信号与系统matlab实验3连续时间LTI分析报告
MATLAB与信号实验 —— 连续LTI系统的频域分析

上机实验3 连续LTI 系统的频域分析一.实验目的(1).掌握连续时间信号傅立叶变换和傅立叶逆变换的实现方法,以及傅立叶变换的时移特性,傅立叶变换的频移特性的实现方法;(2).了解傅立叶变换的频移特性及其应用;(3).掌握函数fourier 和函数ifourier 的调用格式及作用;(4).掌握傅立叶变换的数值计算方法,以及绘制信号频谱图的方法。
二.实验原理1.系统的频率特性连续LTI 系统的频率特性又称频率响应特性,是指系统在正弦信号激励下的稳态响应随频率变化的情况,又称系统函数()ωH 。
对于一个零状态的线性系统,如图2.3-1所示。
其系统函数()ωH 定义为)()()(ωωωj X j Y j H =式中,()ωX 为系统激励信号的傅里叶变换,()ωY 为系统在零状态条件下输出响应的傅里叶变换。
系统函数()ωH 反映了系统内在的固有特性,它取决于系统自身的结构及组成系统元器件的参数,与外部激励无关,是描述系统特性的一个重要参数。
()ωH 是ω的复函数,可以表示为()ωH =()ωH ()e j ωϕ。
其中,()ωH 随ω变化的规律称为系统的幅频特性:()ωϕ随ω变化的规律称为系统的相频特性。
频率特性不仅可用函数表达式表示,还可以随频率f 变化的曲线来表示。
当频率特性曲线采用对数坐标时,又称为波特图。
)(ωj X )(ωj2.连续时间信号傅里叶变换的数值计算方法算法理论依据:()ττωτωω∑⎰∞∞---∞+∞-==e e n j t j n f dt t f j F )(lim )((2.2-1)当)(t f 为时限信号时,或和近似的看做时限信号时,式(2-1)中的n 取值可认作是有限的,设为N ,则可得()()e n j N n kn f k F τωττ--=∑=10,0<=k<=N (2.2-2) 式(2.2-2)中k N k τπω2=。
编程中需要注意的是:要正确生成信号)(t f 的N 个样本)(τn f 的向量及向量e n j kτω-。
MATLAB与信号实验——连续LTI系统的时域分析

MATLAB与信号实验——连续LTI系统的时域分析连续LTI系统的时域分析是信号与系统学中的重要课题。
MATLAB作为一种强大的科学计算软件,提供了丰富的工具和函数来进行信号与系统的分析。
下面将介绍MATLAB在连续LTI系统时域分析中的应用。
首先,我们需要了解连续LTI系统的基本概念。
一个连续域线性时不变系统(LTI系统)可以由它的冲激响应完全描述。
冲激响应是系统对单位冲激信号的响应。
在MATLAB中,可以使用impulse函数来生成单位冲激信号。
假设我们有一个连续LTI系统的冲激响应h(t),我们可以使用conv 函数来计算系统对任意输入信号x(t)的响应y(t)。
conv函数实现了卷积运算,可以将输入信号与冲激响应进行卷积运算得到输出信号。
例如,我们假设一个连续LTI系统的冲激响应为h(t) = exp(-t)u(t),其中u(t)是单位阶跃函数。
我们可以使用以下代码生成输入信号x(t)和计算输出信号y(t):```matlabt=-10:0.1:10;%时间范围x = sin(t); % 输入信号h = exp(-t).*heaviside(t); % 冲激响应y = conv(x, h, 'same'); % 计算输出信号```这段代码首先定义了时间范围t,然后定义了输入信号x(t)和冲激响应h(t)。
接下来,使用conv函数计算输入信号和冲激响应的卷积,设置参数’same’表示输出信号与输入信号长度相同。
最后,得到了输出信号y(t)。
在得到输出信号后,我们可以使用MATLAB的绘图功能来可视化结果。
例如,使用以下代码可以绘制输入信号和输出信号的图像:```matlabfigure;plot(t, x, 'b', 'LineWidth', 2); % 绘制输入信号hold on;plot(t, y, 'r', 'LineWidth', 2); % 绘制输出信号xlabel('时间');ylabel('幅度');legend('输入信号', '输出信号');```除了卷积运算外,MATLAB还提供了许多其他函数来进行连续LTI系统的时域分析。
Matlab讲义实验报告连续时间信号的分析

连续时间信号的分析一、实验目的1.学习使用MATLAB 产生基本的连续信号、绘制信号波形。
2.实现信号的基本运算,为信号分析和系统设计奠定基础。
二、实验原理 1、基本信号的产生 时间间隔代替连续信号。
连续指数信号的产生连续矩形脉冲信号(门信号)的产生。
连续周期矩形波信号的产生。
2、信号的基本运算相加、相减、相乘、平移、反折、尺度变换。
三、实验内容1. 用MATLAB 编程产生正弦信号()sin(2),2,5Hz,3f t K ft K f ππθθ=+===,并画图。
代码如下: clc clear f0=5; w0=2*pi*f0; t=0:0.001:1; x=2*sin(w0*t+pi/3); plot(t,x) title('正弦信号')正弦信号2. 用MATLAB 编程产生信号122()0t f t -<<⎧=⎨⎩其它,画出波形。
代码如下:clc clear f0=2;t=0:0.0001:2.5; y=square(w0*t,50); plot(t,y);axis([0 2.5 -1.5 1.5]) title('周期方波');图形如下:单位阶跃信号3. 分别画出2中()f t 移位3个单位的信号(3)f t -、反折后的信号()f t -、尺度变换后的信号(3)f t 。
代码如下:clc cleart=-10:0.001:10; subplot(3,1,1) plot(t,f(t-3)) axis([-7 7 -2 2]) xlabel('t') ylabel('f(t-3)') title('移位') grid on subplot(3,1,2) plot(t,f(-t)) axis([-7 7 -2 2]) xlabel('t') ylabel('f(-t)') title('反折') grid on subplot(3,1,3) plot(t,f(3*t)) axis([-7 7 -2 2]) xlabel('t') ylabel('f(3t)') title('尺度变换') grid on 图形如下:xf (t )xf (t -3)xf (-t )xf (3*t )4. 用MATLAB编程画出下图描述的函数。
信号实验报告 2

信号与系统实验报告实验一信号与系统的时域分析一、实验目的1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、学会用MA TLAB进行信号基本运算的方法;3、掌握连续时间和离散时间信号的MA TLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MATLAB编程。
二、实验内容Q1-1:修改程序Program1_1,将dt改为0.2,再执行该程序,保存图形,看看所得图形的效果如何?dt = 0.01时的程序clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.01; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = sin(2*pi*t); % Generate the signalplot(t,x) % Open a figure window and draw the plot of x(t)title('Sinusoidal signal x(t)')xlabel('Time t (sec)')dt = 0.2时的程序clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.2; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = sin(2*pi*t); % Generate the signalplot(t,x) % Open a figure window and draw the plot of x(t)title('Sinusoidal signal x(t)')xlabel('Time t (sec)')dt = 0.01时的信号波形dt = 0.2时的信号波形这两幅图形有什么区别,哪一幅图形看起来与实际信号波形更像?答:dt = 0.01的图形比dt = 0.2的图形光滑,dt = 0.01看起来与实际信号波形更像。
MATLAB与信号实验——连续LTI系统的时域分析

MATLAB与信号实验-——-连续LTI系统的时域分析在信号处理中,MATLAB是一个强大的工具,它提供了许多功能,使我们能够模拟和分析各种信号系统。
对于连续LTI系统,时域分析是一个重要的方法,它允许我们直接观察系统的输入和输出信号之间的关系。
下面是一个关于连续LTI系统的时域分析的实验。
一、实验目的本实验的目的是验证连续LTI系统的时域响应,通过使用MATLAB模拟系统,我们可以观察到不同的输入信号产生的输出信号,从而了解系统的特性。
二、实验步骤1.定义系统:首先,我们需要定义我们的连续LTI系统。
这可以通过使用MATLAB中的lti函数来完成。
我们需要提供系统的传递函数,它描述了系统的输入和输出之间的关系。
2.设置输入信号:为了观察系统的行为,我们需要设置一个合适的输入信号。
在MATLAB中,我们可以使用square函数来生成一个方波信号,该信号具有固定的频率和幅度。
3.模拟系统:使用MATLAB的lsim函数,我们可以模拟我们的连续LTI系统。
这个函数将输入信号和系统的传递函数作为参数,然后计算出系统的输出信号。
4.分析结果:我们可以使用MATLAB的图形功能来观察输入和输出信号。
这可以帮助我们理解系统的行为,并验证我们的模型是否正确。
三、实验结果与分析在实验中,我们使用了不同的输入信号(如方波、正弦波等)来测试我们的连续LTI系统。
对于每种输入信号,我们都观察了系统的输出信号,并记录了结果。
通过对比不同的输入和输出信号,我们可以得出以下结论:1.对于方波输入,系统的输出信号是带有延迟的方波,这表明系统对突变信号的响应是瞬时的。
2.对于正弦波输入,系统的输出信号是与输入信号同频同相位的正弦波,这表明系统对正弦波的响应是具有稳定性的。
这些结果验证了连续LTI系统的基本特性:即对于单位阶跃函数(突变信号)的输入,系统的响应是瞬时的;而对于周期性输入(如正弦波),系统的响应具有稳定性。
这些结果与我们在理论上学到的知识相符,从而验证了我们的模型是正确的。
《MATLAB》连续时间信号的频域分析和连续时间系统的时域分析实验报告

《MATLAB 》连续时间信号的频域分析和连续时间系统的时域分析实验报告1、编写程序Q3_1,绘制下面的信号的波形图:其中,ω0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos(ω0t)、cos(3ω0t)、cos(5ω0t) 和x(t) 的波形图,给图形加title ,网格线和x 坐标标签,并且程序能够接受从键盘输入式中的项数n。
2、给程序例3_1增加适当的语句,并以Q3_2存盘,使之能够计算例题3-1中的周期方波信号的傅里叶级数的系数,并绘制出信号的幅度谱和相位谱的谱线图。
-+-=)5cos(51)3cos(31)cos()(000t t t t x ωωω∑∞==10)cos()2sin(1n t n n nωπ3.3反复执行程序例3_2,每次执行该程序时,输入不同的N值,并观察所合成的周期方波信号。
通过观察,你了解的吉布斯现象的特点是什么?3.4分别手工计算x1(t) 和x2(t) 的傅里叶级数的系数。
1.利用MATLAB 求齐次微分方程,,起始条件为,,时系统的零输入响应、零状态响应和全响应。
2. 已知某LTI 系统的方程为:其中,。
利用MATLAB 绘出范围内系统零状态响应的波形图。
3.已知系统的微分方程如下,利用MATLAB 求系统冲激响应和阶跃响应的数值解,并绘出其时域波形图。
(1)'''()2''()'()'()y t y t y t x t ++=()()t x t e u t -=(0)1y -='(0)1y -=''(0)2y -=''()5'()6()6()y t y t y t x t ++=()10sin(2)()x t t u t π=05t ≤≤''()3'()2()()y t y t y t x t ++=(2)''()2'()2()'()y t y t y t x t ++=。
实验三连续时间LTI系统的时域分析报告
实验三 连续时间LTI 系统的时域分析一、实验目的1.学会用MATLAB 求解连续系统的零状态响应; 2. 学会用MATLAB 求解冲激响应及阶跃响应; 3.学会用MATLAB 实现连续信号卷积的方法;二、实验原理1.连续时间系统零状态响应的数值计算我们知道,LTI 连续系统可用如下所示的线性常系数微分方程来描述,()()0()()NMi j i j i j a yt b f t ===∑∑在MATLAB 中,控制系统工具箱提供了一个用于求解零初始条件微分方程数值解的函数lsim 。
其调用格式y=lsim(sys,f,t)式中,t 表示计算系统响应的抽样点向量,f 是系统输入信号向量,sys 是LTI 系统模型,用来表示微分方程,差分方程或状态方程。
其调用格式sys=tf(b,a)式中,b 和a 分别是微分方程的右端和左端系数向量。
例如,对于以下方程:''''''''''''32103210()()()()()()()()a y t a y t a y t a y t b f t b f t b f t b f t +++=+++可用32103210[,,,];[,,,];a a a a a b b b b b == (,)sys tf b a = 获得其LTI 模型。
注意,如果微分方程的左端或右端表达式中有缺项,则其向量a 或b 中的对应元素应为零,不能省略不写,否则出错。
例3-1 已知某LTI 系统的微分方程为 y’’(t)+ 2y’(t)+100y(t)=f(t)其中,'(0)(0)0,()10sin(2)y y f t t π===,求系统的输出y(t). 解:显然,这是一个求系统零状态响应的问题。
其MATLAB 计算程序如下: ts=0;te=5;dt=0.01; sys=tf([1],[1,2,100]); t=ts:dt:te; f=10*sin(2*pi*t); y=lsim(sys,f,t); plot(t,y);xlabel('Time(sec)'); ylabel('y(t)');2.连续时间系统冲激响应和阶跃响应的求解在MATLAB 中,对于连续LTI 系统的冲激响应和阶跃响应,可分别用控制系统工具箱提供的函数impluse 和step 来求解。
信号与系统实验报告——连续LTI系统
实验二 连续LTI 系统目的学习利用lsim 求解连续LTI 系统。
相关知识MATLAB 函数lsim函数lsim 能用于如下微分方程表征的连续时间因果LTI 系统的输出进行仿真∑∑===Mm mmmNk kkkdtt x dbdtt y da)()( (2.1)为了利用lsim ,系数k a 和m b 必须被存入MATLAB 的向量a 和b 中,并且序号在k 和m 上以降次存入。
将(2.1)式用向量a 和b 重新写成∑∑==-+=-+Mm mmNk kkdtt x dm Mb dtt y dk N a 0)()1()()1( (2.2)向量a 必须包含N+1个元素,可以用对a 补零的办法来处理系数k a 为零的那些系数。
向量b 也必须包含M+1个元素。
然后执行 >> y=lsim(b,a,x,t);就可仿真出由向量x 和t 所给出的输入信号时,(2.1)式所描述的系统的响应。
例:由下列一阶微分方程所描述的因果LTI 系统:)()(21)(t x t y dtt dy +-= (2.3)该系统的单位阶跃响应可仿真计算如下: >> t=[0:10];>> x=ones(1,length(t)); >> b=1;>> a=[1 0.5];>> y=lsim(b,a,x,t);>> plot(t,y);其响应为:图中真正代表的阶跃响应为)()eut y t-)(t1(2=(2.4)-impluse和step可以用于计算连续LTI系统的单位冲激和单位阶跃响应。
如上例,可执行>> t=[0:10];>> b=1;>> a=[1 0.5];>> s=step(b,a,t);>> h=impulse(b,a,t);将会分别在s和h中得到单位阶跃和单位冲激响应。
基本题1.利用lsim 计算由下面微分方程描述的因果LTI 系统,对输入)2()(-=t u t x 的响应,并作图。
matlab 信号分析实验报告
matlab 信号分析实验报告Matlab 信号分析实验报告引言:信号分析是一项重要的工程技术,广泛应用于通信、图像处理、音频处理等领域。
在本次实验中,我们使用Matlab软件进行信号分析实验,通过对实验数据的处理和分析,探索信号的特性和应用。
一、实验目的本次实验的目的是通过Matlab软件对信号进行分析,掌握信号处理的基本方法和技巧。
具体包括信号的采样、重构、频谱分析、滤波等内容。
二、实验步骤1. 信号采样和重构首先,我们选择了一个连续信号,并通过采样将其转换为离散信号。
在Matlab 中,我们可以使用“sample”函数来实现信号的采样。
采样频率的选择对信号重构的质量有着重要影响,我们需要根据信号的频率特性和采样定理来确定合适的采样频率。
2. 信号频谱分析信号的频谱分析是了解信号频率特性的重要手段。
在Matlab中,我们可以使用“fft”函数对信号进行快速傅里叶变换,得到信号的频谱图。
通过观察频谱图,我们可以了解信号的频率成分以及是否存在噪声等干扰。
3. 信号滤波信号滤波是信号处理的一项重要技术,可以去除信号中的噪声和干扰,提高信号的质量。
在Matlab中,我们可以使用不同的滤波器设计方法,如FIR滤波器和IIR滤波器。
根据信号的特性和需求,选择合适的滤波器类型和参数,并将其应用于信号上,观察滤波效果。
三、实验结果与分析我们选择了一个正弦信号作为实验对象,通过Matlab进行信号采样和重构后,得到了离散信号。
通过对离散信号进行频谱分析,我们得到了信号的频谱图。
从频谱图中可以看出,信号主要集中在一个频率上,没有明显的噪声和干扰。
接下来,我们对信号进行滤波处理。
使用FIR滤波器对信号进行滤波,观察滤波效果。
经过滤波后,信号的频谱图发生了变化,主要频率成分得到了保留,同时噪声和干扰被有效地去除。
这表明滤波器的设计和应用对信号处理起到了积极的作用。
四、实验总结通过本次实验,我们深入了解了信号分析的基本方法和技巧,并通过Matlab软件进行了实际操作。
信号与系统matlab实验3连续时间LTI分析报告
实验三连续时间LTI系统分析姓名学号班级通信一班一、实验目的(一)掌握使用Matlab进行连续系统时域分析的方法1、学会使用符号法求解连续系统的零输入响应和零状态响应2、学会使用数值法求解连续系统的零状态响应3、学会求解连续系统的冲激响应和阶跃响应(二)掌握使用Matlab进行连续时间LTI系统的频率特性及频域分析方法1、学会运用MATLAB分析连续系统地频率特性2、学会运用MATLAB进行连续系统的频域分析(三)掌握使用Matlab进行连续时间LTI系统s域分析的方法1、学会运用MATLAB求拉普拉斯变换(LT)2、学会运用MATLAB求拉普拉斯反变换(ILT)3、学会在MATLAB环境下进行连续时间LTI系统s域分析二、实验原理及实例分析(一)连续系统时域分析(详细请参见实验指导第二部分的第5章相关部分)(二)连续时间LTI系统的频率特性及频域分析(详细请参见实验指导第二部分的第8章相关部分)(三)拉普拉斯变换及连续时间系统的s域分析(详细请参见实验指导第二部分的第10、11章相关部分)三、实验过程(一)熟悉三部分相关内容原理(二)完成作业已知某系统的微分方程如下:)(3)()(2)(3)(t e t e t r t r t r +'=+'+''其中,)(t e 为激励,)(t r 为响应。
1、用MATLAB 命令求出并画出2)0(,1)0(),()(3='==---r r t u e t e t 时系统的零状态响应和零输入响应(零状态响应分别使用符号法和数值法求解,零输入响应只使用符号法求解);>> eq='D2y+3*Dy+2*y=0';>> cond='y(0)=1,Dy(0)=2';>> yzi = dsolve(eq,cond);yzi = simplify(yzi);>> eq1 = 'D2y+3*Dy+2*y=Dx+3*x';eq2 = 'x= exp(-3*t)*Heaviside(t)';cond = 'y(-0.01)=0,Dy(-0.001)=0';yzs = dsolve(eq1,eq2,cond);yzs = simplify(yzs.y)yzs =heaviside(t)*(-exp(-2*t)+exp(-t))>> yt = simplify(yzi+yzs)yt =-3*exp(-2*t)+4*exp(-t)-exp(-2*t)*heaviside(t)+exp(-t)*heaviside(t)>> subplot(3,1,1);>> ezplot(yzi,[0,8]);grid on;>> title ('rzi');>> subplot(3,1,2);>> ezplot(yzs,[0,8]);>> grid on;>> title('rzs');>> subplot(3,1,3);>> ezplot(yt,[0,8]);grid on;>> title('完全响应')sys = tf([1,3],[1,3,2]);t = ts:dt:te;f = exp(-3*t).*uCT(t);y = lsim(sys,f,t);plot(t,y),grid on;axis([0,8,-0.02,0.27]);xlable('Time(sec)'),ylable('y(t)'); title('零状态响应')2、)(3)()(2)(3)(t e t e t r t r t r +'=+'+''2)0(,1)0(),()(3='==---r r t u e t e t使用MATLAB 命令求出并画出系统的冲激响应和阶跃响应(数值法);用卷积积分法求系统的零状态响应并与(1)中结果进行比较;t = 0:0.001:4;sys = tf([1,3],[1,3,2]);h = impulse(sys,t);g = step(sys,t);subplot(2,1,1);plot(t,h),grid on;xlable('Time(sec)'),ylable('h(t)');title('冲激响应');subplot(2,1,2);plot(t,g),grid on;xlable('Time(sec)'),ylable('g(t)');title ('阶跃响应')_dt = 0.01;t1 = 0:dt:8;f1=exp(-3*t1);t2 = t1;sys = tf([1,3],[1,3,2]);f2 = impulse(sys,t2);[t,f]= ctsconv(f1,f2,t1,t2,dt)function[f,t] = ctsconv(f1,f2,t1,t2,dt)f = conv(f1,f2);f = f*dt;ts = min(t1)+min(t2);te = max(t1)+max(t2);t = ts:dt:te;subplot(1,1,1)plot(t,f);grid on;axis([min(t),max(t),min(f)-abs(min(f)*0.2),max(f)+abs(max(f)*0.2)]); title('卷积结果')3、)(3)()(2)(3)(t e t e t r t r t r +'=+'+''使用MATLAB 命令求出并画出此系统的幅频特性和相频特性;使用频域分析法求解系统的零状态响应并与(1)中结果进行比较;>> w = -3*pi:0.01:3*pi;b = [1,3];a = [1,3,2];H = freqs(b,a,w);subplot(2,1,1);plot(w,abs(H)),grid on;xlabel('\omega(rad/s)'),ylabel('|H(\omega)|');title ('H(w)的幅频特性');subplot(2,1,2);plot(w,angle(H)),grid on;xlabel('\omega(rad/s)'),ylabel('\phi(\omega)');title('H(w)的相频特性')H = sym('1/(i^2*w^2+3*i*w+2)'); H= simplify(ifourier(H)); subplot(3,1,1);ezplot(H,[0,8]),grid on;title('零状态响应')4、)(3)()(2)(3)(t e t e t r t r t r +'=+'+''使用MATLAB 命令求出并画出t t e 2cos )(=时系统的稳态响应;t = 0:0.1:20;w = 2;H = (j*w+3)/(j^2*w^2+3*j*w+2);f = cos(2*t);y = abs(H)*cos(w*t+angle(H));subplot(2,1,1);plot(t,f);grid on;ylabel('f(t)'),xlabel('Time(s)');title('输入信号的波形');subplot(2,1,2);plot(t,y);grid on;ylabel('y(t)'),xlabel('Time(sec)');title('稳态响应的波形')5、)(3)()(2)(3)(t e t e t r t r t r +'=+'+''若已知条件同(1),借助MATLAB 符号数学工具箱实现拉普拉斯正反变换的方法求出并画出2)0(,1)0(),()(3='==---r r t u e t e t 时系统的零状态响应和零输入响应,并与(1)的结果进行比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三连续时间LTI系统分析姓名学号班级通信一班一、实验目的(一)掌握使用Matlab进行连续系统时域分析的方法1、学会使用符号法求解连续系统的零输入响应和零状态响应2、学会使用数值法求解连续系统的零状态响应3、学会求解连续系统的冲激响应和阶跃响应(二)掌握使用Matlab进行连续时间LTI系统的频率特性及频域分析方法1、学会运用MATLAB分析连续系统地频率特性2、学会运用MATLAB进行连续系统的频域分析(三)掌握使用Matlab进行连续时间LTI系统s域分析的方法1、学会运用MATLAB求拉普拉斯变换(LT)2、学会运用MATLAB求拉普拉斯反变换(ILT)3、学会在MATLAB环境下进行连续时间LTI系统s域分析二、实验原理及实例分析(一)连续系统时域分析(详细请参见实验指导第二部分的第5章相关部分)(二)连续时间LTI系统的频率特性及频域分析(详细请参见实验指导第二部分的第8章相关部分)(三)拉普拉斯变换及连续时间系统的s域分析(详细请参见实验指导第二部分的第10、11章相关部分)三、实验过程(一)熟悉三部分相关内容原理(二)完成作业已知某系统的微分方程如下:)(3)()(2)(3)(t e t e t r t r t r +'=+'+''其中,)(t e 为激励,)(t r 为响应。
1、用MATLAB 命令求出并画出2)0(,1)0(),()(3='==---r r t u e t e t 时系统的零状态响应和零输入响应(零状态响应分别使用符号法和数值法求解,零输入响应只使用符号法求解);>> eq='D2y+3*Dy+2*y=0';>> cond='y(0)=1,Dy(0)=2';>> yzi = dsolve(eq,cond);yzi = simplify(yzi);>> eq1 = 'D2y+3*Dy+2*y=Dx+3*x';eq2 = 'x= exp(-3*t)*Heaviside(t)';cond = 'y(-0.01)=0,Dy(-0.001)=0';yzs = dsolve(eq1,eq2,cond);yzs = simplify(yzs.y)yzs =heaviside(t)*(-exp(-2*t)+exp(-t))>> yt = simplify(yzi+yzs)yt =-3*exp(-2*t)+4*exp(-t)-exp(-2*t)*heaviside(t)+exp(-t)*heaviside(t)>> subplot(3,1,1);>> ezplot(yzi,[0,8]);grid on;>> title ('rzi');>> subplot(3,1,2);>> ezplot(yzs,[0,8]);>> grid on;>> title('rzs');>> subplot(3,1,3);>> ezplot(yt,[0,8]);grid on;>> title('完全响应')sys = tf([1,3],[1,3,2]);t = ts:dt:te;f = exp(-3*t).*uCT(t);y = lsim(sys,f,t);plot(t,y),grid on;axis([0,8,-0.02,0.27]);xlable('Time(sec)'),ylable('y(t)'); title('零状态响应')2、)(3)()(2)(3)(t e t e t r t r t r +'=+'+''2)0(,1)0(),()(3='==---r r t u e t e t使用MATLAB 命令求出并画出系统的冲激响应和阶跃响应(数值法);用卷积积分法求系统的零状态响应并与(1)中结果进行比较;t = 0:0.001:4;sys = tf([1,3],[1,3,2]);h = impulse(sys,t);g = step(sys,t);subplot(2,1,1);plot(t,h),grid on;xlable('Time(sec)'),ylable('h(t)');title('冲激响应');subplot(2,1,2);plot(t,g),grid on;xlable('Time(sec)'),ylable('g(t)');title ('阶跃响应')_dt = 0.01;t1 = 0:dt:8;f1=exp(-3*t1);t2 = t1;sys = tf([1,3],[1,3,2]);f2 = impulse(sys,t2);[t,f]= ctsconv(f1,f2,t1,t2,dt)function[f,t] = ctsconv(f1,f2,t1,t2,dt)f = conv(f1,f2);f = f*dt;ts = min(t1)+min(t2);te = max(t1)+max(t2);t = ts:dt:te;subplot(1,1,1)plot(t,f);grid on;axis([min(t),max(t),min(f)-abs(min(f)*0.2),max(f)+abs(max(f)*0.2)]); title('卷积结果')3、)(3)()(2)(3)(t e t e t r t r t r +'=+'+''使用MATLAB 命令求出并画出此系统的幅频特性和相频特性;使用频域分析法求解系统的零状态响应并与(1)中结果进行比较;>> w = -3*pi:0.01:3*pi;b = [1,3];a = [1,3,2];H = freqs(b,a,w);subplot(2,1,1);plot(w,abs(H)),grid on;xlabel('\omega(rad/s)'),ylabel('|H(\omega)|');title ('H(w)的幅频特性');subplot(2,1,2);plot(w,angle(H)),grid on;xlabel('\omega(rad/s)'),ylabel('\phi(\omega)');title('H(w)的相频特性')H = sym('1/(i^2*w^2+3*i*w+2)'); H= simplify(ifourier(H)); subplot(3,1,1);ezplot(H,[0,8]),grid on;title('零状态响应')4、)(3)()(2)(3)(t e t e t r t r t r +'=+'+''使用MATLAB 命令求出并画出t t e 2cos )(=时系统的稳态响应;t = 0:0.1:20;w = 2;H = (j*w+3)/(j^2*w^2+3*j*w+2);f = cos(2*t);y = abs(H)*cos(w*t+angle(H));subplot(2,1,1);plot(t,f);grid on;ylabel('f(t)'),xlabel('Time(s)');title('输入信号的波形');subplot(2,1,2);plot(t,y);grid on;ylabel('y(t)'),xlabel('Time(sec)');title('稳态响应的波形')5、)(3)()(2)(3)(t e t e t r t r t r +'=+'+''若已知条件同(1),借助MATLAB 符号数学工具箱实现拉普拉斯正反变换的方法求出并画出2)0(,1)0(),()(3='==---r r t u e t e t 时系统的零状态响应和零输入响应,并与(1)的结果进行比较。
>> syms t sYzis = (s+5)/(s^2+3*s+2);yzi= ilaplace(Yzis)yzi =-3*exp(-2*t)+4*exp(-t)>> xt = exp(-3*t)*Heaviside(t);Xs = laplace(xt);Yzss = (3+s)*Xs/(s^2+3*s+2);yzs = ilaplace(Yzss)yzs =2*exp(-3/2*t)*sinh(1/2*t)>> yt = simplify(yzi+yzs)yt =-3*exp(-2*t)+4*exp(-t)+2*exp(-3/2*t)*sinh(1/2*t)ts = 0:0.1:20;yzil = -3*exp(-2*ts)+4*exp(-ts);yzsl =2*exp(-3/2*ts).*sinh(1/2*ts);ytl =-3*exp(-2*ts)+4*exp(-ts)+2*exp(-3/2*ts).*sinh(1/2*ts);subplot(3,1,1);plot(ts,yzil);grid on;title('零输入');subplot(3,1,2);plot(ts,yzsl);grid on;title('零状态');subplot(3,1,3);plot(ts,ytl);grid on;title('全响应');(三)补充作业已知某二阶因果连续LTI系统的方框图如题7图所示,题7图其中)(t e 是激励信号,)(t r 是系统响应,且同时已知)()(2t u e t e t -=,1)0()0(='=--r r ,试求解系统的零输入响应)(t r zi ,零状态响应)(t r zs 和全响应)(t r 。
eq='D2y+7*Dy+10*y=0';cond='y(0)=1,Dy(0)=1';yzi=dsolve(eq,cond);yzi=simplify(yzi)eq1='D2y+7*Dy+10*y=2*Dx+3*x';eq2='x=exp(-2*t)*Heaviside(t)';cond='y(-0.001)=0,Dy(-0.001)=0';yzs=dsolve(eq1,eq2,cond);yzs=simplify(yzs.y)yt=simplify(yzi+yzs)subplot(311)ezplot(yzi,[0,8]);grid onaxis([0,3.5,0,1.5])title('零输入响应')subplot(312)ezplot(yzs,[0,8]);grid onaxis([0,3.5,0,0.3])title('零状态响应')subplot(313)ezplot(yt,[0,8]);grid onaxis([0,3.5,0,1.5])title('完全响应')四、实验结论和讨论使用时域分析和频域分析得到的系统响应是一样的,用时域需要卷积,在频域相乘就可以了。