【教案】利用三边关系判定两三角形相似教案(完美版)

合集下载

【冀教版】初三数学上册《【教案】 用三边比例关系判定两三角形相似》

【冀教版】初三数学上册《【教案】 用三边比例关系判定两三角形相似》

用三边比例关系判定两三角形相似一、教学目标知识与技能掌握两个三角形相似的判定条件(三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).过程与方法会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.情感态度与价值观经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展同学们的探究、交流能力.二、重、难点重点:掌握相似三角形的SSS 判定方法,能运用SSS 进行证明难点:熟练应用相似三角形的SSS 判定定理进行证明三、课堂引入1.复习引入(1)相似多边形的主要特征是什么?(2)在相似多边形中,最简单的就是相似三角形.在△ABC 与△A ′B ′C ′中, 如果k A C CA C B BC B A AB =''=''=''. 我们就说△ABC 与△A ′B ′C ′相似,记作△ABC ∽△A ′B ′C ′,k 就是它们的相似比. 反之如果△ABC ∽△A ′B ′C ′,则有A C CA CB BC B A AB ''=''=''. (3)问题:如果k=1,这两个三角形有怎样的关系?2.教材中的思考,并引导同学们探索与证明.3.【归纳】三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.三、例题讲解例1(补充)如图△ABC ∽△DCA ,AD ∥BC ,∠B=∠DCA .(1)写出对应边的比例式;(2)若AB=10,BC=12,CA=6.求AD 、DC 的长.例2(补充)在△ABC中,DE∥BC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长.四、课堂练习1.(选择)下列各组三角形一定相似的是()A.两个直角三角形B.两个钝角三角形C.两个等腰三角形D.两个等边三角形2.(选择)如图,DE∥BC,EF∥AB,则图中相似三角形一共有()A.1对B.2对C.3对D.4对3.如图,DE∥BC,(1)如果AD=2,DB=3,求DE:BC的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.4.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长.。

4.4.3利用三边判定三角形相似(教案)

4.4.3利用三边判定三角形相似(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形相似的基本概念、重要性和应用。通过实践活动和小组讨论,加深了对三边判定法的理解。我希望大家能够掌握这些知识点,并在解决实际问题中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
另外,学生在解决实际问题时,往往不知道如何从题目中提取关键信息,运用三边判定法求解。为了帮助学生克服这一困难,我打算在课堂上多设置一些情境题,让学生在实际情境中学会寻找解题线索,培养他们的观察能力和问题解决能力。
此外,小组讨论环节,学生们表现得积极主动,能够充分发表自己的观点,但有时也会出现讨论偏离主题的现象。针对这个问题,我会在下次讨论前,明确讨论要求和目标,引导学生围绕主题展开讨论确保讨论的有效性。
b.在解题过程中,指导学生如何从题目中提取关键信息,识别出可以使用三边判定的条件。
c.通过设置典型例题,引导学生总结解题思路和技巧,培养学生的解决问题能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“利用三边判定三角形相似”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否观察过两个三角形看起来非常相似的情况?”比如,两张不同大小的三角形纸片,它们的形状非常相似,只是大小不同。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形相似的奥秘。
五、教学反思
在今天的教学中,我发现学生们对三角形相似的概念有了初步的认识,但在具体运用三边判定法时,还存在一些问题。首先,部分学生在判断三角形是否相似时,容易忽略三边比例相等这一关键条件,导致判断失误。针对这一点,我计划在接下来的课程中,通过增加典型例题的讲解,让学生反复练习,以便加深他们对判定条件的理解。

三边对应成比例两三角形相似PPT学习教案

三边对应成比例两三角形相似PPT学习教案

第5页/共15页
A
A’
B
C
A' B' B' C' A' C' AB BC AC
B’
C’
∴△ABC∽△A’B’C’
如果一个三角形的三条边和另一个三角形 的三条边对应成比例,那么这两个三角形相
简似单.地说:三边对应成比例,两三角形相似.
第6页/共15页
在△ABC和△A′B′C′中,已知:AB=6cm,BC=8cm,AC=
探究
边S 边S 边S
A
已知:
AB A1B1
BC B1C1
AC A1C1
.
求证:△ABC∽△A1B1C1. A1
B
C B1
C1
有效利用预备定理去求证。
第4页/共15页
证明:在线段 A1B(1 或它的延长线)上截取
,过A1点DD作AB
的定理可得
,.E∽A1B1C1
三边对应成比例两三角形相似
会计学
1
1. 对应角___相__等__, 对应边—成——比—例——的两个三角形, 叫做相似三角形 .
2. 相似三角形的对——应—角——相—等—, 各对应边成——比—例———。
3.如何识别两三角形是否相似? 1、定义判定 2、相似三角形预备定理:平行于三。角形一边的直
线和其他两边(或两边的延长线)相交,构成的三
A
B
C
第12页/共15页
相似三角形的判定方法: 定义判定法:三角对应相等,三边对 应成比例,两三角形相似。 平行于三角形一边的直线与其他两边( 或延长线)相交,所构成的三角形与原三角 形相似; 三边对应成比例的,两三角形相似.
第13页/共15页
• 不经历风雨,怎么见彩虹 • 没有人能随随便便成功!

北师大版九年级数学上册【教案】利用三边关系判定两三角形相似【新版】

北师大版九年级数学上册【教案】利用三边关系判定两三角形相似【新版】

利用三边关系判定两三角形相似
●教学目的: 使学生掌握三角形相似的判定定理3和它的应用. ●教学重点: 判定定理3
●教学难点: 判定定理3的应用
●教学过程:
复习:
1.判定三角形相似目前有哪些方法?
2.回忆三角形相似判定定理1、2的证明的方法.
新授
(一)导入新课
三角形全等的判定中AA S 和ASA,SAS 对应于相似三角形的判定的判定定理1,2,那么SSS 对应的三角形相似的判定命题是否正确,这就是本节研究的内容.(板书)
(二) 做一做
画△ABC 与△A ′B ′C ′,使B A AB ''、C B BC ''和A C CA
''都等于给定的值k.
(1)设法比较∠A 与∠A ′的大小;
(2)△ABC 与△A ′B ′C ′相似吗?说说你的理由.
改变k 值的大小,再试一试.
定理3:三边:成比例的两个三角形相似.
(三)例题学习
例:如图,在△ABC 和△ADE 中,AB AD =BC DE =AC AE
,∠BAD=20°,求∠CAE 的度数.
解:∵AB AD =BC DE =AC AE
, ∴△ABC ∽△ADE(三边成比例的两个三角形相似).
∴∠BAC=∠DAE ,
∴∠BAC -∠DAC =∠DAE -∠DAC ,
即∠BAD=∠CAE.
∵∠BAD=20°,
∴∠CAE=20°.
三:巩固练习
四、小结 本节学习了相似三角形判定定理3,一定用时要注意它们使用的条件.
五、作业:
板书设计:。

数学教案-相似三角形的判定数学教学教案5篇

数学教案-相似三角形的判定数学教学教案5篇

相似三角形的判定数学教学教案5篇两角对应相等,两个三角形相似。

两边对应成比例且夹角相等,两个三角形相似。

三边对应成比例,两个三角形相似。

三边对应平行,两个三角形相似。

斜边与直角边对应成比例,两个直角三角形相似。

都是三角形相似的判定。

下面是小编为大家整理的相似三角形的判定数学教学教案5篇,希望大家能有所收获!相似三角形的判定数学教学教案1教学目标(一)教学知识点1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.2.能根据相似比进行计算.(二)能力训练要求1.能根据定义判断两个三角形是否相似,训练学生的判断能力.2.能根据相似比求长度和角度,培养学生的运用能力.(三)情感与价值观要求通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.教学重点相似三角形的定义及运用.教学难点根据定义求线段长或角的度数.教学方法类比讨论法教具准备投影片三张第一张(记作§4.5 A)第二张(记作§4.5 B)第三张(记作§4.5 C)教学过程Ⅰ.创设问题情境,引入新课[师]上节课我们学习了相似多边形的定义及记法.现在请大家回忆一下.[生]对应角相等,对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.[师]很好.请问相似多边形指的是哪些多边形呢?[生]只要边数相同,满足对应角相等、对应边成比例的多边形都包括.比如相似三角形,相似五边形等.[师]由此看来,相似三角形是相似多边形的一种.今天,我们就来研究相似三角形.相似三角形的判定数学教学教案2一、教学目标1.使学生了解判定定理1及直角三角形相似定理的证明方法并会应用,掌握例2的结论.2.继续渗透和培养学生对类比数学思想的认识和理解.3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.4.通过学习,了解由特殊到一般的唯物辩证法的观点.二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是判定定理l及直角三角形相似定理的应用,以及例2的结论.2.教学难点:是了解判定定理1的证题方法与思路.四、课时安排1课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.什么叫相似三角形?什么叫相似比?2.叙述预备定理.由预备定理的题所构成的三角形是哪两种情况.[讲解新课]我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们来研究能不能用较少的几个条件就能判定三角形相似呢?上节课讲的预备定理实际上就是一个判定三角形相似的方法,现在再来学习几种三角形相似的判定方法.我们已经知道,全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形全等的三个公理和判定两个三角形相似的三个定理之间有内在的联系,不同处仅在于前者是后者相似比等于1的情况,教学时可先指出全等三角形与相似三角形之间的关系,然后引导学生自己用类比的方法找出新的命题,如:问:判定两个三角形全等的方法有哪几种?答:SAS、ASA(AAS)、SSS、HL.问:全等三角形判定中的“对应角相等”及“对应边相等”的语句,用到三角形相似的判定中应如何说?答:“对应角相等”不变,“对应边相等”说成“对应边成比例”.问:我们知道,一条边是写不出比的,那么你能否由“ASA”或“AAS”,采用类比的方法,引出一个关于三角形相似判定的新的命题呢?答:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.强调:(1)学生在回答中,如出现问题,教师要予以启发、引导、纠正.(2)用类比方法找出的新命题一定要加以证明.如图5-53,在ⅠABC和Ⅰ 中,,.问:ⅠABC和Ⅰ 是否相似?分析:可采用问答式以启发学生了解证明方法.问:我们现在已经学习了哪几个判定三角形相似的方法?答:①三角形的定义,②上一节学习的预备定理.问:根据本命题条件,探讨时应采用哪种方法?为什么?答:预备定理,因为用定义条件明显不够.问:采用预备定理,必须构造出怎样的图形?答:或.问:应如何添加辅助线,才能构造出上一问的图形?此问学生回答如有困难,教师可领学生共同探讨,注意告诉学生作辅助线一定要合理.(1)在ⅠABC边AB(或延长线)上,截取,过D作DEⅠBC交AC于E.“作相似.证全等”.(2)在ⅠABC边AB(或延长线上)上,截取,在边AC(或延长线上)截取AE= ,连结DE,“作全等,证相似”.(教师向学生解释清楚“或延长线”的情况)虽然定理的证明不作要求,但通过刚才的分析让学生了解定理的证明思路与方法,这样有利于培养和提高学生利用已学知识证明新命题的能力.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简单说成:两角对应相等,两三角形相似.,,Ⅰ .例1 已知和中,,,.求证:Ⅰ .此例题是判定定理的直拉应用,应使学生熟练掌握.例2 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.已知:如图5-54,在中,CD是斜边上的高.求证:Ⅰ Ⅰ .该例题很重要,它一方面可以起到巩固、掌握判定定理1的作用;另一方面它的应用很广泛,并且可以直接用它判定直角三角形相似,教材上排了黑体字,所以可以当作定理直接使用.即ⅠⅠⅠⅠ.[小结]1判定定理1的引出及证明思路与方法的分析,要求学生掌握两种辅助线作法的思路.2.判定定理1的应用以及记住例2的结论并会应用.七、布置作业教材P238中A组3、4.相似三角形的判定数学教学教案31、教学引入照顾到了到多数的同学,培养了学生的动手测量和计算能力。

北师大版九年级上册数学 4.4 第3课时 利用三边判定三角形相似2 教案

北师大版九年级上册数学 4.4 第3课时 利用三边判定三角形相似2 教案

第3课时 利用三边判定三角形相似
●教学目的: 使学生掌握三角形相似的判定定理3和它的应用.
●教学重点: 判定定理3
●教学难点: 判定定理3的应用
●教学过程:
一、复习:
1.判定三角形相似目前有哪些方法?
2.回忆三角形相似判定定理1和2的证明的方法.
二、新授
(一)导入新课
三角形全等的判定中AA S 和ASA 对应于相似三角形的判定的判定定理1,SAS 对应于相似三角形的判定的判定定理2,那么SSS 对应的三角形相似的判定命题是否正确,这就是本节研究的内容.(板书)
(二) 做一做
画△ABC 与△A ′B ′C ′,使
B A AB ''、
C B BC ''和A C CA '
'都等于给定的值k . (1)设法比较∠A 与∠A ′的大小;
(2)△ABC 与△A ′B ′C ′相似吗?说说你的理由.
改变k 值的大小,再试一试.
定理3:三边:成比例的两个三角形相似.
(三)例题学习
例:如图,在△ABC 和△ADE 中,AB AD =BC DE =AC AE ,∠BAD=20°,求∠CAE 的度数.
解:∵AB AD =BC DE =AC AE
, ∴△ABC ∽△ADE (三边成比例的两个三角形相似).
∴∠BAC=∠DAE ,
∴∠BAC -∠DAC =∠D AE -∠DAC ,
即∠BAD=∠CAE .
∵∠BAD=20°,
∴∠CAE=20°.
三、巩固练习
四、小结
本节学习了相似三角形的判定定理3,使用时一定要注意它使用的条件.五、作业:
板书设计:
教学后记:。

【学案】相似三角形的判定——利用三边关系教案(完美版)

【学案】相似三角形的判定——利用三边关系教案(完美版)

让每个人平等地提升自我经历三角形相似的判定方法“三边对应成比例的两个三角形相似”的探索过
程,能运用上述判定方法判定两个三角形相似。

二、学习重点 会用三角形相似判定定理判断两个三角形相似。

三、自主预习 1.知识回顾:判断三角形相似的方法是 。

2.全等三角形与相似三角形关系是 。

3.两个三角形全等有哪些简单的判定方法?
四、合作探究
任务:探索三边对应成比例的两个三角形是否相似。

任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长是
的k 倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?
探求证明方法.
如图,在ABC ∆和A B C '''∆中,
A C CA C
B B
C B A AB ''=''='',求证ABC ∆∽A B C '''∆ 证明 :
归纳三角形相似的判定定理3:。

《三边成比例的两个三角形相似》教案精品 2022年数学

《三边成比例的两个三角形相似》教案精品 2022年数学

27.2.1 相似三角形的判定第2课时 三边成比例的两个三角形相似1.理解“三边成比例的两个三角形相似〞的判定方法;(重点)2.会运用“三边成比例的两个三角形相似〞的判定方法解决简单问题.一、情境导入我们现在判定两个三角形是否相似,必须要知道它们的对应角是否相等,对应边是否成比例.那么是否存在判定两个三角形相似的简便方法呢?在如下图的方格上任画一个三角形,再画第二个三角形,使它的三边长都是原来三角形的三边长的相同倍数.画完之后,用量角器比拟两个三角形的对应角,你发现了什么结论?大家的结论都一样吗?二、合作探究探究点:三边对应成比例的两个三角形相似 【类型一】 直接利用定理判定两个三角形相似在Rt △ABC 中,∠C =90°,AB =10,BC =6,在Rt △EDF 中,∠F =90°,DF=3,EF =4,那么△ABC 和△EDF 相似吗?为什么?解析:△ABC 和△EDF 都是直角三角形,且两条边长,所以可利用勾股定理分别求出第三边的长,看对应边是否对应成比例.解:△ABC ∽△EDF .在Rt △ABC 中,AB =10,BC =6,∠C =90°,由勾股定理得AC =AB 2-BC 2=102-62=8.在Rt △DEF 中,DF =3,EF =4,∠F =90°,由勾股定理得ED =DF 2+EF 2=32+42=5.在△ABC 和△EDF 中,BC DF =63=2,AC EF =84=2,AB ED =105=2,所以BC DF =AC EF =ABED,所以△ABC ∽△EDF .方法总结:利用三边对应成比例判定两个三角形相似时,应说明三角形的三边对应成比例,而不是两边对应成比例. 变式训练:见?学练优?本课时练习“课堂达标训练〞 第2题【类型二】 网格中的相似三角形如图,在边长为1的小正方形组成的网格中,△ABC 和△DEF 的顶点都在格点上,判断△ABC 和△DEF 是否相似,并说明理由.解析:首先由勾股定理,求得△ABC 和△DEF 的各边的长,即可得AB DE =AC DF =BCEF ,然后由三组对应边的比相等的两个三角形相似,即可判定△ABC 和△DEF 相似.解:△ABC 和△DEF 相似.由勾股定理,得AB =25,AC =5,BC =5,DE =4,DF =2,EF =25,∵AB DE =AC DF =BC EF =254=52,∴△ABC ∽△DEF .方法总结:在网格中计算线段的长,运用勾股定理是常用的方法. 变式训练:见?学练优?本课时练习“课堂达标训练〞 第8题【类型三】 利用相似三角形证明角相等如图,AB AD =BC DE =ACAE,找出图中相等的角,并说明你的理由.解析:由AB AD =BC DE =ACAE ,证明△ABC ∽△ADE ,再利用相似三角形对应角相等求解.解:在△ABC 和△ADE 中,∵AB AD =BC DE =ACAE,∴△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠B =∠D ,∠C =∠E .方法总结:在证明角相等时,可通过证明三角形相似得到.变式训练:见?学练优?本课时练习“课后稳固提升〞第6题 【类型四】 利用相似三角形的判定证明线段的平行关系如图,某地四个乡镇A ,B ,C ,D 之间建有公路,AB =14千米,AD =28千米,BD =21千米,BC =42千米,DC =31.5千米,公路AB 与CD 平行吗?说出你的理由.解析:由图中线段的长度,可求两个三角形的对应线段的比,证明三角形相似,得出角相等,通过角相等证明线段的平行关系.解:公路AB 与CD 平行.∵AB BD =1421=23,AD BC =2842=23,BD DC =2131.5=23,∴△ABD ∽△BDC ,∴∠ABD =∠BDC ,∴AB ∥DC .方法总结:如果在条件中边的数量关系较多时,可考虑使用“三边对应成比例,两三角形相似〞的判定方法.【类型五】 利用相似三角形的判定解决探究性问题要制作两个形状相同的三角形教具,其中一个三角形教具的三边长分别为50cm ,60cm ,80cm ,另一个三角形教具的一边长为20cm ,请问怎样选料可使这两个三角形教具相似?想想看,有几种解决方案.解析:要使两个三角形相似,一个三角形的三边和另一个三角形的一边,那么我们可以采用三边分别对应成比例的两个三角形相似来判定.解:①当长为20cm 的边长的对应边为50cm 时,∵50∶20=5∶2,且第一个三角形教具的三边长分别是50cm ,60cm ,80cm ,∴另一个三角形对应的三边分别为:20cm ,24cm ,32cm ;②当长为20cm 的边长的对应边为60cm 时,∵60∶20=3∶1,且第一个三角形教具的三边长分别是50cm ,60cm ,80cm ,∴另一个三角形对应的三边分别为:503cm ,20cm ,803cm ;③当长为20cm 的边长的对应边为80cm 时,∵80∶20=4∶1,且第一个三角形教具的三边长分别是50cm ,60cm ,80cm ,∴另一个三角形对应的三边分别为:12.5cm ,15cm ,20cm.∴有三种解决方案.方法总结:解答此题的关键在于分类讨论,当对应比不确定时,采用分类讨论的方法可防止漏解.变式训练:见?学练优?本课时练习“课后稳固提升〞第7题 三、板书设计1.三角形相似的判定定理:三边对应成比例的两个三角形相似; 2.利用相似三角形的判定解决问题.因为本课时教学过程中主要是让学生采用类比的方法先猜测出命题,然后证明猜测的命题是否正确.课堂上教师主要还是以提问的形式,逐步引导学生去证明命题.从课后作业情况看出学生对这节课的知识总体掌握得较好.15.1.2分式的根本性质1.通过类比分数的根本性质,说出分式的根本性质,并能用字母表示.(重点) 2.理解并掌握分式的根本性质和符号法那么.(难点)3.理解分式的约分、通分的意义,明确分式约分、通分的理论依据.(重点) 4.能正确、熟练地运用分式的根本性质,对分式进行约分和通分.(难点)一、情境导入中国古代的数学论著中就有对“约分〞的记载,如?九章算术?中就曾记载“约分术〞,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的根本性质.二、合作探究探究点一:分式的根本性质【类型一】 利用分式的根本性质对分式进行变形以下式子从左到右的变形一定正确的选项是( )A.a +3b +3=a b B.a b =acbcC.3a 3b =a bD.a b =a 2b2 解析:A 中在分式的分子与分母上同时加上3不符合分式的根本性质,故A 错误;B 中当c =0时不成立,故B 错误;C 中分式的分子与分母同时除以3,分式的值不变,故C 正确;D 中分式的分子与分母分别乘方,不符合分式的根本性质,故D 错误;应选C.方法总结:考查分式的根本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【类型二】 不改变分式的值,将分式的分子、分母中各项系数化为整数不改变分式0.2x +12+0.5x的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A.2x +12+5xB.x +54+x C.2x +1020+5x D.2x +12+x解析:利用分式的根本性质,把0.2x +12+0.5x 的分子、分母都乘以10得2x +1020+5x .应选C.方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的根本性质让分子和分母同乘以某一个数即可.【类型三】 分式的符号法那么不改变分式的值,使以下分式的分子和分母都不含“-〞号. (1)-3b 2a ;(2)5y -7x 2;(3)-a -2b 2a +b. 解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.解:(1)原式=-3b 2a ;(2)原式=-5y 7x 2;(3)原式=-a +2b 2a +b.方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号.探究点二:最简分式、分式的约分和通分 【类型一】 判定分式是否是最简分式以下分式是最简分式的是( ) A.2a 2+a ab B.6xy 3aC.x 2-1x +1D.x 2+1x +1解析:A 中该分式的分子、分母含有公因式a ,那么它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,那么它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),那么它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.应选D.方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式.【类型二】 分式的约分约分:(1)-5a 5bc 325a 3bc 4;(2)x 2-2xyx 3-4x 2y +4xy 2. 解析:先找分子、分母的公因式,然后根据分式的根本性质把公因式约去. 解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3〔-a 2〕5a 3bc 3·5c =-a25c; (2)x 2-2xy x 3-4x 2y +4xy 2=x 〔x -2y 〕x 〔x -2y 〕2=1x -2y. 方法总结:约分的步骤:(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.【类型三】 分式的通分通分: (1)b 3a 2c 2,c -2ab ,a5cb 3; (2)1a 2-2a ,a a +2,1a 2-4. 解析:确定最简公分母再通分.解:(1)最简公分母为30a 2b 2c 2,b 3a 2c 2=10b 430a 2b 3c 2,c -2ab =-15ab 3c 330a 2b 3c 2,a 5cb 3=6a 3c30a 2b 3c2;(2)最简公分母为a (a +2)(a -2),1a 2-2a =a 2+2a a 〔a +2〕〔a -2〕,aa +2=a 3-2a 2a 〔a +2〕〔a -2〕,1a 2-4=aa 〔a +2〕〔a -2〕.方法总结:通分的一般步骤:(1)确定分母的最简公分母.(2)用最简公分母分别除以各分母求商.(3)用所得到的商分别乘以分式的分子、分母,化成同分母的分式.三、板书设计分式的根本性质1.分式的根本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法那么:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;假设只改变其中一个的符号或三个全变号,那么分式的值变成原分式值的相反数.本节课的流程比拟顺畅,先探究分式的根本性质,然后顺势探究分式变号法那么.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地提升自我:麦群超 ●教学过程: 复习:
1.判定三角形相似目前有哪些方法?
2.回忆三角形相似判定定理1、2的证明的方法.
新授
(一)导入新课
三角形全等的判定中AA S 和ASA,SAS 对应于相似三角形的判定的判定定理1,2,那么SSS 对应的三角形相似的判定命题是否正确,这就是本节研究的内容.(板书)
(二) 做一做 画△ABC 与△A ′B ′C ′,使B A AB ''、C B BC ''和A C CA
''都等于给定的值k.
(1)设法比较∠A 与∠A ′的大小;
(2)△ABC 与△A ′B ′C ′相似吗?说说你的理由.
改变k 值的大小,再试一试.
定理3:三边:成比例的两个三角形相似.
(三)例题学习
例:如图,在△ABC 和△ADE 中,AB AD =BC DE =AC AE
,∠BAD=20°,求∠CAE 的度数.
∴∠BAC-∠DAC =∠DAE-∠DAC,
即∠BAD=∠CAE.
∵∠BAD=20°,
∴∠CAE=20°.
三:巩固练习
四、小结
本节学习了相似三角形判定定理3,一定用时要注意它们使用的条件.五、作业:
板书设计:。

相关文档
最新文档