二项分布高考试题

合集下载

二项分布

二项分布

二项分布,期望 方差,正态太分布1.任意抛掷三枚硬币,恰有2枚正面朝上的概率为( )A.34B.38C.13D.142.若X ~B (5,0.1),则P (X ≤2)等于( )A .0.665B .0.00856C .0.91854D .0.991443.某一试验中事件A 发生的概率为p ,则在n 次独立重复试验中,A 发生k 次的概率为( )A .1-p kB .(1-p )k p n -kC .(1-p )kD .C k n (1-p )k pn -k 4.口袋里放有大小相同的两个红球和一个白球,每次有放回地摸取一个球,定义数列{a n },a n =⎩⎪⎨⎪⎧-1 第n 次摸取红球1 第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( ) A .C 57×⎝⎛⎭⎫132×⎝⎛⎭⎫235 B .C 27×⎝⎛⎭⎫232×⎝⎛⎭⎫135 C .C 57×⎝⎛⎭⎫132×⎝⎛⎭⎫135 D .C 27×⎝⎛⎭⎫132×⎝⎛⎭⎫232 5.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P 移动五次后位于点(2,3)的概率是( ) A.⎝ ⎛⎭⎪⎫125 B .C 25⎝ ⎛⎭⎪⎫12 5 C .C 35⎝ ⎛⎭⎪⎫123 D .C 25C 35⎝ ⎛⎭⎪⎫125 6.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为6581,则事件A 在1次试验中发生的概率为________.7.设X ~B (4,p ),且P (X =2)=827,那么一次试验成功的概率是________. 8.某射手射击1次,击中目标的概率为0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第三次击中目标的概率为0.9;②他恰好击中目标3次的概率为0.93×0.1;③他至少击中目标1次的概率为1-0.14.其中正确结论的序号为________.(写出所有正确结论的序号)9.甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23,求: (1)甲恰好击中目标2次的概率;(2)求乙至少击中目标2次的概率.10.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为12. (1)求其中甲、乙2名学生选做同一道题的概率;(2)设这4名考生中选做第15题的学生数为ξ个,求ξ的分布列.12.某小组有10台用电量均为7.5 kW 的机床,如果每台机床使用情况是相互独立的,且每台机床平均每小时开动12 min ,问全部机床用电量超过48 kW 的可能性有多大?13.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.8,则罚球一次得分ξ的期望是( )A .0.2B .0.8C .1D .014.随机抛掷一枚骰子,则所得骰子点数ξ的期望为( )A .0.6B .1C .3.5D .215.设ξ为离散型随机变量,则E (E (ξ)-ξ)=( )A .0B .1C .2D .不确定则E (X )=( )A.45 B.12 C.25 D.15 16.若X 的分布列为,17.有10件产品,其中2件,若ξ表示取到次品的个数,则E (ξ)等于( )A.35B.815C.1415D .1 18.已知ξ~B ⎝⎛⎭⎫n ,12,η~B (n ,13),且E (ξ)=15,则E (η)等于( ) A .5 B .10 C .15 D .2019.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球的命中率是0.7,则他罚球6次的总得分的均值是( ) A .0.70 B .6 C .4.2 D .0.4220.已知随机变量X 和Y ,其中Y =12X +7,且E (Y )=34,若X 的分布列如下表,则m 的值为( )A.13B.14C.16D.1821.某人进行一项试验,若试验成功,则停止试验,若试验失败,再重新试验一次,若试验3次均失败,则放弃试验,若此人每次试验成功的概率为23,则此人试验次数ξ的期望是( ) A.43 B.139 C.53 D.13722.设离散型随机变量ξ可能的取值为1,2,3,4,P (ξ=k )=ak +b (k =1,2,3,4),又ξ的数学期望E (ξ)=3,则a +b =________.23.某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________.24.某游戏射击场规定:①每次游戏射击5发子弹;②5发全部命中奖励40元;命中4发不奖励,也不必付款;命中3发或3发以下,应付款2元.现有一游客,其命中率为0.5.(1)求该游客在一次游戏中5发全部命中的概率;(2)求该游客在一次游戏中获得奖金的均值.25.甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p ,且乙投球2次均未命中的概率为116.(1)求乙投球的命中率p ; (2)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望.26.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本方差分别为D (X 甲)=11,D (X 乙)=3.4.由此可以估计( )A .甲种水稻比乙种水稻分蘖整齐B .乙种水稻比甲种水稻分蘖整齐C .甲、乙两种水稻分蘖整齐程度相同D .甲、乙两种水稻分蘖整齐程度不能比较27.已知X ~B (n ,p ),E (X )=2,D (X )=1.6,则n ,p 的值分别为( )A .100,0.8B .20,0.4C .10,0.2D .10,0.828.同时抛掷两枚均匀的硬币10次,设两枚硬币同时出现反面的次数为ξ,则D (ξ)=( )A.158B.154C.52D .5 29.已知随机变量ξ的方差D (ξ)=4,且随机变量η=2ξ+5,则D (η)=________.30.若ξ的分布列如下表所示且E (ξ)=1.1,则( )A.D (ξ)=2 B .D (ξ)=0.51 C .D (ξ)=0.5 D .D (ξ)=0.49 31.已知随机变量ξ~B (100,0.2),那么D (4ξ+3)的值为( )A .64B .256C .259D .32032.已知X 的分布列为 设Y =2X +3,则D (Y )=( )33.若随机变量X 1~B (n,0.2),X 2~B (6,p ),X 3~B (n ,p ),且E (X 1)=2,D (X 2)=32,则σ(X 3)的值是( ) A .0.5 B. 1.5 C. 2.5 D .3.534.若D (ξ)=1,则D (ξ-D (ξ))=____35.有10张卡片,其中8张标有数字2,2张标有数字5,从中随机地抽取3张卡片,设3张卡片数字之和为ξ,求E (ξ)和D (ξ).36.设随机变量ξ~N (2,2),则D (12ξ)的值为( ) A .1 B .2 C.12D .4 37.如图是当σ取三个不同值σ1、σ2、σ3的三种正态曲线N (0,σ2)的图象,那么σ1、σ2、σ3的大小关系是( )A .σ1>1>σ2>σ3>0B .0<σ1<σ2<1<σ3C .σ1>σ2>1>σ3>0D .0<σ1<σ2=1<σ338.(2011年高考福建卷)已知随机变量ξ服从正态分布N (2,σ2),且P (ξ<4)=0.8,则P (0<ξ<2)=( )A .0.6B .0.4C .0.3D .0.239.设随机变量ξ服从正态分布N (2,9),若P (ξ>c +1)=P (ξ<c -1),则c 的值为________.40.已知随机变量X ~N (μ,σ2),则Y =aX +b 服从( )A .Y ~N (aμ,σ2)B .Y ~N (0,1)C .Y ~N (μa ,σ2b) D .Y ~N (aμ+b ,a 2σ2) 41.已知随机变量X 服从正态分布N (2,σ2),P (X <4)=0.84,则P (X ≤0)=( )A .0.16B .0.32C .0.68D .0.8442.设随机变量ξ服从正态分布N (0,1),若P (ξ>1)=p ,则P (-1<ξ<0)=( )A.12+pB.12-p C .1-2p D .1-p ξ 0 1 x P 0.2 p 0.3 X 0 1 2P 13 13 1343.已知正态分布落在区间(0.2,+∞)上的概率为0.5,那么相应的正态曲线f (x )在x =________时,达到最高点.44.设随机变量ξ服从正态分布N (μ,σ2),若P (ξ>3)=P (ξ<-1),则E (ξ)=________.45.某种零件的尺寸X (cm)服从正态分布N (3,1),则不属于区间(1,5)这个尺寸范围的零件数约占总数的________.46.某厂生产的圆柱形零件的外直径X (单位:cm)服从正态分布N (4,0.52),质检人员从该厂生产的1000件零件中随机抽查一件,测得它的外直径为5.7 cm ,试问该厂生产的这批零件是否合格?47.水浒书业在2011年上半年对《优化方案》同步系列丛书,在河南某校调查了1200人,其调查的分数服从(95,52)的正态分布,该书业公司准备在下半年对于评分为85分~95分的人再作详细调查,那么水浒书业应准备多少人的问卷?38. 0.99144. C k n (1-p )k p n -k . B .C 27×⎝⎛⎭⎫232×⎝⎛⎭⎫13 5 B .C 25⎝⎛⎭⎫12 5 p =13. 13或23①③ C 23⎝⎛⎭⎫123=38. C 23⎝⎛⎭⎫232·13+C 33⎝⎛⎭⎫233=2027. 12. 且ξ~B ⎝⎛⎭⎫4,12.∴P (ξ=k )=C k 4⎝⎛⎭⎫12k ⎝⎛⎭⎫1-124- ξ~B ⎝⎛⎭⎫10,15 P (ξ≥7)=P (ξ=7)+P (ξ=8)+P (ξ=9)+P (ξ=10) ≈0.00086.。

高中数学选修2-3《2.2二项分布及其应用》测试卷解析版

高中数学选修2-3《2.2二项分布及其应用》测试卷解析版

高中数学选修2-3《2.2二项分布及其应用》测试卷解析版一.选择题(共6小题)1.三个元件T1,T2,T3正常工作的概率分别为且是互相独立的,按图种方式接入电路,电路正常工作的概率是()A.B.C.D.【分析】电路正常工作的条件是T1必须正常工作,T2,T3至少有一个正常工作,由此利用相互独立事件乘法公式和对立事件概率公式能求出电路正常工作的概率.【解答】解:∵三个元件T1,T2,T3正常工作的概率分别为且是互相独立的,图种方式接入电路,∴电路正常工作的条件是T1必须正常工作,T2,T3至少有一个正常工作,∴电路正常工作的概率:P=(1﹣)=.故选:C.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件乘法公式和对立事件概率计算公式的合理运用.2.抛掷3枚质地均匀的硬币,A={既有正面向上又有反面向上},B={至多有一个反面向上},则A与B关系是()A.互斥事件B.对立事件C.相互独立事件D.不相互独立事件【分析】由于A中的事件发生与否对于B中的事件是否发生不产生影响,故A与B是相互独立的,从而得出结论.【解答】解:由于A中的事件发生与否对于B中的事件是否发生不产生影响,故A与B 是相互独立的,故选:C.【点评】本题主要考查相互独立事件的定义,属于基础题.3.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可.【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.【点评】本题考查独立重复试验概率的求法,基本知识的考查.5.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选:C.【点评】本题考查相互独立事件的概率计算,解题的关键在于正确理解P(ε=3)的意义.6.已知P(B|A)=,P(A)=,则P(AB)=()A.B.C.D.【分析】根据条件概率的公式,整理出求事件AB同时发生的概率的表示式,代入所给的条件概率和事件A的概率求出结果.【解答】解:∵P(B/A)=,P(A)=,∴P(AB)=P(B/A)•P(A)==,故选:D.【点评】本题考查条件概率与独立事件,本题解题的关键是记住并且会利用条件概率的公式,要正确运算数据,本题是一个基础题.二.填空题(共1小题)7.为了考察某校各班参加课外小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为10.【分析】本题可运用平均数公式求出平均数,再运用方差的公式列出方差表达式,再讨论样本数据中的最大值的情况,即可解决问题.【解答】解:设样本数据为:x1,x2,x3,x4,x5,平均数=(x1+x2+x3+x4+x5)÷5=7;方差s2=[(x1﹣7)2+(x2﹣7)2+(x3﹣7)2+(x4﹣7)2+(x5﹣7)2]÷5=4.从而有x1+x2+x3+x4+x5=35,①(x1﹣7)2+(x2﹣7)2+(x3﹣7)2+(x4﹣7)2+(x5﹣7)2=20.②若样本数据中的最大值为11,不妨设x5=11,则②式变为:(x1﹣7)2+(x2﹣7)2+(x3﹣7)2+(x4﹣7)2=4,由于样本数据互不相同,这是不可能成立的;若样本数据为4,6,7,8,10,代入验证知①②式均成立,此时样本数据中的最大值为10.故答案为:10.【点评】本题考查的是平均数和方差的求法.计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.三.解答题(共9小题)8.某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(Ⅰ)求这4位乘客中至少有一名乘客在第2层下电梯的概率;(Ⅱ)用X表示4名乘客在第4层下电梯的人数,求X的分布列和数学期望.【分析】(I)根据题意知每位乘客在第2层下电梯的概率都是,至少有一名乘客在第2层下电梯的对立事件是没有人在第二层下电梯,根据对立事件和相互独立事件的概率公式得到结果.(II)由题意知X的可能取值为0,1,2,3,4,由题意可得每个人在第4层下电梯的概率均为,且每个人下电梯互不影响,得到变量符合二项分布,根据二项分布的公式写出分布列和期望.【解答】解:(Ⅰ)设4位乘客中至少有一名乘客在第2层下电梯的事件为A,…(1分)由题意可得每位乘客在第2层下电梯的概率都是,…(3分)则.…(6分)(Ⅱ)X的可能取值为0,1,2,3,4,…(7分)由题意可得每个人在第4层下电梯的概率均为,且每个人下电梯互不影响,所以,.…(9分)X01234P…(11分).…(13分)【点评】本题看出离散型随机变量的分布列和期望,本题解题的关键是看出变量符合二项分布的特点,后面用公式就使得运算更加简单9.为了了解某年段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3:8:19,且第二组的频数为8.(Ⅰ)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;(Ⅱ)求调查中随机抽取了多少个学生的百米成绩;(Ⅲ)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.【分析】(1)根据频率分步直方图中小正方形的面积是这组数据的频率,用长乘以宽得到面积,即为频率.(II)根据所有的频率之和是1,列出关于x的方程,解出x的值做出样本容量的值,即调查中随机抽取了50个学生的百米成绩.(III)本题是一个古典概型,试验发生所包含的事件是从第一、五组中随机取出两个成绩,满足条件的事件是成绩的差的绝对值大于1秒,列举出事件数,根据古典概型概率公式得到结果.【解答】解:(Ⅰ)百米成绩在[16,17)内的频率为0.32×1=0.32,则共有1000×0.32=320人;(Ⅱ)设图中从左到右前3个组的频率分别为3x,8x,19x依题意,得3x+8x+19x+0.32+0.08=1,∴x=0.02设调查中随机抽取了n个学生的百米成绩,∴n=50∴调查中随机抽取了50个学生的百米成绩.(Ⅲ)百米成绩在第一组的学生数有3×0.02×1×50=3,记他们的成绩为a,b,c 百米成绩在第五组的学生数有0.08×1×50=4,记他们的成绩为m,n,p,q.则从第一、五组中随机取出两个成绩包含的基本事件有{a,b},{a,c},{a,m},{a,n},{a,p},{a,q},{b,c},{b,m},{b,n},{b,p},{b,q},{c,m},{c,n},{c,p},{c,q},{m,n},{m,p},{m,q},{n,p},{n,q},{p,q},共21个其中满足成绩的差的绝对值大于1秒所包含的基本事件有{a,m},{a,n},{a,p},{a,q},{b,m},{b,n},{b,p},{b,q},{c,m},{c,n},{c,p},{c,q},共12个,∴P=【点评】本题考查样本估计总体,考查古典概型的概率公式,考查频率分布直方图等知识,考查数据处理能力和分析问题、解决问题的能力.10.某校高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中男生的人数,(1)请列出X的分布列;(2)根据你所列的分布列求选出的4人中至少有3名男生的概率.【分析】(1)本题是一个超几何分步,用X表示其中男生的人数,X可能取的值为0,1,2,3,4.结合变量对应的事件和超几何分布的概率公式,写出变量的分布列和数学期望.(2)选出的4人中至少有3名男生,表示男生有3个人,或者男生有4人,根据第一问做出的概率值,根据互斥事件的概率公式得到结果.【解答】解:(1)依题意得,随机变量X服从超几何分布,随机变量X表示其中男生的人数,X可能取的值为0,1,2,3,4..∴所以X的分布列为:X01234P(2)由分布列可知至少选3名男生,即P(X≥3)=P(X=3)+P(X=4)=+=.【点评】本小题考查离散型随机变量分布列和数学期望,考查超几何分步,考查互斥事件的概率,考查运用概率知识解决实际问题的能力.11.某批产品共10件,已知从该批产品中任取1件,则取到的是次品的概率为P=0.2.若从该批产品中任意抽取3件,(1)求取出的3件产品中恰好有一件次品的概率;(2)求取出的3件产品中次品的件数X的概率分布列与期望.【分析】设该批产品中次品有x件,由已知,可求次品的件数(1)设取出的3件产品中次品的件数为X,3件产品中恰好有一件次品的概率为;(2)取出的3件产品中次品的件数X可能为0,1,2,求出相应的概率,从而可得概率分布列与期望.【解答】解:设该批产品中次品有x件,由已知,∴x=2…(2分)(1)设取出的3件产品中次品的件数为X,3件产品中恰好有一件次品的概率为…(4分)(2)∵X可能为0,1,2∴…(10分)∴X的分布为:X012P则…(13分)【点评】本题以实际问题为载体,考查等可能事件的概率,考查随机变量的期望与分布列,难度不大.12.某班组织知识竞赛,已知题目共有10道,随机抽取3道让某人回答,规定至少要答对其中2道才能通过初试,他只能答对其中6道,试求:(1)抽到他能答对题目数的分布列;(2)他能通过初试的概率.【分析】(1)设随机抽出的三道题目某人能答对的道数为X,且X=0、1、2、3,X服从超几何分布,根据超几何分步的概率公式写出概率和分布列.(2)要答对其中2道才能通过初试,则可以通过初试包括两种情况,即答对两道和答对三道,这两种情况是互斥的,根据上一问的计算可以得到.【解答】解:(1)设随机抽出的三道题目某人能答对的道数为X,且X=0、1、2、3,X 服从超几何分布,分布列如下:X0123P即X0123P(2)要答对其中2道才能通过初试,则可以通过初试包括两种情况,这两种情况是互斥的,根据上一问的计算可以得到【点评】本题考查超几何分布,本题解题的关键是看出变量符合超几何分布,这样可以利用公式直接写出结果.13.甲有一个箱子,里面放有x个红球,y个白球(x,y≥0,且x+y=4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子任取2个球,乙从箱子里再取1个球,若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色的个数,才能使自己获胜的概率最大?(2)在(1)的条件下,求取出的3个球中红球个数的数学期望.【分析】(1)根据甲从箱子任取2个球,乙从箱子里在取1个球,若取出的3个球颜色全不相同,则甲获胜,可得甲获胜的概率,再利用基本不等式,可得x,y的值;(2)由题意知取出的3个球中红球个数ξ的取值为1,2,3,4,分别求出其发生的概率,进而求出次数ξ的数学期望【解答】解:(1)由题意,;∴,当且仅当x=y=2时“=”成立所以当红球与白球各2个时甲获胜的概率最大(2)取出的3个球中红球个数ξ=0,1,2,3,所以【点评】本题以摸球为素材,考查等可能事件的概率,考查离散型随机变量的期望,考查基本不等式的运用,解题的关键是理解题意,搞清变量的所有取值.14.甲乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为,,,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分.(Ⅰ)求随机变量ξ的分布列及其数学期望E(ξ);(Ⅱ)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.【分析】(Ⅰ)由题设知ξ的可能取值为0,1,2,3,分别求出P(ξ=0),P(ξ=1),P (ξ=2),P(ξ=3),由此能求出随机变量ξ的分布列和数学期望E(ξ).(Ⅱ)设“甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B,分别求出P(A),P(AB),再由P(B/A)=,能求出结果.【解答】解:(Ⅰ)由题设知ξ的可能取值为0,1,2,3,P(ξ=0)=(1﹣)(1﹣)(1﹣)=,P(ξ=1)=(1﹣)(1﹣)+(1﹣)××(1﹣)+(1﹣)(1﹣)×=,P(ξ=2)=++=,P(ξ=3)==,∴随机变量ξ的分布列为:ξ01 2 3P数学期望E(ξ)=0×+1×+2×+3×=.(Ⅱ)设“甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B,则P(A)=++=,P(AB)==,P(B|A)===.【点评】本题考查离散型随机变量的期分布列和数学期望,考查条件概率的求法,是历年高考的必考题型之一,解题时要注意排列组合知识的合理运用.15.如图,李先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1、L2两条路线,L1路线上有A1、A2、A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1、B2两个路口,各路口遇到红灯的概率依次为,.(1)若走L1路线,求最多遇到1次红灯的概率;(2)若走L2路线,求遇到红灯次数X的数学期望;(3)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.【分析】(1)利用二项分布即可得出;(2)利用相互独立事件的概率计算公式及离散型随机变量的期望计算公式即可得出;(3)由于走路线L1时服从二项分布即可得出期望,比较走两条路的数学期望的大小即可得出要选择的路线.【解答】解:(1)设“走L1路线最多遇到1次红灯”为事件A,包括没有遇到红灯和只遇到红灯一次两种情况.则,所以走L1路线,最多遇到1次红灯的概率为.(2)依题意,X的可能取值为0,1,2.,,.随机变量X的分布列为:X012P所以.(3)设选择L1路线遇到红灯次数为Y,随机变量Y服从二项分布Y~,所以.因为EX<EY,所以选择L2路线上班最好.【点评】熟练掌握二项分布列、相互独立事件的概率计算公式及离散型随机变量的期望计算公式及其意义是解题的关键.16.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛中获胜的事件是独立的,并且获胜的概率均为.(1)求这支篮球队首次获胜前已经负了两场的概率;(2)求这支篮球队在6场比赛中恰好获胜3场的概率;(3)求这支篮球队在6场比赛中获胜场数的期望.【分析】(1)首次获胜前已经负了两场说明已经比赛三场,前两场输,第三场嬴,用乘法公式即可求得概率;(2)6场比赛中恰好获胜3场的情况有C63,比赛六场胜三场,故用乘法公式即可.(3)由于X服从二项分布,即X~B(6,),由公式即可得出篮球队在6场比赛中获胜场数的期望.【解答】解:(1)这支篮球队首次获胜前已经负了两场的概率为P==(2)6场比赛中恰好获胜3场的情况有C63,故概率为C63×=20××=(3)由于X服从二项分布,即X~B(6,),∴EX=6×=2【点评】本题考查二项分布与n次独立重复试验的模型,考查根据所给的事件类型选择概率模型的方法,以及用概率模型求概率与期望的能力。

五年高考真题(数学理)10.5二项分布与正态分布

五年高考真题(数学理)10.5二项分布与正态分布

第五节二项分布与正态分布考点一条件概率与相互独立事件的概率1.(2015·新课标全国Ⅰ,4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A.0.648 B.0.432 C.0.36 D.0.312解析该同学通过测试的概率为p=0.6×0.6+C12×0.4×0.62=0.648.答案 A2.(2014·新课标全国Ⅱ,5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8 B.0.75 C.0.6 D.0.45解析由条件概率可得所求概率为0.60.75=0.8,故选A.答案 A3.(2011·湖南,15)如图,EFGH是以O为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1)P(A)=________.(2)P(B|A)=________.解析圆的半径为1,正方形的边长为2,∴圆的面积为π,正方形面积为2,扇形面积为π4.故P(A)=2π,P(B|A)=P(A∩B)P(A)=12π2π=14.答案(1)2π(2) 1 44.(2014·陕西,19)在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率.解(1)设A表示事件“作物产量为300 kg”,B表示事件“作物市场价格为6元/kg”,由题设知P(A)=0.5,P(B)=0.4,因为利润=产量×市场价格-成本,所以X所有可能的取值为500×10-1 000=4 000,500×6-1 000=2 000,300×10-1 000=2 000,300×6-1 000=800.P(X=4 000)=P(A)P(B)=(1-0.5)×(1-0.4)=0.3,P(X=2 000)=P(A)P(B)+P(A)P(B)=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,所以X的分布列为(2)设C i表示事件“第i季利润不少于2 000元”(i=1,2,3),由题意知C1,C2,C3相互独立,由(1)知,P(C i)=P(X=4 000)+P(X=2 000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2 000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季的利润不少于2 000元的概率为P(C1C2C3)+P(C1C2C3)+P(C1C2C3)=3×0.82×0.2=0.384,所以,这3季中至少有2季的利润不少于2 000元的概率为0.512+0.384=0.896.5.(2013·辽宁,19)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(1)求张同学至少取到1道乙类题的概率;(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X 表示张同学答对题的个数,求X 的分布列和数学期望.解 (1)设事件A =“张同学所取的3道题至少有1道乙类题”,则有A =“张同学所取的3道题都是甲类题”. 因为P (A )=C 36C 310=16, 所以P (A )=1-P (A )=56.(2)X 所有的可能取值为0,1,2,3. P (X =0)=C 02·⎝ ⎛⎭⎪⎪⎫350·⎝ ⎛⎭⎪⎪⎫252·15=4125; P (X =1)=C 12·⎝ ⎛⎭⎪⎪⎫351·⎝ ⎛⎭⎪⎪⎫251·15+C 02⎝ ⎛⎭⎪⎪⎫350·⎝ ⎛⎭⎪⎪⎫252·45=28125; P (X =2)=C 22·⎝ ⎛⎭⎪⎪⎫352·⎝ ⎛⎭⎪⎪⎫250·15+C 12⎝ ⎛⎭⎪⎪⎫351·⎝ ⎛⎭⎪⎪⎫251·45=57125; P (X =3)=C 22·⎝ ⎛⎭⎪⎪⎫352·⎝ ⎛⎭⎪⎪⎫250·45=36125. 所以X 的分布列为:所以E (X )=0×4125+1×28125+2×57125+3×36125=2.6.(2012·山东,19)现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望E (X ).解 (1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D ,由题意知P (B )=34,P (C )=P (D )=23,由于A =B C D +B C D +B C D ,根据事件的独立性和互斥性得P (A )=P (B C D +B C D +B C D )=P (B C D )+P (B C D )+P (B C D )=P (B )P (C )P (D )+P (B )P (C )P (D )+P (B )P (C )P (D )=34×⎝ ⎛⎭⎪⎪⎫1-23×⎝ ⎛⎭⎪⎪⎫1-23+⎝ ⎛⎭⎪⎪⎫1-34×23×⎝ ⎛⎭⎪⎪⎫1-23+⎝ ⎛⎭⎪⎪⎫1-34×⎝ ⎛⎭⎪⎪⎫1-23×23=736. (2)根据题意,X 的所有可能取值为0,1,2,3,4,5. 根据事件的独立性和互斥性得P (X =0)=P (B C D )=[1-P (B )][1-P (C )][1-P (D )] =(1-34)×⎝⎛⎭⎪⎪⎫1-23×⎝ ⎛⎭⎪⎪⎫1-23=136,P (X =1)=P (B C D )=P (B )P (C )P (D )=34×⎝⎛⎭⎪⎪⎫1-23×⎝ ⎛⎭⎪⎪⎫1-23=112,P (X =2)=P (B C D +B C D ) =P (B C D )+P (B C D ) =⎝ ⎛⎭⎪⎪⎫1-34×23×⎝ ⎛⎭⎪⎪⎫1-23+⎝ ⎛⎭⎪⎪⎫1-34×⎝ ⎛⎭⎪⎪⎫1-23×23=19, P (X =3)=P (BC D +B C D ) =P (BC D )+P (B C D )=34×23×⎝ ⎛⎭⎪⎪⎫1-23+34×⎝ ⎛⎭⎪⎪⎫1-23×23=13,P (X =4)=P (BCD )=⎝ ⎛⎭⎪⎪⎫1-34×23×23=19,P (X =5)=P (BCD )=34×23×23=13.故X 的分布列为所以E (X )=0×136+1×112+2×19+3×13+4×19+5×13=4112.7.(2011·大纲全国,18)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)X表示该地的100位车主中,甲、乙两种保险都不购买的车主数.求X的期望.解设A表示事件:该地的1位车主购买甲种保险;B表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D表示事件:该地的1位车主甲、乙两种保险都不购买.(1)P(A)=0.5,P(B)=0.3,C=A+B,P(C)=P(A+B)=P(A)+P(B)=0.8.(2)D=C,P(D)=1-P(C)=1-0.8=0.2,X~B(100,0.2),即X服从二项分布,所以期望E(X)=100×0.2=20.考点二正态分布1.(2015·湖南,7)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为( )附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4.A.2 386 B.2 718 C.3 413 D.4 772 解析由X~N(0,1)知,P(-1<X≤1)=0.682 6,∴P(0≤X≤1)=12×0.682 6=0.341 3,故S≈0.341 3.∴落在阴影部分中点的个数x估计值为x10 000=S1(古典概型),∴x=10 000×0.341 3=3 413,故选C.答案 C2.(2015·山东,8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( ) (附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56% B.13.59% C.27.18% D.31.74%解析由题意,知P(3<ξ<6)=P(-6<ξ<6)-P(-3<ξ<3)2=95.44%-68.26%2=13.59%.答案 B3.(2014·新课标全国Ⅰ,18)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2.(ⅰ)利用该正态分布,求P(187.8<Z<212.2);(ⅱ)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用(ⅰ)的结果,求E(X).附:150≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4.解(1)抽取产品的质量指标值的样本平均数x和样本方差s2分别为x-=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)(ⅰ)由(1)知,Z~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.682 6.(ⅱ)由(ⅰ)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X~B(100,0.682 6),所以E(X)=100×0.682 6=68.26. 4.(2013·湖北,20)假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502) 的随机变量,记一天中从甲地去乙地的旅客人数不超过900的概率为p0.(1)求p0的值;(参考数据:若X~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4,P(μ-3σ<X≤μ+3σ)=0.997 4.)(2)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆,若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?解(1)由于随机变量X服从正态分布N(800,502),故有μ=800,σ=50,P(700<X≤900)=0.954 4.由正态分布的对称性,可得p0=P(X≤900)=P(X≤800)+P(800<X≤900)=12+12P(700<X≤900)=0.977 2.(2)设A型、B型车辆的数量分别为x,y辆,则相应的营运成本为1 600x+2 400y.实用标准文案文档 依题意,x ,y 还需满足:x +y ≤21,y ≤x +7,P (X ≤36x +60y )≥p 0.由(1)知,p 0=P (X ≤900),故P (X ≤36x +60y )≥p 0等价于36x +60y ≥900.于是问题等价于求满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N ,且使目标函数z =1 600x +2 400y 达到最小的x ,y .作可行域如图阴影部分所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上截距z2 400最小,即z 取得最小值.故应配备A 型车5辆,B 型车12辆.。

高考数学(人教a版,理科)题库:二项分布与正态分布(含答案).

高考数学(人教a版,理科)题库:二项分布与正态分布(含答案).

第8讲二项分布与正态分布一、选择题1.甲、乙两地都位于长江下游,根据天气预报的纪录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天,乙市也为雨天的概率为( )A.0.6 B.0.7C.0.8 D.0.66解析甲市为雨天记为事件A,乙市为雨天记为事件B,则P(A)=0.2,P(B)=0.18,P(AB)=0.12,∴P(B|A)=P ABP A=0.120.2=0.6.答案 A2.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是( )A.512B.12C.712D.34解析本题涉及古典概型概率的计算.本知识点在考纲中为B级要求.由题意得P(A)=12,P(B)=16,则事件A,B至少有一件发生的概率是1-P(A)·P(B)=1-12×56=712.答案 C3.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率p的取值范围是().A.[0.4,1] B.(0,0.4]C.(0,0.6] D.[0.6,1]解析设事件A发生的概率为p,则C14p(1-p)3≤C24p2(1-p)2,解得p≥0.4,故选A.答案 A4.设随机变量X 服从正态分布N (2,9),若P (X >c +1)=P (X <c -1),则c 等于( ). A .1B .2C .3D .4解析 ∵μ=2,由正态分布的定义,知其函数图象关于x =2对称,于是c +1+c -12=2,∴c =2. 答案 B5.在正态分布N ⎝ ⎛⎭⎪⎫0,19中,数值前在(-∞,-1)∪(1,+∞)内的概率为( ).A .0.097B .0.046C .0.03D .0.0026 解析 ∵μ=0,σ=13∴P (X <1或x >1)=1-P (-1≤x ≤1)=1-P (μ-3σ≤X ≤μ+3σ)=1-0.997 4=0.002 6. 答案 D6.已知三个正态分布密度函数φi (x )=12πσi·e -(x -μi )22σ2i (x ∈R ,i =1,2,3)的图象如图所示,则 ( ).A .μ1<μ2=μ3,σ1=σ2>σ3B .μ1>μ2=μ3,σ1=σ2<σ3C .μ1=μ2<μ3,σ1<σ2=σ3D .μ1<μ2=μ3,σ1=σ2<σ3解析 正态分布密度函数φ2(x )和φ3(x )的图象都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x )的对称轴的横坐标值比φ1(x )的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图象可知,正态分布密度函数φ1(x )和φ2(x )的图象一样“瘦高”,φ3(x )明显“矮胖”,从而可知σ1=σ2<σ3. 答案 D 二、填空题7.三支球队中,甲队胜乙队的概率为0.4,乙队胜丙队的概率为0.5,丙队胜甲队的概率为0.6,比赛顺序是:第一局是甲队对乙队,第二局是第一局的胜者对丙队,第三局是第二局胜者对第一局的败者,第四局是第三局胜者对第二局败者,则乙队连胜四局的概率为________.解析设乙队连胜四局为事件A,有下列情况:第一局中乙胜甲(A1),其概率为1-0.4=0.6;第二局中乙胜丙(A2),其概率为0.5;第三局中乙胜甲(A3),其概率为0.6;第四局中乙胜丙(A4),其概率为0.50,因各局比赛中的事件相互独立,故乙队连胜四局的概率为:P(A)=P(A1A2A3A4)=0.62×0.52=0.09.答案 0.098.设随机变量X服从正态分布N(0,1),如果P(X≤1)=0.8413,则P(-1<X<0)=________.解析∵P(X≤1)=0.841 3,∴P(X>1)=1-P(X≤1)=1-0.841 3=0.158 7.∵X~N(0,1),∴μ=0.∴P(X<-1)=P(X>1)=0.158 7,∴P(-1<X<1)=1-P(X<-1)-P(X>1)=0.682 6.∴P(-1<X<0)=12P(-1<X<1)=0.341 3.答案0.341 39.设随机变量ξ服从正态分布N(0,1),记Ф(x)=P(ξ<x),给出下列结论:①Φ(0)=0.5;②Φ(x)=1-Φ(-x);③P(|ξ|<2)=2Φ(2)-1.则正确结论的序号是________.答案①②③10.商场经营的某种包装大米的质量(单位:kg)服从正态分布X~N(10,0.12),任选一袋这种大米,质量在9.8~10.2 kg的概率是________.解析P(9.8<X<10.2)=P(10-0.2<X<10+0.2)=0.954 4.答案0.954 4三、解答题11.设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分以上)的人数和130分以上的人数.解由题意得μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μ<-σ)+P(-σ≤X-μ≤σ)+P(X-μ>σ)=2P(X-μ<-σ)+0.682 6=1,∴P(X-μ<-σ)=0.158 7,∴P(X≥90)=1-P(X-μ<-σ)=1-0.158 7=0.841 3.∴54×0.841 3≈45(人),即及格人数约为45人.∵P(X≥130)=P(X-110≥20)=P(X-μ≥σ),∴P(X-μ≤-σ)+P(-σ≤X-μ≤σ)+P(X-μ>σ)=0.682 6+2P(X-μ≥σ)=1,∴P(X-μ≥σ)=0.158 7.∴54×0.158 7≈9(人),即130分以上的人数约为9人.12.在某市组织的一次数学竞赛中全体参赛学生的成绩近似服从正态分布N(60,100),已知成绩在90分以上的学生有13人.(1)求此次参加竞赛的学生总数共有多少人?(2)若计划奖励竞赛成绩排在前228名的学生,问受奖学生的分数线是多少?解设学生的得分情况为随机变量X,X~N(60,100).则μ=60,σ=10.(1)P(30<X≤90)=P(60-3×10<X≤60+3×10)=0.997 4.∴P(X>90)=12[1-P(30<X≤90)]=0.001 3∴学生总数为:130.001 3=10 000(人).(2)成绩排在前228名的学生数占总数的0.022 8. 设分数线为x.则P(X≥x0)=0.022 8.∴P(120-x0<x<x0)=1-2×0.022 8=0.954 4. 又知P(60-2×10<x<60+2×10)=0.954 4.∴x0=60+2×10=80(分).13.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)解(1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得P(X=1)=15100=320,P(X=1.5)=30100=310,P(X=2)=25100=14,P(X=2.5)=20100=15,P(X=3)=10100=110.X的分布列为X的数学期望为E(X)=1×320+1.5×310+2×14+2.5×15+3×110=1.9.(2)记A为事件“该顾客结算前的等候时间不超过2.5分钟”,X i(i=1,2)为该顾客前面第i位顾客的结算时间,则P(A)=P(X1=1且X2=1)+P(X1=1且X2=1.5)+P(X1=1.5且X2=1).由于各顾客的结算相互独立,且X1,X2的分布列都与X的分布列相同,所以P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=1.5)+P(X1=1.5)×P(X2=1)=320×320+320×310+310×320=980.故该顾客结算前的等候时间不超过2.5分钟的概率为980.14.现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望E (X ).解 (1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D .由题意,知P (B )=34,P (C )=P (D )=23, 由于A =B C - D -+B -C D -+B - C -D , 根据事件的独立性和互斥性,得 P (A )=P (B C - D -+B -C D -+B - C -D ) =P (B C - D -)+P (B -C D -)+P (B - C -D )=P (B )P (C -)P (D -)+P (B -)P (C )P (D -)+P (B -)P (C -)P (D )=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=736.(2)根据题意,知X 的所有可能取值为0,1,2,3,4,5.根据事件的独立性和互斥性,得P (X =0)=P (B - C - D -) =[1-P (B )][1-P (C )][1-P (D )] =⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=136; P (X =1)=P (B C - D -)=P (B )P (C -)P (D -)=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=112;P (X =2)=P (B - C D -+B - C - D )=P (B - C D -)+P (B - C -D ) =⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=19; P (X =3)=P (BC D -+B C -D )=P (BC D -)+P (B C -D ) =34×23×⎝ ⎛⎭⎪⎫1-23+34×⎝ ⎛⎭⎪⎫1-23×23=13;P (X =4)=P (B -CD )=⎝ ⎛⎭⎪⎫1-34×23×23=19,P (X =5)=P (BCD )=34×23×23=13. 故X 的分布列为所以E (X )=0×136+1×112+2×19+3×13+4×19+5×13=4112.。

高考绿色通道 二项分布

高考绿色通道 二项分布

第11模块 第8节[知能演练]一、选择题1.甲、乙两人独立地解同一道题,甲、乙解对的概率分别为P 1、P 2,那么至少有一人解对的概率是( )A .P 1+P 2B .P 1·P 2C .1-P 1·P 2D .1-(1-P 1)·(1-P 2)解析:“至少有一人解对”的对立事件为“两人都没有解对”. 答案:D2.设有两个独立事件A 和B 同时不发生的概率是p ,A 发生B 不发生与A 不发生B 发生的概率相同,则事件A 发生的概率为( )A .2pB.p2 C .1-pD .1-2p解析:据题意设事件A 发生的概率为a ,事件B 发生的概率为b ,则有⎩⎪⎨⎪⎧(1-a )(1-b )=p , ①a (1-b )=(1-a )b . ② 由②知a =b ,代入①即得a =1-p . 答案:C3.10张奖券中有2张有奖,甲、乙两人从中各抽1张,甲先抽,然后乙抽,设甲中奖的概率为P 1,乙中奖的概率为P 2,那么( )A .P 1>P 2B .P 1<P 2C .P 1=P 2D .P 1、P 2大小不确定解析:设“甲中奖”事件用A 表示,“乙中奖”事件用B 表示,则P (A )=P 1=210=15.B =A ·B +A ·B ,且A ·B 与A ·B 彼此互斥,则 P (B )=P (A ·B )+P (A ·B ).又P (A ·B )=810×29=845,P (A ·B )=210×19=145,∴P (B )=P 2=845+145=945=15.答案:C4.一场5局3胜制的乒乓球对抗赛,当甲运动员先胜2局时,比赛因故中断.已知甲、乙水平相当,每局甲胜的概率都为12,则这场比赛奖金分配(甲∶乙)应为( )A .4∶1B .3∶1C .7∶1D .6∶1解析:在甲先胜2局的情况下,乙获胜的概率为C 33⎝⎛⎭⎫123=18,∴甲获胜的概率为78,∴奖金分配(甲∶乙)为7∶1.故选C.答案:C 二、填空题5.设A 、B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________.解析:由题意知:P (AB )=310,P (B |A )=12,∴P (A )=P (AB )P (B |A )=31012=35.答案:356.如果在一次试验中,某事件A 发生的概率为p ,那么在n 次独立重复试验中,这件事A 发生偶数次的概率为________.解析:由题意,X ~B (n ,p ),且X 取不同值时事件互斥.设p +q =1,∴P =P (X =0)+P (X =2)+P (X =4)+…=C 0n p 0q n +C 2n p 2qn -2+C 4n p 4q n -4+… =12[(q +p )n +(q -p )n ]=12[1+(1-2p )n ]. 答案:12[1+(1-2p )n ]三、解答题7.箱中装有大小相同的黄、白两种颜色的乒乓球,黄、白乒乓球的数量比是s ∶t ,现从箱中每次任意取出一个球,若取出的是黄球则结束,若取出的是白球,则将其放回箱中,并继续从箱中任意取出一个球,但取球的次数最多不超过n 次,以X 表示取球结束时已取到白球的次数.求X 的分布列.解:随机变量X 的取值X =0,1,2,…,n (X =n 表示n 次取出的全是白球)令A i “表示第i 次取出的是白球”(i =1,2,…,n ),A i 表示“第i 次取出的是黄球”,依题意有:P (A i )=t s +t =p ,P (A i )=ss +t =1-p =q (i =1,2,…,n )由于每次取球是独立的,所以有 P (X =k )=P (A 1A 2…A k Ak +1) =P (A 1)P (A 2)…P (A k )P (A k +1)=qp k (k =0,1,2,…n -1)P (X =n )=P (A 1A 2…A n )=p n . X 的分布列如下:8.甲、根据以往资料知,甲击中8环、9环、10环的概率分别为0.6、0.3、0.1,乙击中8环、9环、10环的概率分别为0.4、0.4、0.2.设甲、乙的射击相互独立.(1)求在一轮比赛中甲击中的环数多于乙击中环数的概率.(2)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率. 解:记A 1,A 2分别表示甲击中9环,10环,B 1,B 2分别表示乙击中8环,9环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数.C 1,C 2分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数. (1)A =A 1·B 1+A 2·B 1+A 2·B 2, P (A )=P (A 1·B 1+A 2·B 1+A 2·B 2) =P (A 1·B 1)+P (A 2·B 1)+P (A 2·B 2) =P (A 1)·P (B 1)+P (A 2)·P (B 1)+P (A 2)·P (B 2) =0.3×0.4+0.1×0.4+0.1×0.4=0.2. (2)B =C 1+C 2,P (C 1)=C 23[P (A )]2[1-P (A )]=3×0.22×(1-0.2)=0.096, P (C 2)=[P (A )]3=0.23=0.008, P (B )=P (C 1+C 2)=P (C 1)+P (C 2) =0.096+0.008=0.104.[高考·模拟·预测]1.(2008·福建高考)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是( )A.12125 B.16125 C.48125D.96125解析:由题意,3粒种子恰有2粒发芽,相当于3次独立试验有2次发生,故 P (X =2)=C 23·(45)2·(1-45)=48125. 答案:C2.(高考预测题)在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A .[0.4,1)B .(0,0.6]C .(0,0.4]D .[0.6,1)解析:C 14p (1-p )3≤C 24p 2(1-p )2,4(1-p )≤6p ,p ≥0.4,又0<p <1, ∴0.4≤p <1. 答案:A3.(2009·陕西高考)据统计,某食品企业一个月内被消费者投诉的次数为0,1,2的概率分别为0.4,0.5,0.1.(1)求该企业在一个月内被消费者投诉不超过1次的概率;(2)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.解:(1)设事件A 表示“一个月内被投诉的次数为0”,事件B 表示“一个月内被投诉的次数为1”,∴P (A +B )=P (A )+P (B )=0.4+0.5=0.9.(2)设事件A i 表示“第i 个月内被投诉的次数为0”,事件B i 表示“第i 个月被投诉的次数为1”,事件C i 表示“第i 个月被投诉的次数为2”,事件D 表示“两个月内被投诉2次”,∴P (A i )=0.4.P (B i )=0.5,P (C i )=0.1(i =1,2).∵在两个月中,一个月被投诉2次,另一个月被投诉0次的概率为P (A 1C 2+A 2C 1), 一、二月份均被投诉1次的概率为P (B 1B 2),∴P (D )=P (A 1C 2+A 2C 1)+P (B 1B 2)=P (A 1C 2)+P (A 2C 1)+P (B 1B 2). 由事件的独立性的P (D )=0.4×0.1+0.1×0.4+0.5×0.5=0.33.4.(高考预测题)一个口袋中装有n 个红球(n ≥5且n ∈N *)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.(1)试用n 表示一次摸奖中奖的概率p ;(2)若n =5,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;(3)记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为f (p ).当n 取多少时,f (p )最大? 解:(1)一次摸奖从n +5个球中任选两个 ,有C 2n +5种,它们等可能,其中两球不同色有C 1n C 15种,一次摸奖中奖的概率p =C 1n C 15C 2n +5=10n (n +5)(n +4).(2)若n =5,一次摸奖中奖的概率p =10×5(5+5)(5+4)=59,三次摸奖是独立重复试验,三次摸奖(每次摸奖后放回)恰有一次中奖的概率是P 3(1)=C 13·p ·(1-p )2=80243. (3)设每次摸奖中奖的概率为p ,则三次摸奖(每次摸奖后放回)恰有一次中奖的概率为 f (p )=C 13·p ·(1-p )2=3p 3-6p 2+3p,0<p <1, 由f ′(p )=9p 2-12p +3=3(p -1)(3p -1)知,在⎝⎛⎦⎤0,13上f (p )为增函数,在⎝⎛⎭⎫13,1上f (p )为减函数,则当p =13时,f (p )取得最大值.又p =10n (n +5)(n +4)=13,解得n =20或n =1.∴当n =20或n =1时,三次摸奖(每次摸奖后放回)恰有一次中奖的概率最大。

高考数学专题复习:二项分布与超几何分布

高考数学专题复习:二项分布与超几何分布

高考数学专题复习:二项分布与超几何分布一、单选题1.盒中有10只螺丝钉,其中有2只是坏的,现从盒中随机地抽取4只,那么恰好有2只是坏的的概率为( ) A .1210B .145C .215D .1152.已知某运动员每次射击击中目标的概率是p ,假设每次射击击中目标与否互不影响,设ξ为该运动员n 次射击练习中击中目标的次数,且()8E ξ=,() 1.6ξ=D ,则p 值为( ) A .0.6 B .0.8 C .0.9D .0.923.已知随机变量X 服从二项分布1(3)3B ,,当{}0123k ∈,,,时,()P X k =的最大值是( ).A .827 B .49C .19D .1274.12人的兴趣小组中有5人是“三好学生”,现从中任选6人参加竞赛.若随机变量X 表示参加竞赛的“三好学生”的人数,则3357612C C C 为( )A .P (X =6)B .P (X =5)C .P (X =3)D .P (X =7)5.袋中共有10个除了颜色外完全相同的球,其中有6个白球,4个红球.从袋中任取3个球,所取的3个球中至少有1个红球的概率为( ) A .12125 B .16C .98125D .566.某批零件的尺寸X 服从正态分布()210,N σ,且满足()196P x <=,零件的尺寸与10的误差不超过1即合格,从这批产品中抽取n 件,若要保证抽取的合格零件不少于2件的概率不低于0.9,则n 的最小值为( ) A .7B .6C .5D .47.若随机变量~(,)B n p ξ,且()2E ξ=,8()5D ξ=,则p =( ) A .15B .25C .35D .458.已知随机变量~(4,)X B p ,若8()3E X =,则(2)P X ==( )A .29B .49C .89D .827二、填空题9.学校要从5名男教师和2名女教师中随机选出3人去支教,设抽取的人中女教师的人数为X ,求(1)P X ≤=__________.10.袋中有4只红球,3只黑球,从袋中任取4只球,取到1只红球得2分,取到1只黑球得3分,设得分为随机变量ξ,则(9)P ξ≤=__________.11.若随机变量X 服从二项分布1(5,)2B ,那么(1)P X ≤=__________.12.从一批含有13件正品,2件次品的产品中,不放回地任取3件,则取得次品数为1的概率为__________(结果用最简分数表示).13.10名同学中有a 名女生,若从中抽取2个人作为学生代表,恰好抽取1名女生的概率为1645,则a =__________. 14.已知随机变量~(2,),~01X B p Y -,若()()10.64,1P X P Y p ≥===,则(0)P Y =的值等于__________. 三、解答题15.一个盒子中有10个小球,其中3个红球,7个白球.从这10个球中任取3个. (1)若采用无放回抽取,求取出的3个球中红球的个数X 的分布列; (2)若采用有放回抽取,求取出的3个球中红球的个数Y 的分布列.16.小明和小林做游戏,每人连续投掷一枚均匀的硬币5次,谁投掷出的结果的概率小,谁就获胜,概率相等则为平局.(1)小明连续5次都是正面朝上,小林前3次是反面朝上,后2次是正面朝上,两人都认为自己赢了,你认为小明和小林谁赢了(通过计算两人的概率说明); (2)如果用X 表示小明5次投掷中正面朝上的次数,求X 的分布列及期望; (3)已知在某局中小林先投,5次中出现2次正面朝上,问小明赢的概率有多大?17.某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果,某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:(1)若将频率视为概率,从这100个水果中有放回地随机抽取3个,求恰好有2个水果是礼品果的概率;(结果用分数表示)(2)用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取2个,若X 表示抽到的精品果的数量,求X 的分布列和期望.18.甲盒中装有3个红球和2个黄球,乙盒中装1红球和4个黄球.(Ⅰ)从甲盒有放回地摸球,每次摸出一个球,摸到红球记1分,摸到黄球记2分.某人摸球4次,求该人得分ξ的分布列以及数学期望()E ξ;(Ⅱ)若同时从甲、乙两盒中各取出2个球进行交换,记交换后甲、乙两盒中红球的个数分别为1ξ、2ξ,求数学期望()1E ξ,()2E ξ.19.一款小游戏的规则如下:每盘游戏都需抛掷骰子三次,出现一次或两次“6点”获得15分,出现三次“6点”获得120分,没有出现“6点”则扣除12分(即获得-12分). (1)设每盘游戏中出现“6点”的次数为X ,求X 的分布列和数学期望()E X ; (2)玩两盘游戏,求两盘中至少有一盘获得15分的概率;(3)玩过这款游戏的许多人发现,若干次游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析解释上述现象.20.一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是13.(1)求这名学生在途中遇到红灯的次数ξ的分布列;(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的分布列.参考答案1.C 【分析】利用超几何分布概率公式计算概率. 【详解】解: 设X k =表示取出的螺丝钉恰有k 只是坏的,则()()428410C C 0,1,2C k k P X k k -===. ∴()2228410C C 22C 15P X ===.故选:C . 2.B 【分析】由ξ服从(,)B n p ,根据二项分布的均值和方差公式列式求解. 【详解】 由题意(,)B n p ξ,所以()8()(1) 1.6E np D np p ξξ==⎧⎨=-=⎩,解得0.810p n =⎧⎨=⎩.故选:B . 3.B 【分析】由二项分布的概率公式依次求解可得答案 【详解】解:因为随机变量X 服从二项分布1(3)3B ,,所以3312()()()33kk k P X k C -==⋅⋅,{}0123k ∈,,, 所以0033128(0)()()3327P X C ==⋅⋅=,1123124(1)()()339P X C ==⋅⋅=,2213122(2)()()339P X C ==⋅⋅=,3303121(3)()()3327P X C ==⋅⋅=,∴max 4()(1)9P X k P X ====, 故选:B . 4.C 【分析】根据题意得到变量X 服从参数为12,5,6N M n ===的超几何分布,结合概率的计算的公式,即可求解. 【详解】由题意知,随机变量X 服从参数为12,5,6N M n ===的超几何分布,由概率的计算公式()k n k M N M nN C C P X k C ---=,可得3357612C C C 表示的是3X =的取值概率. 故选:C. 5.D 【分析】根据题意,该问题符合超几何分布,利用超几何分布概率公式计算所取的3个球中没有1个红球的概率,进而可得答案. 【详解】根据题意,该问题符合超几何分布,其基本事件总数为310C , 其中所取的3个球中没有1个红球的基本事件为36C ,所求概率为36310C 1511C 66-=-=.故选:D. 6.C 【分析】由正态分布解得每个零件合格的概率为23,由对立事件得011121()()0.1333n n n n C C -⋅+⋅⋅<,即1(21)()0.13nn +⋅<,令1()(21)()(*)3n f n n n N =+⋅∈,由()f n 的单调性可解得结果.【详解】X 服从正态分布2(10,)N σ,且1(9)6P X <=, 2(911)3P X ∴≤≤=,即每个零件合格的概率为2.3合格零件不少于2件的对立事件是合格零件个数为零个或一个. 合格零件个数为零个或一个的概率为01111()()3323n n n n C C -⋅+⋅⋅, 由011121()()0.1333nn n n C C -⋅+⋅⋅<,得1(21)()0.13n n +⋅<, 令1()(21)()(*)3nf n n n N =+⋅∈,(1)231()63f n n f n n ++=<+,()f n ∴单调递减,又(5)0.1f <,(4)0.1f >, ∴不等式1(21)()0.13n n +⋅<的解集为{|5,*}.n nn N ∈n ∴的最小值为5.故选:C. 【点睛】关键点点睛:本题的关键点是:由对立事件得011121()()0.1333n n n n C C -⋅+⋅⋅<,即1(21)()0.13n n +⋅<.7.A 【分析】利用二项分布的期望公式和方差公式列方程组求解即可 【详解】解:因为随机变量~(,)B n p ξ,且()2E ξ=,8()5D ξ=, 所以28(1)5np np p =⎧⎪⎨-=⎪⎩,解得1015n p =⎧⎪⎨=⎪⎩,故选:A 8.D 【分析】根据数学期望值求出p ,再利用公式计算概率(2)P X =的值. 【详解】解:由随机变量~(4,)X B p , 且8()3E X =,即843np p ==,解得23p =; 2224228(2)()(1)3327P X C ∴==-=.故选:D . 9.67【分析】本题主要考查了超几何分步的概率计算,属于基础题.根据题意,X 的取值为0或1,代入超几何分布公式求出对应概率,再相加即可. 【详解】 解:由题意可得()305237C C 1020C 357P X ====,()215237C C 2041C 357P X ====,所以()()()246101777P X P X P X ≤==+==+=. 故答案为:67.10.1335【分析】由题知取得红球的个数为1,2,3,4,对应的黑球个数为3,2,1,0,进而根据超几何分布求概率即可. 【详解】解:由题知,取得红球的个数为1,2,3,4,对应的黑球个数为3,2,1,0,所以3144344713(9)35C C C P C ξ+≤== 故答案为:133511.316【分析】首先根据二项分布的概率公式求出(1)P X =,(0)P X =,再根据()()(1)01P X P X P X ≤==+=计算可得;【详解】解:因为随机变量X 服从二项分布1(5,)2B所以415115(1)12232P X C ⎛⎫==⋅-= ⎪⎝⎭,50511(0)1232P X C ⎛⎫==-= ⎪⎝⎭,所以()()153(1)01323216P X P X P X ≤==+==+= 故答案为:31612.1235【分析】设随机变量X 表示取出次品的个数,则X 服从超几何分布,其中15N =.2M =.3n =,根据超几何分布的概率计算公式直接求解即可. 【详解】设随机变量X 表示取出次品的个数,则X 服从超几何分布,其中15N =.2M =.3n =,它的可能的取值为0,1,2,相应的概率为1221331512(1)35C C P X C ⋅===. 故答案为:1235. 13.2或8 【分析】利用超几何分布概率公式计算即可. 【详解】根据题意,得1645=1110-210a aC C C ,解得a =2或a =8. 故答案为:2或8. 14.0.6 【分析】根据二项分布的概率性质计算求解. 【详解】12222(1)(1)(2)(1)0.64P X P X P X C p p C p ≥==+==-+=,解得0.4p =( 1.6p =舍去),(0)1(1)110.40.6P Y P Y p ==-==-=-=.故答案为:0.6.15.(1)答案见解析;(2)答案见解析. 【分析】(1)若采用无放回抽取,求取出的3个球中红球的个数X 服从超几何分布337310()k kC C P X k C -==,计算即可; (2)若采用有放回抽取,求取出的3个球中红球的个数Y 服从二项分布33()0.3(10.3)kk k P Y k C -==⨯⨯-,计算即可.【详解】解:(1)由题意知,随机变量X 的所有可能取值为0,1,2,3, 且X 服从参数为10N =,3M =,3n =的超几何分布,因此337310()k kC C P X k C -==,0,1,2,3k =, 所以03373107(0)24C C P X C ===,123731021(1)40C C P X C ===,21373107(2)40C C P X C ===,30373101(3)120C C P X C ===;所以X 的分布列为:(2)随机变量Y 的所有可能取值为0,1,2,3,且()~3,0.3Y B ,所以0033(0)0.3(10.3)0.343P Y C ==⨯⨯-=,1123(1)0.3(10.3)0.441P Y C ==⨯⨯-=,223(2)0.3(10.3)0.189P Y C ==⨯⨯-=,3303(3)0.3(10.3)0.027P Y C ==⨯⨯-=,所以Y 的分布列为:16.(1)两人为平局;(2)分布列见解析;期望为52;(3)38.【分析】(1)分别计算两者出现的概率,通过比较大小,即可求解;(2)由题意可得,X 的所有可能取值为0,1,2,3,4,5,分别求出对应的概率,即可得X 的分布列,并结合期望公式,即可求解;(3)由(2)知,小林投掷5次出现2次正面朝上的概率为516,故小明要赢,必须在投掷5次中出现0,1,4,5次正面朝上,将对应的概率求和,即可求解. 【详解】解:(1)结论:两人为平局 小明11111112222232P =⨯⨯⨯⨯= 小林211111112222232P P =⨯⨯⨯⨯==(2)由题知:0,1,2,3,4,5X =()0505111=02232P X C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()1415115=12232P X C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()232511105=2223216P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()323511105=3223216P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()4145115=42232P X C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()5055111=52232P X C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()1555515012+3453232161632322E X =⨯+⨯+⨯⨯+⨯+⨯=(3)由(2)知,小林投掷5次出现2次正面朝上的概率516, 故小明要赢,必须在投掷5次中出现0、1、4、5次正面朝上, 即小明赢的概率15513+++=323232328P = 17.(1)12125;(2)分布列见解析,45.【分析】(1)设从这100个水果中随机抽取1个,其为礼品果的事件为A ,求出()P A ,抽到礼品果的个数1~3,5X B ⎛⎫⎪⎝⎭,由概率公式()2P X =可得答案;(2)用分层抽样得到精品果和非精品果个数,精品果的数量()~10,2,4X H ,所有可能的取值为0,1,2,计算出相应的概率可得答案. 【详解】(1)设从这100个水果中随机抽取1个,其为礼品果的事件为A ,则()2011005P A ==, 现有放回地随机抽取3个,设抽到礼品果的个数为X ,则1~3,5X B ⎛⎫⎪⎝⎭,∴恰好有2个水果是礼品果的概率为()2231412255125P X C ⎛⎫===⎪⎝⎭. (2)用分层抽样的方法从这100个水果中抽取10个,其中精品果有4个, 非精品果有6个,再从中随机抽取2个,则精品果的数量()~10,2,4X H , 所有可能的取值为0,1,2,则()26210103C P X C ===,()11642108115C C P X C ===,()242102215C P X C ===.∴X 的分布列为所以,()424105E X ⨯==. 18.(Ⅰ)分布列见解析,5.6;(Ⅱ)()1 2.2E ξ=,()2 1.8E ξ=. 【分析】(Ⅰ)利用二项分布的概率公式,求出概率,列出分布列,由数学期望的计算公式求解即可; (Ⅱ) 先求出随机变量1ξ的可能取值,然后求出其对应的概率,由数学期望的计算公式求解()1E ξ,再利用()1E ξ与()2E ξ之间的关系求解()2E ξ即可. 【详解】解:(Ⅰ)()()443280,1,2,3,455k kk P k C k ξ-⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭,所以ξ的分布列为:()8121621696162845678 5.66256256256256255E ξ=⨯+⨯+⨯+⨯+⨯== (或()3288455E ξ=-⨯=)(Ⅱ)()223412255189110050C C P C C ξ⋅====⋅; ()211112314324122554812210025C C C C C C P C C ξ⋅+⋅====⋅;()221111343214122556243310010C C C C C C P C C ξ⋅+⋅+====⋅;()2112141225541410025C C C P C C ξ⋅====⋅;()191231111234 2.2502510255E ξ=⋅+⋅+⋅+⋅==, ()()214 1.8E E ξξ=-=.19.(1)答案见解析;(2)95144;(3)答案见解析. 【分析】(1)X 的取值范围为{}0,1,2,3,再依次求出对应的概率,从而可得X 的分布列和数学期望;(2)设“第i 盘游戏获得15分”为事件()1,2i A i =,则由(1)可得()()12(1)(2)P A P A P X P X ===+=,所以可求出所求概率()()121P A P A -;(3)设每盘游戏得分为Y ,则Y 的取值范围为{}12,15,120-,结合(1)可得Y 的分布列,从而可求出Y 的期望,当期望为负时,说明分数在减少 【详解】解:(1)X 的取值范围为{}0,1,2,3,每次抛掷骰子,出现“6点”的概率为16p =,1(3,)6X B ~,3031125(0)16216P X C ⎛⎫==-= ⎪⎝⎭,2131175(1)166216P X C ⎛⎫==⋅-=⎪⎝⎭, 2231115(2)166216P X C ⎛⎫⎛⎫==⋅-= ⎪⎪⎝⎭⎝⎭,33311(3)6216P X C ⎛⎫=== ⎪⎝⎭, 所以X 的分布列为:所以12525511()012321672722162E X =⨯+⨯+⨯+⨯=. (2)设“第i 盘游戏获得15分”为事件()1,2i A i =,则 ()()12905(1)(2)21612P A P A P X P X ===+===. 所以“两盘游戏中至少有一次获得15分”的概率为 ()()12951144P A P A -=, 因此,玩两盘游戏至少有一次获得15分的概率为95144. (3)设每盘游戏得分为Y ,则Y 的取值范围为{}12,15,120-, 由(1)知,Y 的分布列为:Y 的数学期望为12551512151202161221636EY =-⨯+⨯+⨯=-. 这表明,获得分数Y 的期望为负.因此,多次游戏之后分数减少的可能性更大. 20.(1)见解析(2)见解析 【分析】(1)由1~5,3B ξ⎛⎫⎪⎝⎭,求出这名学生在途中遇到红灯的次数ξ的分布列;(2)求出η的可能取值,再求出对应的概率,进而得出分布列. 【详解】(1)1~5,3B ξ⎛⎫ ⎪⎝⎭,ξ的分布列为5512()C ,0,1,2,3,4,533k kk P k k ξ-⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭故ξ的分布列为(2)η的分布列为()P k P η==(前k 个是绿灯,第1k +个是红灯)21,0,1,2,3,433kk ⎛⎫=⋅= ⎪⎝⎭ (5)P P η==(5个均为绿灯)523⎛⎫= ⎪⎝⎭故η的分布列为。

2010-2019高考数学真题分类汇编第36讲二项分布及其应用、正态分布

2010-2019高考数学真题分类汇编第36讲二项分布及其应用、正态分布

专题十一 概率与统计第三十六讲二项分布及其应用、正态分布一、选择题1.(2015湖北)设211(,)XN μσ,222(,)Y N μσ,这两个正态分布密度曲线如图所示.下列结论中正确的是A .21()()P Y P Y μμ≥≥≥B .21()()P X P X σσ≤≤≤C .对任意正数t ,()()P X t P Y t ≤≥≤D .对任意正数t ,()()P X t P Y t ≥≥≥2.(2015山东)已知某批零件的长度误差(单位:毫米)服从正态分布2(0,3)N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为(附:若随机变量ξ服从正态分布2(,)N μσ,则()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=)A .4.56%B .13.59%C .27.18%D .31.74%3.(2014新课标2)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是A .0.8B .0.75C .0.6D .0.45 4.(2011湖北)已知随机变量ξ服从正态分布()2,2σN ,且()8.04=<ξP ,则()=<<20ξPA .6.0B .4.0C .3.0D .2.0二、填空题5.(2017新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,表示抽到的二等品件数,则DX = .6.(2016四川)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是 .7.(2015广东)已知随机变量X 服从二项分布(),n p B ,若()30E X =,()20D X =,则p = .8.(2012新课标)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作。

高考专题复习 二项分布(解析版)

高考专题复习   二项分布(解析版)

(3)由题意,得 ~
,从而

; 所以 的分布列为
X
0
1
P
: .
2
3


.
考向三 超几何分布与二项分布区分
【例 3】某地区为调查新生婴儿健康状况,随机抽取 6 名 8 个月龄婴儿称量体重(单位:千克),称量结果 分别为 6,8,9,9,9.5,10.已知 8 个月龄婴儿体重超过 7.2 千克,不超过 9.8 千克为“标准体重”,否 则为“不标准体重”.
(1)根据样本估计总体思想,将频率视为概率,若从该地区全部 8 个月龄婴儿中任取 3 名进行称重,则至少 有 2 名婴儿为“标准体重”的概率是多少?
(2)从抽取的 6 名婴儿中,随机选取 4 名,设 X 表示抽到的“标准体重”人数,求 X 的分布列和数学期望.
【答案】(1) P( A) 20 (2)见解析 27
(Ⅰ)用该实验来估测小球落入 4 号容器的概率,若估测结果的误差小于 ,则称该实验是成功的.试问:
该兴趣小组进行的实验是否成功?(误差

(Ⅱ)再取 3 个小球进行试验,设其中落入 4 号容器的小球个数为 ,求 的分布列与数学期望.(计算时采 用概率的理论值)
【答案】(Ⅰ)是成功的;(Ⅱ)详见解析.
(1)在被调查的驾驶员中,从平均车速不超过 100 km/h 的人中随机抽取 2 人,求这 2 人恰好有 1 名男性驾 驶员和 1 名女性驾驶员的概率;
(2)以上述样本数据估计总体,从高速公路上行驶的家用轿车中随机抽取 3 辆,记这 3 辆车平均车速超过 100
km/h 且为男性驾驶员的车辆为 X,求 X 的概率分布.
a
考向二 二项分布
【例 2】为研究家用轿车在高速公路上的车速情况,交通部门随机选取 100 名家用轿车驾驶员进行调查,得 到其在高速公路上行驶时的平均车速情况为:在 55 名男性驾驶员中,平均车速超过 100 km/h 的有 40 人, 不超过 100 km/h 的有 15 人;在 45 名女性驾驶员中,平均车速超过 100 km/h 的有 20 人,不超过 100 km/h 的有 25 人.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二项分布练习题目:
1.某人射击一次击中目标的概率为0.6,经过3次射击,此人恰有两次击中目标的概率为
2.加工某种零件需经过三道工序。

设第一、二、三道工序的合格率分别为10
9、9
8、8
7,且各道工序互不影响。

(1) 求该种零件的合格率;
(2) 从该种零件中任取3件,求恰好取到一件合格品的概率和至少取到一件合格品的概率。

(Ⅰ)解:9877
109810
P =
⨯⨯=; (Ⅱ)解法一: 该种零件的合格品率为10
7,由独立重复试验的概率公式得:
恰好取到一件合格品的概率为 12
373()0.1891010C ⋅
⋅=,
至少取到一件合格品的概率为 .973.0)10
3
(13=- 解法二:
恰好取到一件合格品的概率为12373()0.1891010
C ⋅⋅=,
至少取到一件合格品的概率为
1
22233
33373737()()()0.973.1010101010
C C C ⋅
⋅+⋅+= 3. 9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种。

(Ⅰ)求甲坑不需要补种的概率;
(Ⅱ)求3个坑中恰有1个坑不需要补种的概率; (Ⅲ)求有坑需要补种的概率。

(Ⅰ)解:因为甲坑内的3粒种子都不发芽的概率为
8
1)5.01(3=-,所以甲坑不需要补种的概率为 .875.08
7
8
11==-
(Ⅱ)解:3个坑恰有一个坑不需要补种的概率为
.041.0)8
1(8
721
3=⨯⨯C
(Ⅲ)解法一:因为3个坑都不需要补种的概率为3)8
7(,
所以有坑需要补种的概率为 .330.0)8
7(13=-
解法二:3个坑中恰有1个坑需要补种的概率为
,287.0)8
7(8
121
3=⨯⨯C
恰有2个坑需要补种的概率为 ,041.087
)81(223=⨯⨯C
3个坑都需要补种的概率为
.002.0)8
7()81(033
3=⨯⨯C
4.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13
,遇到红
灯时停留的时间都是2min.
(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间x 的分布列.
(Ⅰ)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A ,因为事件A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事
件A 的概率为()111
4
11333
27
P A ⎛⎫⎛⎫=-⨯-⨯=
⎪ ⎪⎝
⎭⎝
⎭.
(Ⅱ)由题意,可得ξ可能取的值为0,2,4,6,8(单位:min ).
事件“2k ξ=”等价于事件“该学生在路上遇到k 次红灯”(k =0,1,2,3,4),
∴()()441220,1,2,3,433k
k
k P k C k ξ-⎛⎫⎛⎫
=== ⎪ ⎪
⎝⎭⎝⎭

∴即ξ的分布列是
2
4
6
8
5.某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为23
和12
,且各株大树是
否成活互不影响.求移栽的4株大树中:
(Ⅰ)两种大树各成活1株的概率; (Ⅱ)成活的株数ξ的分布列及期望值。

解:设k A 表示甲种大树成活k 株,k =0,1,2
l B 表示乙种大树成活
l 株,l =0,1,2
则k A ,l B 独立. 由独立重复试验中事件发生的概率公式有
2221
()()()33
k k k k P A C -=
, 2211
()()()22
l l l l P B C -=
.
据此算得 01()9P A =
, 14()9P A =
, 24()9P A =
.
01
()4P B =
,
11
()2P B =
,
21
()4P B =
.
(Ⅰ) 所求概率为
2111412
()()()929
P A B P A P B •=•=⨯=
.
(Ⅱ) 解法一:
ξ的所有可能值为
0,1,2,3,4,且
0000111
(0)()()()9436P P A B P A P B ξ==•=•=⨯= ,
011011411
(1)()()92946
P P A B P A B ξ==•+•=⨯+⨯= ,
021*********(2)()()()949294P P A B P A B P A B ξ==•+•+•=⨯+⨯+⨯=13
36
,
122141411
(3)()()94923
P P A B P A B ξ==•+•=⨯+⨯= .
22411
(4)()949
P P A B ξ==•=⨯= .
综上知ξ有分布列
从而,ξ的期望为
7
3
=
(株) 解法二:分布列的求法同上
令12ξξ,分别表示甲乙两种树成活的株数,则 故有121E E ξξ⨯=⨯=241=2=,233
2
从而知1273
E E E ξξξ=+=。

相关文档
最新文档