20 立方米机械搅拌通风发酵罐设计

合集下载

机械搅拌通风发酵罐设计

机械搅拌通风发酵罐设计

机械搅拌通风发酵罐设计(1). 设计题目50m3谷氨酸机械搅拌通风发酵罐系统的放大设计(2). 设计任务某厂在100L机械搅拌通风发酵罐中发酵生产谷氨酸生产试验,获得良好效果,拟放大到50m3生产罐,此发酵液为牛顿型流体,粘度m=2.0×10-3Pa·S,密度rL=1020kg/m3。

试验罐的尺寸为:直径D=375mm,搅拌叶轮Di=125mm,高径比H/D=2.4,液深HL=1.5D,4块档板的W/D=0.1,装液量为70L,通气强度VVm=1.0,使用两组圆盘六平直叶涡轮搅拌器,转速w=350r/min。

通过实验研究,表明此发酵为高耗氧的生物反应,现按体积溶氧系数相等之原则进行放大。

对生产罐的部份具体要求是:罐体材质为不锈钢,罐体上签证下封头为椭球体;用2组圆盘六平直叶涡轮搅拌器、搅拌转轴直径10cm;采用4组对称布置的竖式蛇管冷却器,蛇管材质为不锈钢管。

罐体表面加隔热层,故可不计罐体表面散热损失。

(3). 操作条件1)生产时,装料系数70%,发酵温度为32°C,保压为0.1Mpa(表压),罐内气体相对湿度为100%;进气压力为0.15Mpa(表压)、温度为25°C,相对湿度为70%;蛇管总传热系数K=3000KJ/(m2·h·°C),冷却水进口温度为-10°C,出口温度为25°C。

主酵阶段最大耗糖速度每小时为发酵液量的0.7%,糖分消耗中发酵占80%,呼吸占20%,1kg糖发酵时产生的呼吸热为15660KJ(或产生的发酵热为4860KJ)。

同实验罐。

罐内灭菌时蒸汽压力为0.25Mpa(表压)。

2)培养基制备工艺流程采用水解设备流程(参见《发酵设备》P55)。

以淀粉为原料,采用分批式操作,分两批在8小时内装完一个发酵罐。

每一批操作中,调浆操作耗时30分钟,调浆后,粉浆密度为1084kg/m3,粉浆比热容为3.6KJ/(kg·k),水解压力为0.25~0.26Mpa(表压),温度为95°C,水解维持时间约30min,水解液经过滤后用列管式冷却加拿大投资移民器(进水温度10°C,出水温度40°C)在60分钟内冷却到70°C后,送入一次中和罐,中和与脱色操作耗时30分钟。

生物工程设备课程设计-机械通风发酵搅拌器的设计2

生物工程设备课程设计-机械通风发酵搅拌器的设计2

3.2 搅拌器的强度计算
搅拌器的强度计算主要目的是计算(校核)桨
叶的厚度。它是在决定了搅拌器的直径,宽度、数
量、材料并决定了搅拌器的计算功率后,分析叶片
的受力情况,找出危险面,定出安全系数,用计算
或校核的方法决定叶片的厚度,并考虑腐蚀裕量。
3.2.1 搅拌器强度计算中的计算功率
当搅拌装置的电机功率P选定后,还需考虑起动时电 机的过载及传动系统的效率。 Pj=kηP-Pm Pj搅拌器强度计算中的计算功率,KW; k启动时电机的过载系数,可从电机特性表中查得;
η传动系统的效率;
Pm轴封处的摩叶最常用。在强度计算时 以各种叶片受力相等处理,每个叶片的危险断面为
叶片与圆盘连接的根部,其弯矩为:
抗弯断面系数:
W b 6
2
M
II

9551 z1

r0 r3 x0

N· Pm
j
n
最大弯曲应力应满足:
4.2 减速器类型、标准及其选用
• 减速器的类型主要有:两级齿轮传动减速器、三角皮带减速
器、摆线针齿行星减速器、蜗杆传动减速器和谐波减速器。
• (1)首先根据反应器搅拌传动所需要的电机功率、搅拌轴转 速(即减速器输出轴的转速)。然后根据其他具体条件综合
考虑,类比确定较适用的减速器。
• (2)考虑其他具体条件有:对减速器有无防爆要求;是单相 还是双向传动;是连续还是间隙传动等;同时还要考虑维修条
普通V带设计举例见下表。已知某搅拌反应器采用V 带传动,选用Y132S-8电机,额定功率P=2.2KW,转速
n1=710转/分,搅拌转速n2=180转/分,试设计V带传动。
4.4 联轴器
• 电机与减速器输出轴及传动轴与搅拌轴之间的连

机械搅拌通风发酵罐的设计

机械搅拌通风发酵罐的设计

课程设计报告题目:学院专业班级姓名学号指导老师年月日目录第一章前言青霉素是一类抗生素的总称。

自从被发现以来,就被人们广泛应用于医疗行业。

是用应得最多的一类抗生素,从此很多医学难题迎刃而解。

也使人们致力于青霉素及其相关技术的研究。

青霉素是一种高效、低毒、临床应用广泛的重要抗生素。

它的研制成功大大增强了人类抵抗细菌性感染的能力,带动了抗生素家族的诞生。

它的出现开创了用抗生素治疗疾病的新纪元。

通过数十年的完善,青霉素针剂和口服青霉素已能分别治疗肺炎、肺结核、脑膜炎、心内膜炎、白喉、炭疽等病。

继青霉素之后,链霉素、氯霉素、土霉素、四环素等抗生素不断产生,增强了人类治疗传染性疾病的能力。

青霉素发酵是通气发酵[2],该生产工艺和设备具有很强的典型性,本设计对味青霉素发酵罐的选型及计算作简要介绍,以期有助于了解通气发酵工艺和主要设备的有关知识。

第二章绪论2.1 青霉素的概述.青霉素(Benzylpenicillin / Penicillin)又被称为青霉素G、peillin G、盘尼西林、配尼西林、青霉素钠、苄青霉素钠、青霉素钾、苄青霉素钾。

青霉素是抗菌素的一种,是指从青霉菌培养液中提制的分子中含有青霉烷、能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素,是第一种能够治疗人类疾病的抗生素。

青霉素类抗生素是β-内酰胺类中一大类抗生素的总称。

2.2 青霉素的应用青霉素类抗生素的毒性很小,由于β-内酰胺类作用于细菌的细胞壁,而人类只有细胞膜无细胞壁,故对人类的毒性较小,除能引起严重的过敏反应外,在一般用量下,其毒性不甚明显,是化疗指数最大的抗生素。

临床应用:主要控制敏感金黄色葡糖球菌、链球菌、肺炎双球菌、淋球菌、脑膜炎双球菌、螺旋体等引起感染,对大多数革兰氏阳性菌(如金黄色葡萄球菌)和某些革兰氏阴性细菌及螺旋体有抗菌作用。

青霉素针剂和口服青霉素能分别治疗肺炎、肺结核、脑膜炎、心内膜炎、白喉、炭疽等病。

工业应用:可用于生产柠檬酸、延胡索酸、葡萄糖酸等有机酸和酶制剂。

发酵罐设计说明书

发酵罐设计说明书

目录前言 (1)第一章、概述 (2)1.1、柠檬酸 (2)1.2、柠檬酸的生产工艺 (2)1.3、机械搅拌通风发酵罐 (3)1.3.1、通用型发酵罐的几何尺寸比例 (3)1.3.2、罐体 (3)1.3.3、搅拌器和挡板 (3)1.3.4、消泡器 (4)1.3.5、联轴器及轴承 (4)1.2.6、变速装置 (4)1.3.7、通气装置 (4)1.3.8、轴封 (5)1.3.9、附属设备 (5)第二章、设备的设计计算与选型 (5)2.1、发酵罐的主要尺寸计算 (5)2.1.1、圆筒体的内径、高度与封头的高度 (5)2.1.2、圆筒体的壁厚 (7)2.1.3、封头的壁厚 (7)2.2、搅拌装置设计 (8)2.2.1、搅拌器 (8)2.2.2、搅拌轴设计 (8)2.2.3、电机功率 (10)2.3、冷却装置设计 (10)2.3.1、冷去卩方式 (10)2.3.2、冷却水耗量 (10)2.3.3、冷却管组数和管径 (12)2.4零部件 (13)2.4.1 人孔和视镜 (13)2.4.2 接管口 (13)2.4.3、梯子 (15)2.5发酵罐体重 (15)2.6支座的选型 (16)第三章、计算结果的总结 (16)设计总结 (17)附录 (18)符号的总结 (18)参考文献 (20)生物工程设备课程设计任务书一、课程设计题目“ iooom的机械搅拌发酵罐”的设计。

二、课程设计内容1、设备所担负的工艺操作任务和工作性质,工作参数的确定。

2、容积的计算,主要尺寸的确定,传热方式的选择及传热面积的确定。

3、动力消耗、设备结构的工艺设计。

三、课程设计的要求课程设计的规模不同,其具体的设计项目也有所差别,但其基本内容是大体相同,主要基本内容及要求如下:1、工艺设计和计算根据选定的方案和规定的任务进行物料衡算,热量衡算,主体设备工艺尺寸计算和简单的机械设计计算,汇总工艺计算结果。

主要包括:(1)工艺设计①设备结构及主要尺寸的确定(D, H, HL,V,V L,Di等)②通风量的计算③搅拌功率计算及电机选择④传热面积及冷却水用量的计算(2)设备设计①壁厚设计(包括筒体、封头和夹套)②搅拌器及搅拌轴的设计③局部尺寸的确定(包括挡板、人孔及进出口接管等)④冷却装置的设计(包括冷却面积、列管规格、总长及布置等)2、设计说明书的编制设计说明书应包括设计任务书,目录、前言、设计方案论述,工艺设计和计算,设计结果汇总、符号说明,设计结果的自我总结评价和参考资料等。

机械搅拌通风发酵罐的设计

机械搅拌通风发酵罐的设计

目录1 设计任务书: (1)2 设计概述与设计方案简介: (1)2.1味精生产工艺概述 (2)2.2 味精工厂发酵车间的物料衡算 (4)2.21 工艺技术指标及基础数据 (4)2.22 谷氨酸发酵车间的物料衡算 (3)2.3 机械搅拌通风发酵罐 (3)2.31 通用型发酵的几何尺寸比例 (4)2.32 罐体 (4)2.33 搅拌器和挡板 (4)2.34 消泡器 (4)2.35 联轴器及轴承 (5)2.36 变速装置 (5)2.37 空气分布装置 (5)2.38 轴封 (5)2.4 气升式发酵罐 (5)2.5 自吸式发酵罐 (5)2.6 高位塔式生物反应器 (6)3 工艺及主要设备、辅助设备的设计计算 (6)3.1发酵罐 (6)3.11发酵罐的选型 (6)3.12生产能力、数量和容积的确定 (6)3.13 主要尺寸的计算: (6)3.14冷却面积的计算 (7)3.2搅拌器计算 (7)3.21搅拌轴功率的计算 (8)3.3设备结构的工艺计算 (9)3.4 设备材料的选择[10] (11)3.5发酵罐壁厚的计算 (11)3.6接管设计 (12)3.7支座选择 (12)4设计结果汇总表 (13)5 设计评述 (13)6 参考资料 (13)致谢 (14)1 设计任务书:食品发酵工程课程设计任务书2 设计概述与设计方案简介:谷氨酸是一种氨基酸, 其用途非常广泛,可用于食品、医学、化妆品等。

谷氨酸生产,始于1910年日本的味之素公司用水解法生产谷氨酸。

1956年日本协和发酵公司分离得到谷氨酸棒杆菌,使发酵法生产谷氨酸成为可能,由于发酵法生产氨基酸具有生产能力大、成本低、设备利用率高等特点,使氨基酸工业得到突飞猛进的发展[1]。

我国1958年开始研究,1965年在上海天厨味精厂投产。

目前我国谷氨酸的年产量已达170万吨,产销量占世界第一位。

经过几十年的发展,在该行业诸多工程人员的努力研究下,使我国谷氨酸生产四大收率指标(糖化收率、发酵糖酸转化率和产酸率、提取收率、精制收率)均达到历史最好水平。

第二章 发酵罐的设计

第二章 发酵罐的设计

3 消泡器
作用:打碎泡沫,防止逃逸
型式:锯齿状,梳状,孔板状,一般安装在搅拌轴上高出液
面的部位,随搅拌轴转动而转动,将泡沫打碎。 长度: L=0.65D
4 空气分布管
作用:使通入的空气均匀分布 型式: 单管式 正对罐底,距罐底 40mm,罐底衬不锈 钢圆板,防空气冲击


不常用,易堵。
5 传动装置
2.2 自吸式发酵罐
2.2.1特点 不用空压机,在搅拌时或液体高速喷射 时自动吸入空气。
2.2.2 定子与转子的结构与类型
将 气 体 吸 入 。
液 体 甩 出 , 形 成 内 部 真 空 , 转 子 的 作 用 : 将 转 子 内 的 打体 定 碎混 子 ,匀 的 促, 作 进甩 用 溶出 : 氧, 将 。将 气 大体 气与 泡液
排气 空气 分离 区
带隔 板的 上流 管
下流 管
冷却 水 压 缩空 气
图6-14 塔式发酵罐。
内循环气升式发酵罐
1-导流筒;2-筛板;3-分配器;4,
5-人孔
气升环流式生物反应器
优点: 结构简单,附件少,容易制造,维修和清洗。
取消了搅拌转动,减少了投资,节省动力约 50%,对菌体无损伤。密封性能好,不易染菌。 能自消泡,不须加消泡剂。装料系数高,可达 80%-90%。
对于碳钢的发酵罐,则要喷涂防腐涂料
图6-11 机械搅拌发酵罐的 几何尺寸
罐容积的计算
圆筒容积:V1=(π/4
)D2H0 (π/4) D2hb+ (π/6) D2ha = (π/4) D2(hb+1/6D)
椭圆封头容积:V2=
式中ha=1/4D

公称容积:V3=V1+V2(取整数) 全容积:V=V1+2V2

发酵罐设计原则

发酵罐设计原则
1、发酵过程的热量计算 通常以一年中最热的半个月中每小时放出的 热量作为设计冷却面积的根据。 发酵过程中 放出热量的计算方法有: • 通过冷却水带走的热量进行计算; • 通过发酵液的温度升高进行计算; • 通过生物合成热进行计算; • 通过燃烧热进行计算
(1)通过冷却水带走的热量进行计算 根据工艺 设计的要求,选定同类型的发酵罐,于气温最 热的季节,选择主发酵期产生热量最快最大的 时刻,测定冷却水进口的水温及冷却水出口的 水温,并测定此时每小时冷却水的用量,按下 式计算单位体积发酵液每小时传给冷却器的最 大热量。
(一)、设计内容和步骤: 设备本体的设计:
• 罐体的设计
筒体的设计、计算 封头的设计、计算 罐体压力试验时应力校核及容积验算
• 附件的设计选取
接管尺寸的选择 法兰的选取 开孔及开孔补强 人孔及其它 传热部件的计算 挡板、中间支承、扶梯的选取
搅拌装置的设计:
• • • • • • • 传动装置的设计、 搅拌轴的设计、 联轴器的选取、 轴承的选取及其轴承寿命的核算、 密封装置的选取、 搅拌器的设计、 搅拌轴的临界转速。
• 冷却排管的传热系数可按下式计算:
计算题:一个年生产10万吨赖氨酸的发酵工厂,发酵产酸水 平为15%,提取总收率为90%,年生产时间为300天, 发酵周期为48小时,洗罐准备时间为24小时,设发酵罐 的装罐系数为80%,发酵罐的容积为300m3。 问: 1、该工厂每日产量是多少? 2、每日所需要的发酵液量是多少? 3、每日所需要的发酵罐容积为多大? 4、生产10万吨赖氨酸需要发酵罐a hb )
• 液柱高度:
H L H 0 ha hb 式中 :装料高度与圆柱部分 高度的比例
(二)、附属结构的计算
• 挡板数量和尺寸计算

工业发酵设备 机械搅拌通风发酵罐

工业发酵设备 机械搅拌通风发酵罐

6.2.1 机械搅拌通风发酵罐
(4)消泡器 作用:是将泡沫打破。 形式:锯齿形、梳状式及孔板式。 消泡器的长度约为罐径的0.65倍。 (5)联轴器及轴承 联轴器作用:大型发酵罐搅拌轴较长, 常分为2~3段,用联轴器使上下搅拌 轴成牢固的刚性联接。常用的联轴器 有鼓形及夹壳形两种。 轴承:为了减少震动,中型发酵罐装 有底轴承,大型发酵罐装有中间轴承。
6.2.1 机械搅拌通风发酵罐
二、发酵罐的基本组成与结构
基本组成:
① 罐体部分

罐体、进料口、接种口、排

料口、安全阀等
搅 拌
② 搅拌系统

电机、减速装置、搅拌轴、
风 发
轴封、挡板、连轴器、轴承

③ 控制系统
罐 的
冷却管/夹套、空气进管、空

气分布器、空气出口、补料
构 图
口(营养、酸碱、消泡剂、
消泡器、取样口等)
②竖式蛇管换热装置:容积5 m3 以上的发酵罐,安装于发酵罐内, 四组、六组或八组不等 优点:水流速大,传热系数高, 用水量少。 缺点:弯曲位置容易蚀穿
③竖式列管换热装置 :大型发酵 罐,以列管形式分组对称装于发 酵罐内。 优点:加工方便,可代替挡板的 作用 缺点:传热系数较蛇管低,用水 量较大
6.2.1 机械搅拌通风发酵罐
(2)搅拌器
作用--混合和传质 ①气泡与发酵液充分混合,提高 溶氧速率; ② 使细胞悬浮分散于发酵体系 中; ③ 强化传热过程。
形式:有轴向式(桨叶式、螺旋桨式)和径向式(涡轮式)两种
6.2.1 机械搅拌通风发酵罐
(3)挡板
作用:改变液流的方向,由径向流改 为轴向流,促使液体剧烈翻动,增加 溶解氧。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-6-
发酵罐的装液量、冷却方式等进行冷却装置的设计、计算;根据上面的一系列计算选择适合
的搅拌装置,传动装置,和人孔等一些附件的确定,完成整个装备图,完成这次设计。
表 1-1 发酵罐主要设计条件
项目及代号
参数及结果
备注
发酵产物 工作压力 设计压力
糖化酶 0.2MPa 0.3MPa
根据参考文献[4]选取 设计任务 设计任务
由公称体积的近似公式 罐体直径圆整后 D=2400mm
罐体总高度
可以计算 ,
经查阅资料,当公称直径 DN=2400mm 时,标准椭圆封头的曲面高度 =600,直边高度
,总深度为 可得罐筒身高
mm,内表面积
,容积
发酵罐的全体积
拌叶直径取
搅拌叶间距
mm
底搅拌叶至底封头高度
挡板宽度
表 2-1 大中型发酵罐技术参数
2.2 几何尺寸的确定
根据工艺参数和高径比确定各部几何尺寸;高径比 H/D=2.2,则 H=2.2D
初步设计:设计条件给出的是发酵罐的装料体积(

公称体积 V--罐的筒身(圆柱)体积和底封头体积之和
全体积 V0--公称体积和上封头体积之和
-7-
封头体积
(近似公式) 假设 /D=2.2,根据设计条件发酵罐的装料体积为 20M3
由 110KW 电动机驱动,轴封与罐体密封。冷却装置为
的冷却蛇管 160m,分 4
பைடு நூலகம்
组安装在罐内。最后绘制了该发酵罐的装配图。 关键词:机械搅拌发酵罐 封头 搅拌器 链霉素
1、设计方案的拟定
我们设计的是一台 20M3 机械搅拌通风发酵罐,发酵生产链霉素。 糖化酶生产菌重要的有:雪白根霉,德氏根霉,河内根霉,爪哇根霉,台湾根霉,臭曲霉, 黑曲霉,河枣曲霉,宇佐美曲霉,红曲霉,扣囊拟内孢霉,泡盛曲霉,头孢霉,甘薯曲霉, 罗耳伏革菌。 综合温度、PH 等因素选择黑曲霉 A.S.3.4309 菌株,该菌种最适发酵温度为 32-34℃,pH 为 4.5,培养基为玉米粉 2.5%,玉米浆 2%,豆饼粉 2%组成。 主要生产工艺过程为如下:菌种 用蔡式蔗糖斜面于 32℃培养 6 天后,移植在以玉米粉 2.5%,玉米浆 2%.组成的一级种子培养 基中,与 32℃摇瓶培养 24-36h,再接入(接种量 1%)种子罐(培养基成分与摇瓶发酵相同), 并与 32℃通气培养搅拌 24-36h,然后再接入(接种量 5%-7%)发酵罐。发酵培养基由玉米 粉 2.5%,玉米浆 2%,豆饼粉 2%组成(先用 a-淀粉酶液化),发酵温度为 33℃,在合适的通 气搅拌条件下发酵 96 小时酶活性可达 6000u·ml-1 。 发酵液滤去菌体,如有影响糖化效率的葡萄糖甘转移酶存在, 则通过调节滤液 PH 等方法使 其除去,再通过浓缩将酶调整到一定单位,并加入防腐剂(如苯甲酸)。如制备粉状糖化酶, 则可通过盐析或加酒精使酶沉淀,沉淀经过压滤,滤泥再通过压条烘干,粉碎,即可制成商 品酶粉。 发酵罐主要由罐体和冷却蛇管,以及搅拌装置,传动装置,轴封装置,人孔和其它的一些附 件组成。这次设计就是要对 20M3 通风发酵罐的几何尺寸进行计算;考虑压力,温度,腐蚀 因素,选择罐体材料,确定罐体外形、罐体和封头的壁厚;根据发酵微生物产生的发酵热、
学生姓名:
课程设计题目:
指导教师评语:
学号:
专业班级: 生物工程 1002 班
成绩:
指导教师: 年
月日
目录
-4-
1 设计方案的拟定 --------------------------------------------------6 2 罐体几何尺寸的确定------------------------------------------------7 2.1 夹套反应釜的总体结构---------------------------------------------7 2.2 几何尺寸的确定--------------------------------------------------7 3 罐体主要部件尺寸的设计计算----------------------------------------8 3.1 罐体------------------------------------------------------------9 3.2 罐体壁厚 ------------------------------------------------------9 3.3 封头壁厚计算---------------------------------------------------10 3.4 搅拌器---------------------------------------------------------10 3.5 人孔和视镜------------------------------------------------------10 3.6 接口管----------------------------------------------------------11 3.6.1 管道接口-----------------------------------------------------11 3.6.2 仪表接口-----------------------------------------------------11 4 冷却装置设计 ----------------------------------------------------12 4.1 冷却方式 -----------------------------------------------------12 4.2 装液量---------------------------------------------------------13 4.3 冷却水耗量-----------------------------------------------------13 4.4 冷却面积 -----------------------------------------------------13 5 搅拌器轴功率的计算 ----------------------------------------------14 5.1 不通气条件下的轴功率 P0 计算-------------------------------------15 5.2 通气搅拌功率 Pg 的计算-------------------------------------------15 5.3 电机及变速装置选用----------------------------------------------15 5.4 支座的选取------------------------------------------------------16 5.5 传动装置和减速装置----------------------------------------------17 5.5.1 传动装置------------------------------------------------------18 5.5.2 减速装置------------------------------------------------------20 6 设计小结---------------------------------------------------------21 7 参考文献---------------------------------------------------------21 8 设计装配图---------------------------------------------------------------22
基本清楚
不清楚
工作态度情况(学生对设计的认真程度、纪律及出勤情况):
认真
较认真
一般
不认真
图面是否清晰 清晰
比较清晰
基本清晰
不清晰
计算是否正确
设计(论文)是否符合规范要求
成绩评定:
优秀
良好
正确 规范
基本正确 基本规范
不正确 不规范
中等
及格
不及格
指导教师签字:
-3-
年月日
西南科技大学课程设计成绩评定表
发酵温度(工作温度)
33℃
根据参考文献[4]选取
设计温度
150℃
由工艺条件确定
冷却方式
蛇管冷却
由工艺条件确定
培养基
葡萄糖 4%,黄豆饼粉 0.8%,玉米浆 1.5%,(NH4)
根据参考文献[4]选取
2SO4 0.5%
发酵液密度
由工艺条件确定
发酵液黏度
由工艺条件确定
2、罐体几何尺寸的确定
2.1 夹套反应釜的总体结构
1
工作压力 罐内
≤0.2MPa
夹套 ≤0.3MPa
(蛇
管)内
2
工作温度 罐内
≤121℃
夹套 <150℃
(蛇
管)内
3
工作
罐内
介质 夹套内 (或蛇管)蒸汽
4
体积
装料体 20M3

5
面积
传热面 24M2 积
6
产物
糖化酶
7
搅拌器
直叶涡轮
8
搅拌转速 /rmp 200
9
挡板 全挡板 四块
10 罐体材料 型号 16MnR 钢
第八组:装料量为 20M3 机械搅拌通风发酵罐
姓名
班级
学号
备注
潘华国
生工 1002 班
20103115
设计,计算
胡博强
生工 1002 班
20103110
收集资料
胡华鑫
生工 1002 班
20103111
相关文档
最新文档