜片钳技术

药物⼼脏毒性研究技术之膜⽚钳技术⼀些药物在使⽤的过程中引发的⼼脏毒性是威胁患者⽣命的毒副作⽤之⼀,如抗⼼律失常药物导致的⼼脏不良事件时有报道,虽然这种事件发⽣率低,但是危险性⼤,主要表现为⼼电图QT间隔延长,严重可以引起尖端扭转型室性⼼动过速。

因此在新药上市前,需要进⾏药物安全性评价时,尽早发现药物的潜在⼼脏毒性,以减少新药研发的投⼊和风险。

被称为研究离⼦通道的“⾦标准”的膜⽚钳技术,是药物早期⼼脏毒性评价的主要技术之⼀。

QT间期是指⼼室除极和复极的全过程,即QRS波群的起点到T波终点的时程。

QTc间期是指排除了⼼率影响的校正的QT间期。

⼼脏复极延迟,将导致发⽣⼼律失常的风险明显增⾼,最常见的是引发尖端扭转型室性⼼动过速(TdP), TdP易演变成⼼室纤颤并导致猝死,因此QT间期延长,被认为是预测引发TdP的⽣物标记物。

在新药开发过程中,进⾏药物安全性评价的⼼脏毒性评价时,应确认研究药物对QT间期的影响,防⽌其上市后引起恶性⼼律失常。

hERG通道产⽣的电流是⼼室复极中最重要的电流,通道被药物后抑制直接导致Long QT综合症,很可能演变成尖端扭转型室性⼼动过速,⼼室纤颤,直⾄猝死。

长QT综合症(LQTS)是⼀种异常的⼼肌细胞复极化电活动,获得性的LQTS常常是药物治疗的结果。

研究发现许多常⽤药物包括抗⼼律失常药、抗精神病药物、抗菌素以及可卡因均可引起获得性的LQTS。

⽬前发现⼏乎所有的临床药物所导致的LQT 或者TdP 都作⽤于hERG。

由于导致hERG抑制的药物在化学结构上没有明显的共性,从⽽很难预测,仅有通过实验的⽅式给予解决。

全⾃动膜⽚钳技术⼀个重要的应⽤⽅向是检测早期药物化合物对hERG的毒副作⽤。

美迪西引进HEKA膜⽚钳系统(Patch Clamp System),该系统为放⼤器与数模转换器⼀体,可通过软件与⼿动操作相结合,达到⽐全⾃动更精准的程度,将会⼤⼤增强美迪西体外药物安全性评价服务。

膜片钳技术在各学科研究中的应用

膜片钳技术在各学科研究中的应用

膜片钳技术在各学科研究中的应用在神经科学领域,膜片钳技术被广泛应用于研究神经元和突触的电生理特性。

通过使用膜片钳技术,科学家可以记录神经元膜通道的电流,研究神经信号的传递和调节机制。

例如,陈教授和他的研究团队利用膜片钳技术发现了一种新的神经调节机制,他们发现了一种离子通道蛋白,可以调节神经元的兴奋性,从而对神经信号的传递产生影响1。

在细胞生物学领域,膜片钳技术被用于研究细胞的跨膜运输和信号转导机制。

科学家可以记录细胞膜通道的开放和关闭,研究物质进出细胞的方式和调控机制。

例如,张教授和他的研究团队利用膜片钳技术发现了新的钙离子通道,并研究了其在对细胞生长和凋亡的调控中的作用2。

在代谢疾病领域,膜片钳技术也被用于研究代谢过程中细胞膜通道的变化。

例如,糖尿病患者的肾小管上皮细胞钠通道存在异常,导致钠重吸收增加,从而影响血糖的排泄和代谢。

李教授和他的研究团队利用膜片钳技术发现了这一现象,为糖尿病的治疗提供了新的思路3。

膜片钳技术在各学科研究中都具有广泛的应用前景。

然而,随着科学技术的发展,膜片钳技术仍然面临着一些挑战,例如通道蛋白多样性和复杂性的问题,以及实验数据的分析和解读问题。

未来,随着膜片钳技术的不断改进和新技术的应用,我们相信这些问题会逐渐得到解决。

微光学器件在光通信、生物医学、军事等领域的应用越来越广泛。

传统的微光学器件制造技术如光刻、干法刻蚀等存在加工成本高、设备复杂等问题,难以满足某些特定场景下的制造需求。

因此,研究一种新型的微光学器件制造技术具有重要的现实意义。

气动膜片式微滴喷射制造技术作为一种具有潜力实现微光学器件高效、低成本制造的技术,逐渐受到研究者的。

气动膜片式微滴喷射制造技术基于气动学原理,通过控制气体和液体的流速、压力等参数,实现液滴的精确喷射。

该技术具有以下优点:可实现高效、低成本的制造,有望替代传统微光学器件制造技术;可通过计算机控制系统实现精确控制,提高制造精度;适用范围广,可用于各种形状和材料的光学器件制造。

全自动膜片钳系统手册

全自动膜片钳系统手册

高通量higher throughput节省成本cost saving 节省时间time saving 自动化automatic 高品质数据better results 全自动膜片钳系统Automated Patch Clamp System Revolutionizing Ion Channel Drug Discovery以离子通道为靶点的药物开发的革命性工具CONTENTS 目录112344556888911131415151518182021封底全自动膜片钳技术及其在药物筛选中的应用全自动膜片钳技术原理全自动膜片钳在药物筛选中的应用Molecular Devices 公司开发的仪器设备为以离子通道为靶点的药物开发提供了完整的解决方案IonWorks Barracuda - 高通量膜片钳系统的新突破简介主要用途产品特征应用实例IonWorks Quattro - 全自动高通量膜片钳药物筛选系统简介主要用途产品特征应用实例重要参考文献IonWorks 的全球用户PatchXpress 7000A - 全自动平行膜片钳系统简介产品特点主要用途应用实例重要参考文献PatchXpress 的全球用户公司简介1膜片钳技术被称为研究离子通道的“金标准”。

是研究离子通道的最重要的技术。

目前膜片钳技术已从传统的常规膜片钳技术 (Conventional patch clamp technique) 发展到全自动膜片钳技术 (Automated patch clamp technique) 。

全自动膜片钳技术及其在药物筛选中的应用不同的全自动膜片钳系统的所采用的技术原理也不完全相同。

大体有以下几种。

1. 全自动膜片钳技术原理将一定密度的细胞悬液灌注在玻璃电极中,下降到电极尖端的单个细胞通过在电极外施加负压与玻璃电极尖端形成稳定的高阻封接,系统自动判断封接形成是否良好并自动打破露在玻璃微电极尖端外的细胞膜形成全细胞模式。

离子通道研究技术的最新进展_全自动膜片钳技术

离子通道研究技术的最新进展_全自动膜片钳技术
Devices公司的 Ionworks HT 和 PatchXp ress 7000A 全部采用的是平板微阵列技术 。其技术特点如下 : 在平板电极上打磨或者使用金属离子轰击成孔 ,每
孔都是大小均一的直径约 1 ~2μm 的小孔 ,每个小 孔下面有电极连接到放大器 ,可对实验过程中的电 流变化进行记录 。将细胞悬浮液加载到平板玻璃孔 上 ,通过调节压力和吸力 ,一个细胞便可以自动定位 在小孔上 (相当于微管电极的尖端 ) ,自动进行封 接 ,自动判断封接并进一步施加负压破膜以进行全 细胞模式实验〔4, 5〕。
A 需要受过良好训练的电生理学专家 B通量很低 ,一天的实验数据量不超过 10 C劳动力投入密集 ,试验操作过程复杂 D不适合药物粗筛 /二次筛选 E技术自动化非常困难 ,且不能进行平行检测
1 多款全自动膜片钳系统分析
1. 1 技术实现原理 Nanion 公司的 PatchL iner NPCκ 216 , Molecular
引言
细胞是通过细胞膜与外界隔离的 ,在细胞膜上 有很多种离子通道 ,细胞通过这些通道与外界进行 离子交换 。离子通道在许多细胞活动中都起关键作
病主要 有 : 癫 痫 ( c ar2 rhythm ia ) 、糖 尿 病 ( diabetes) 、高 血 压 ( hyperten2 sion) 、舞蹈症 (Huntington’s disease) 、帕金森症 ( Par2 kinson’s disease) ……。
当前研究需要 。 Flyion公司的全自动膜片钳机器人 所采用的 Flip tip 微管技术在试验中封接数值一般 分布在 1 ~10GΩ 范围内 ,封接的成功率在 70% ~ 90%并且对近 20 个细胞系有效 (如 CHO , L929, JurkatCHL , LTK, HEK293 ) 。较高的成功率和封接 质量源于使用玻璃管式的微管技术 ,因为传统的玻 璃管在烧熔过程中具有超洁净 、超光滑 、高阻抗和低 成本的特性 ,至今还没有任何材料可以替代 。

膜片钳技术及其在神经科学研究中的应用

膜片钳技术及其在神经科学研究中的应用

膜片钳技术及其在神经科学研究中的应用膜片钳技术是一种在神经科学研究中广泛应用的技术,它可以用来记录和操纵神经元的电活动,为研究神经系统的功能和疾病提供重要的工具。

本文将介绍膜片钳技术的原理和应用,并探讨其在神经科学研究中的重要性。

膜片钳技术是一种通过在神经元的细胞膜上形成一个微小的孔洞,并利用微电极记录神经元内外的电位差的方法。

这种技术可以精确地记录神经元的动作电位,从而了解神经元的兴奋性和抑制性。

膜片钳技术的原理基于电生理学的基本原理,即神经元的电活动是由离子通道的开关控制的。

通过在神经元膜上形成一个微小的孔洞,可以通过微电极记录到神经元内外的电位差,从而了解离子通道的开关状态和神经元的电活动。

膜片钳技术在神经科学研究中有广泛的应用。

首先,它可以用来研究神经元的膜电位和动作电位。

研究人员可以通过在神经元膜上形成一个微小的孔洞,并利用膜片钳记录到神经元内外的电位差,从而了解神经元的电活动。

这对于研究神经元的兴奋性和抑制性非常重要,有助于理解神经元的工作原理和信息传递过程。

膜片钳技术还可以用来研究离子通道的功能。

离子通道是神经元膜上的蛋白质通道,它们控制着离子在神经元膜上的通透性,从而调节神经元的电活动。

通过利用膜片钳技术,研究人员可以记录到离子通道的电流,并分析离子通道的开关状态和功能特性。

这对于研究离子通道的结构和功能非常重要,有助于揭示离子通道与神经系统功能和疾病之间的关系。

膜片钳技术还可以用来研究突触传递和突触可塑性。

突触是神经元之间的连接点,通过突触传递神经信号。

膜片钳技术可以用来记录到突触传递的电位变化,并研究突触的功能特性和可塑性。

这对于理解神经系统的信息传递和学习记忆等高级功能非常重要。

在神经科学研究中,膜片钳技术的应用还包括单细胞蛋白质表达、药物筛选和基因编辑等方面。

通过将膜片钳技术与其他技术结合,研究人员可以进一步探索神经系统的功能和疾病机制,为神经科学研究提供更加全面和深入的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全自动膜片钳技术及其在药物筛选中的应用
来源:易生物浏览次数:513 网友评论0 条
全自动膜片钳技术及其在药物筛选中的应用一:全自动膜片钳技术介绍:膜片钳技术被称为研究离子通道的“金标准”。

是研究离子通道的最重要的技术。

目前膜片钳技术已从常规膜片钳技术(Conventional patch clamp technique)发展到全自动膜片钳技术(Automated patch...
关键词:应用药物全自动通道细胞研究
全自动膜片钳技术及其在药物筛选中的应用
一:全自动膜片钳技术介绍:
膜片钳技术被称为研究离子通道的“金标准”。

是研究离子通道的最重要的技术。

目前膜片钳技术已从常规膜片钳技术(Conventional pat ch clamp technique)发展到全自动膜片钳技术(Automated patch clamp technique)。

传统膜片钳技术每次只能记录一个细胞(或一对细胞),对实验人员来说是一项耗时耗力的工作,它不适合在药物开发初期和中期进行大量化合物的筛选,也不适合需要记录大量细胞的基础实验研究。

全自动膜片钳技术的出现在很大程度上解决了这些问题,它不仅通量高,一次能记录几个甚至几十个细胞,而且从找细胞、形成封接、破膜等整个实验操作实现了自动化,免除了这些操作的复杂与困难。

这两个优点使得膜片钳技术的工作效率大大提高了!签于全自动膜片钳技术的这些优点,目前已经广泛的用于药物筛选。

传统膜片钳技术主要优缺点总结
全自动膜片钳技术的发展,经历了下列三个发展阶段,在每个阶段,所采取的原理和技术有所不同:
1. Flip-Tip翻转技术:
将一定密度的细胞悬液灌注在玻璃电极中,下降到电极尖端的单个细胞通过在电极外施加负压可以与玻璃电极尖端形成稳定的高阻封接,自动判断封接形成是否良好并自动破膜形成全细胞模式。

随后,药物化合物等可以被自动应用到管内进行全细胞模式实验。

这种方式形成
的膜片钳完全排除显微镜和显微操作,从而革命性的实现膜片钳技术的全自动化。

它的显著特点是仍然采用玻璃毛坯作为电极。

2. SealChip技术:
完全摒弃了玻璃电极,而是采用SealChip平面电极芯片,一定密度的细胞悬液灌注在芯片上面,随机下降到芯片上约1-2μm的孔上并在自动负压的吸引下形成高阻封接,打破孔下面的细胞膜形成全细胞记录模式。

采用这一技术的美国MDC(Axon)公司的PatchXpre 7000A 系统是高通量全自动膜片钳技术的典范,是离子通道药物研发的革命性工具,在国外实验室和制药厂广泛用于hERG通道药理学的研究。

其通量最高为16,即一次可同时记录16个细胞。

同时,其药物施加微量、快速,不仅用于药物筛选,还大量用于离子通道的基础研究。

3. Population Patch
Clamp(C)技术:
同SealChip技术一样,
完全摒弃了玻璃电极,而
是采用PatchPlate平面
电极芯片。

该芯片含有多
个小室,每个小室中含有
很多1-2μm的封接孔。


记录时,每个小室中封接
成功的细胞数目较多,获
得的记录是这些细胞通道电流的平均值。

因此,不同小室其通道电流的一致性非常好,变异系数很小。

美国Axon(MDS)公司采用这一技术研发出了全自动高通量的IonWorks Quattro全自动膜片钳药物筛系统,成为药物初期筛选的“金标准”。

二:全自动膜片钳在药物筛选中的应用:
离子通道的实验研究最初主要来源于生理学实验。

1949~1952 年, Hodgkin 等发展的“电压钳技术”为离子通透性的研究提供技术条件。

60年代中期,一些特异性通道抑制剂的发现为离子通道的研究提供有力武器。

1976 年Neher和Sakma发展的膜片钳技术直接记录离子单通道电流,为从分子水平上研究离子通道提供直接手段。

80年代中期,生化技术的进步,分子生物学以及基因重组技术的发展,使人们能够分离纯化许多不同的通道蛋白,直接研究离子通道的结构与功能关系
全自动膜片钳技术一个重要的应用方向是检测早期药物化合物对hERG的毒副作用。

hERG通道产生的电流是心室复极中最重要的电流。

通道被药物后抑制直接导致Long QT综合症,很可能演变成尖端扭转型室性心动过速,心室纤颤,直至猝死。

目前发现几乎所有的临床药物所至的LQT 或者TdP 都作用于hERG,且导致hERG抑制的药物在化学结构上没有明显的共性,从而很难预测,仅有通过实验的方式给予解决。

2004年, ICH和美国FDA都颁布关于非临床检测Ikr (其中主要是hERG)的规章,要求药物上市时必须提供作用于离子通道的电流变化数据,否则新药不得用于临床。

同时,根据该规章的要求美国FDA撤除由于致QT间期延长的处方药,约为全部从市场撤除处方药的4 0% 。

为此,新的早期药物安全评测方式需要引入制药研发过程中,以便及早发现候选化合物潜在的心脏毒性,尽可能减少新药研发的投资与风险,而采用全自动膜片钳技术正是解决该问题的最佳选择。

事实上,制药企业还可以利用当前新兴药物虚拟筛选技术进行初筛,把初筛结果再结合全自动膜片钳技术进行实验上的验证。

虚拟筛选技术,即把已经测定三维结构的小分子化合物或者是多肽化合物与已经测定三维结构的生物大分子靶标(如离子通道) ,通过分子对接软件进行计算机模拟,最后得到小分子- 受体复合物的三维结构,而进行筛选研究。

虚拟筛选的目的同样是从数十万到数百万化合物库中筛选出可能的小分子化合物,再进一步进行实验研究。

把全自动膜片钳技术结合以离子通道为靶标的高通量虚拟筛选研究技术,无疑将会极大的缩短研究时间和节省大量的研究经费。

总而言之,全自动膜片钳技术具有如下的优点:效率高,是传统膜片钳效率的20~300倍;不需要专业电生理人员,简单易用,所有的操作可以在电脑软件控制的界面下完成,无须显微防震系统;大部分仪器的封接质量在1GΩ以上;部分仪器同时适用于研究配体门控通道和电压门控通道;主要应用于药物药理和毒理测试;在药物微量加样设计方面表现优秀;仪器主要工作方式为全细胞膜片钳方式。

缺点:仪器仅适用于悬浮细胞实验。

无疑地,随着基因组测序的完成和蛋白质组学的兴起,离子通道在未来的细胞与药物方面研究将会变得越来越重要。

与此同时,作为离子通道研究的最佳伴侣- 全自动膜片钳,由于其独特的优点也必定在这一领域大展身手。

相关文档
最新文档