勾股定理应用

合集下载

勾股定理的应用

勾股定理的应用

勾股定理的应用勾股定理作为数学中著名的定理之一,广泛应用于各个领域。

它是数学中的基础定理之一,也是几何学中三角形研究的重要工具。

本文将从几个应用角度介绍勾股定理在实际生活中的运用。

一、建筑工程中的应用勾股定理在建筑工程中有着广泛的应用。

举个例子,我们在修建某一斜坡时,需要确定其坡度,勾股定理可以帮助我们准确计算出坡度。

此外,在设计斜面道路、楼梯等结构时,勾股定理也能帮助我们确保结构的稳定与安全。

二、航海导航中的应用在航海导航中,勾股定理被广泛用于测量船只的航向和航速。

通过测量船只相对于岸上两个点的距离,结合勾股定理可以计算出船只的位移和速度,为航海者提供准确的导航信息。

三、地理测量中的应用在地理测量中,勾股定理被用于测量两个相隔较远的地点之间的距离。

通过在地面上进行三角测量,即测量两个点与另一个点的夹角以及距离,再利用勾股定理求解,可以得到精确的距离数据,为地理测量和地图绘制提供重要支持。

四、天文学中的应用在天文学中,勾股定理被用于测量遥远星体之间的距离和角度。

天文学家通过观测星体的位置和角度,结合勾股定理的计算方法,可以确定天体的距离和大小,进而推断宇宙的形态和结构。

五、计算机图形学中的应用计算机图形学中,勾股定理被广泛应用于图形处理和渲染。

图形引擎通过勾股定理来计算线段的长度、图形的形状和倾斜度等信息,为计算机生成的图像提供基础数学支持。

综上所述,勾股定理作为数学中一项重要的基础定理,在实际生活中有着广泛的应用。

它在建筑工程、航海导航、地理测量、天文学和计算机图形学等领域中都起着重要的作用。

通过勾股定理的运用,我们可以提高工作效率,确保工程安全,促进科学发展。

因此,深入理解和应用勾股定理对我们的日常生活和社会发展都具有重要意义。

勾股定理的运用

勾股定理的运用

勾股定理的运用勾股定理是数学中的重要定理之一,被广泛运用于各个领域。

本文将从几个方面介绍勾股定理的运用。

一、勾股定理的基本概念勾股定理是指直角三角形中,直角边平方的和等于斜边平方。

即a+b=c,其中a、b为直角边,c为斜边。

勾股定理是数学中的基础定理之一,它不仅是数学学科中的重要内容,还广泛地应用于各个领域,如物理、化学、工程、金融等。

二、勾股定理在物理中的应用勾股定理在物理学中应用广泛,特别是在力学、电学和光学等领域。

在力学中,勾股定理可用于计算物体的速度、加速度、力等。

例如,当一个物体沿着斜面下滑时,可以使用勾股定理计算物体的速度和加速度。

在电学中,勾股定理可用于计算电路中的电阻、电容和电感等。

例如,当电路中有一个直角三角形的电容器时,可以使用勾股定理计算电容器的电容量。

在光学中,勾股定理可用于计算镜头的焦距。

例如,当一个光线通过一个凸透镜时,可以使用勾股定理计算镜头的焦距。

三、勾股定理在工程中的应用勾股定理在工程中也有广泛的应用。

特别是在建筑、航空航天、机械等领域。

在建筑中,勾股定理可用于计算建筑物的高度和长度。

例如,当建筑物的墙角为直角时,可以使用勾股定理计算建筑物的高度和长度。

在航空航天中,勾股定理可用于计算飞机的速度和高度。

例如,当飞机以一定的速度和高度飞行时,可以使用勾股定理计算飞机的速度和高度。

在机械中,勾股定理可用于计算机械的力和速度。

例如,当机械设备中有一个直角三角形的零件时,可以使用勾股定理计算零件的力和速度。

四、勾股定理在金融中的应用勾股定理在金融中的应用也很广泛。

特别是在投资、财务和保险等领域。

在投资中,勾股定理可用于计算投资的回报率和风险。

例如,当投资的回报率和风险呈直角三角形时,可以使用勾股定理计算投资的回报率和风险。

在财务中,勾股定理可用于计算财务报表的比率和比重。

例如,当财务报表中的比率和比重呈直角三角形时,可以使用勾股定理计算财务报表的比率和比重。

在保险中,勾股定理可用于计算保险的赔偿和风险。

勾股定理中的应用问题(分类整理版)

勾股定理中的应用问题(分类整理版)

勾股定理中的应用问题(分类整理版)
引言
勾股定理是数学中一个重要的理论,它有着广泛的应用。

本文将介绍勾股定理在几个不同领域的应用问题,包括几何、物理和工程等方面。

几何应用问题
1. 求三角形的边长:勾股定理可以帮助我们在已知一个角度和两条边的情况下,计算出三角形的第三条边长。

2. 判断三角形的类型:利用勾股定理,我们可以判断一个三角形是直角三角形、锐角三角形还是钝角三角形。

3. 寻找直角三角形:通过勾股定理的应用,我们可以在几何图形中寻找直角三角形的存在。

物理应用问题
1. 求物体的位移:勾股定理可以应用于物理学中,帮助我们求解物体在加速度恒定的情况下的位移。

2. 计算速度和时间:利用勾股定理,我们可以在已知物体的位移和加速度的情况下,计算出物体的速度和时间。

3. 测量斜面上物体的重力分解:物理学中经常用到勾股定理来计算斜面上物体的重力分解。

工程应用问题
1. 建筑设计:勾股定理在计算建筑物的尺寸和角度方面有着广泛的应用。

2. 地理测量:勾股定理可以用于地理测量中计算两个点之间的直线距离,帮助我们绘制准确的地图。

3. 静音设计:勾股定理在音频工程中被应用于计算扬声器的声源与反射板的距离。

总结
勾股定理在几何、物理和工程等领域中都有广泛的应用。

通过研究和理解勾股定理的应用问题,我们可以更好地解决实际生活和工作中的相关问题。

勾股定理的实际应用案例分析

勾股定理的实际应用案例分析

勾股定理的实际应用案例分析勾股定理是数学中的重要定理之一,也是人们在实际生活中常用的数学工具。

本文将通过分析一些实际应用案例,展示勾股定理在解决问题中的作用和价值。

1. 建筑领域中的勾股定理应用在建筑领域,勾股定理是测量和设计中不可或缺的工具之一。

例如,当建筑师设计一个直角形房间时,他们需要使用勾股定理来确保房间的墙壁是垂直的。

通过测量房间两个相对角的长度,并应用勾股定理计算斜边的长度,建筑师可以确保墙壁是垂直的,从而确保房间的稳定性和安全性。

2. 地理测量中的勾股定理应用地理测量中的三角测量法是一种常用的测量方法,其中就包括利用勾股定理来计算距离和角度。

例如,当测量两个地点之间的直线距离时,测量员可以使用勾股定理,通过测量两个直角边的长度计算出斜边的长度,从而得到两地之间的距离。

3. 航空航天领域中的勾股定理应用在航空航天领域,勾股定理也起到重要的作用。

例如,飞机在空中导航时会使用仪表着陆系统(ILS)来进行着陆。

这个系统包括一个地面引导系统和一个飞机上的接收机。

通过利用勾股定理,地面引导系统可以计算出飞机与跑道之间的距离和高度,从而为飞行员提供准确的导航和着陆指引。

4. 电子设备制造中的勾股定理应用在电子设备制造过程中,勾股定理也常被应用于检测和排除设备中的故障。

例如,在制造电视机时,工程师可能要使用勾股定理来测量电视屏幕的对角线,以确保屏幕大小符合规格要求。

如果测量出的对角线长度不符合预期结果,就可能意味着设备存在问题,需要进行进一步检查和修复。

综上所述,勾股定理在实际生活中有着广泛的应用。

无论是在建筑领域、地理测量、航空航天还是电子设备制造等领域,勾股定理都是不可或缺的工具和方法。

通过分析勾股定理的实际应用案例,我们可以更加深入地理解这个数学定理的重要性,并通过它解决问题和改进现有技术。

勾股定理在生活中的应用

勾股定理在生活中的应用

勾股定理在生活中的应用
勾股定理又称勾股论,即毕达哥拉斯设计的一个无理定理:“任意三角形的两边之积等于另外一边的平方之和”。

这个定理具有广泛的应用:
1、勾股定理在日常生活中可以用来确定三角形各边之间的关系:例如可以判断其中一边是不是一个倍数关系或者一个反比例关系。

通过建立对应方程,容易得到三角形三边的数值,作为三角形的参数。

2、也可以依据勾股定理来测量距离。

例如,构建一个直角三角形,让其一条边固定为一个值,我们使用两个斜边长度表示其他边的长度。

可以用i中国的三角测量法来求得某个距离的长度。

3、另外可以用勾股定理判断特殊的三角形。

例如可以判断一个三角形是不是等腰三角形、等边三角形或是直角三角形,只需要判断两边之积是否等于另外一边的平方之和。

4、勾股定理在空间中也有极大的作用,尤其是研究四面体或是更高维度的几何图形时。

例如可以用它来判断四面体的面面角是否都相等,以及求出该四面体的各个角。

另外还可以用它来求棱锥的体积、双曲线的起始点和极点等。

5 、另外勾股定理在物理学中也有广泛的应用,比如可以分析绳子长度或梯形长宽间的关系等。

总之,勾股定理由其卓越的简洁得到广泛应用,从日常生活到飞空实验都能发挥着无穷的作用,它被越来越多的人向科学家们赞美。

勾股定理的应用领域总结(经典、实用)

勾股定理的应用领域总结(经典、实用)

勾股定理的应用领域总结(经典、实用)
勾股定理是数学中一项经典的定理,广泛应用于各个领域。

本文将总结勾股定理在经典领域和实用领域的应用。

经典领域
几何学
勾股定理最早在几何学中得到应用,用于解决直角三角形的边长或角度问题。

在几何学中,勾股定理为计算直角三角形提供了最基本的工具。

物理学
在物理学中,勾股定理常用于计算向量的大小和方向。

它可以应用于解决力学、电磁学和流体力学等领域的问题。

导航和航空
勾股定理在导航和航空领域中有着重要的应用。

通过测量三角形边长和角度,可以计算出物体或飞机的位置、速度和方向,从而实现准确的导航和飞行控制。

实用领域
工程学
在工程学中,勾股定理广泛应用于建筑、机械和电子等领域。

例如,在建筑设计中,可以使用勾股定理计算物体的尺寸和角度,确保设计符合规格要求。

计算机图形学
在计算机图形学中,勾股定理用于计算三维空间中的距离和角度。

这对于创建模型、渲染图像和进行虚拟现实等应用非常重要。

经济学
勾股定理在经济学中也有应用,特别是在统计学中。

通过应用勾股定理,可以计算变量之间的关系和相关性,从而进行经济数据的分析和预测。

结论
勾股定理作为一项经典的数学定理,广泛应用于各个领域。

从经典领域的几何学和物理学,到实用领域的工程学、计算机图形学和经济学,勾股定理都发挥着重要作用。

通过应用勾股定理,我们可以解决各种问题,提高生产效率和实现创新发展。

勾股定理的应用

勾股定理的应用

引 葭 赴 岸
今有池方一丈,葭生其中央, 今有池方一丈,葭生其中央, 一丈 出水一尺。引葭赴岸,适与岸齐。 出水一尺。引葭赴岸,适与岸齐。 问水深、葭长各几何? 问水深、葭长各几何? 有一个正方形的池塘, 有一个正方形的池塘,池塘的边长为一 有一棵芦苇生长在池塘的正中央, 丈,有一棵芦苇生长在池塘的正中央, 并且芦苇高出水面部分有一尺, 并且芦苇高出水面部分有一尺,如果把 芦苇拉向岸边则恰好碰到岸沿, 芦苇拉向岸边则恰好碰到岸沿,问水深 和芦苇的高度各多少? 和芦苇的高度各多少?
今 有 竹 高 丈 , 一
勾股定理在古诗中的应用
要点: 要点 1.读懂诗文含义 读懂诗文含义 2.构造勾股模型 构造勾股模型
如图,学校有一块长方形花圃, 如图,学校有一块长方形花圃,有极少数人为了避开 拐角走“捷径” 在花圃内走出了一条“径路” 拐角走“捷径”,在花圃内走出了一条“径路”,践 踏了花草,真是不应该呀! 踏了花草,真是不应该呀! 的长; (1)求这条“径路”AB的长; )求这条“径路” 的长 (2)若正常步行时,每步的步长为 米,则他们仅 )若正常步行时,每步的步长为0.5米 仅少走了几步? 仅少走了几步?

C
x +5
2
2
= (x + 1)
2
解得x x+1= 解得x=12, x+1=13. 答:水深12尺,芦苇长13尺. 水深12尺 芦苇长13尺 12 13
A
风动红莲
• • • • 平平湖水清可鉴,面上半尺生红莲; 平平湖水清可鉴,面上半尺生红莲; 出泥不染亭亭立,忽被强风吹一边; 出泥不染亭亭立,忽被强风吹一边; 渔人观看忙向前,花离原位二尺远; 渔人观看忙向前,花离原位二尺远; 能算诸君请解题,湖水如何知深浅? 能算诸君请解题,湖水如何知深浅?

勾股定理的应用及方法

勾股定理的应用及方法

勾股定理的应用及方法勾股定理是数学中的一个重要定理,它描述了直角三角形中,直角边的平方和等于斜边的平方。

具体表述为:在一个直角三角形中,设直角边的长度分别为a 和b,斜边的长度为c,则有a²+ b²= c²。

勾股定理的应用非常广泛,在几何学、物理学和工程学等领域都有重要的应用。

下面我将介绍一些常见的勾股定理的应用及解题方法。

1. 求解三角形的边长和角度:勾股定理可以用于求解三角形的边长和角度。

当我们已知两条边长,可以利用勾股定理计算出第三条边长。

而已知两边长和夹角时,可以利用勾股定理计算出第三边长或者求解夹角的大小。

例如,已知直角三角形的斜边长为5,一条直角边长为3,我们可以利用勾股定理计算出另一条直角边的长度:3²+ b²= 5²9 + b²= 25b²= 16b = 4同样地,已知直角三角形的两条直角边长度为3和4,可以利用勾股定理计算斜边的长度:3²+ 4²= c²9 + 16 = c²c²= 25c = 52. 解决实际问题:勾股定理也可以应用于解决实际问题。

例如,在测量中,我们经常需要通过已知的边长计算其他未知边长的问题。

有一道经典的应用题是“房子问题”:如果一个房子的两堵墙的长度分别为6米和8米,房子的对角线长度是多少?根据勾股定理可知,对角线的长度即斜边的长度c,可以通过勾股定理求解:6²+ 8²= c²36 + 64 = c²c²= 100c = 10因此,房子的对角线长度为10米。

3. 判断三角形的形状:勾股定理还可以用来判断三角形的形状。

根据勾股定理,如果一个三角形的三条边满足a²+ b²= c²,那么这个三角形就是直角三角形。

例如,如果一个三角形的三条边长分别为3、4和5,我们可以通过勾股定理验证这个三角形是否为直角三角形:3²+ 4²= 5²9 + 16 = 2525 = 25由此可见,三角形的三条边满足勾股定理,所以这个三角形是一个直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、勾股定理的逆定理:1. 逆定理:如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状。

在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角。

二. 实际应用定理中的注意问题:1、定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边2、勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形三、勾股定理逆定理的几种典型应用:例题1如图,△ABC 中,AB=15,AC=8,AD 是中线,且AD=8.5,则BC的长为( )A .15 B .16 C .17 D .18例题2 勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=2,AC=3,则D ,E ,F ,G ,H ,I 都在长方形KLMJ 的边上,则长方形KLMJ 的面积为( )A .50B .52C .54D .56利用勾股定理计算角度实例:如图,点E 是正方形ABCD 内的一点,连接AE 、BE 、CE ,将△ABE 绕点B 顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C= 度.开放性试题发挥主观能动性,答案不唯一。

实例:如图,已知一个边长分别为6、8、10的直角三角形,请设计出一个有一条边长为8的直角三角形,使这两个直角三角形能够拼成一个等腰三角形.(1)画出4种不同拼法(周长不等)的等腰三角形;(2)求出4种不同拼法的图形的等腰三角形的周长.一、选择题1、有下面的判断:①△ABC 中,a 2+b 2≠c 2,则△ABC 不是直角三角形.②△ABC 是直角三角形,∠C=90°,则a 2+b 2=c 2.③若△ABC 中,a 2-b 2=c 2,则△ABC 是直角三角形.④若△ABC 是直角三角形,则(a+b )(a-b )=c 2.以上判断正确的有( )A .4个B .3个C .2个D .1个2、若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+338=10a+24b+26c ,则此△为( )A .锐角三角形B .钝角三角形C .直角三角形D .不能确定 *3、已知正实数a 、b 、c 满足bc a c b a a c b +=+=+=k ,以2k ,2k+1,2k-1为三边的三角形面积是( )A .12 B .6 C .512D .3 **4、如图,以△ABC 的每一条边为边作三个正三角形△ABD 、△BCE 和△ACF .已知这三个正三角形构成的图形中,甲、乙阴影部分的面积和等于丙、丁阴影部分的面积和,则∠FCE=( )A .130°B .140°C .150°D .160°**5、如图,已知正方形ABED 与正方形BCFE ,现从A ,B ,C ,D ,E ,F 六个点中任取三个点,使得这三个点能作为直角三角形的三个顶点,则这样的直角三角形共有( )A .10个B .12个C .14个D .16个二、填空题:*6、如图,Rt △ABC 中,∠C=90度.将△ABC 沿折痕BE 对折,C 点恰好与AB 的中点D 重合,若BE=4,则AC 的长为 .*7、如图,在4×5的方格中,A 、B 为两个格点,再选一个格点C ,使∠ACB 为直角,则满足条件的点C 个数为**8如图:在△ABC 中,CE 平分∠ACB ,CF 平分∠ACD ,且EF∥BC 交AC 于M ,若CM=5,则CE 2+CF 2= .三、解答题:9、阅读以下解题过程:已知a,b ,c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.错解:∵a 2c 2-b 2c 2=a 4-b 4…(1),∴c 2(a 2-b 2)=(a 2-b 2)(a 2+b 2)…(2),∴c 2=a 2+b 2 (3)问:(1)上述解题过程,从哪一步开始发现错误请写出该步的代号 .(2)错误的原因是 .(3)本题正确的结论是 .:*10、、如图,点D 是△ABC 内一点,把△ABD 绕点B 顺时针方向旋转60°得到△CBE ,若AD=4,BD=3,CD=5.(1)判断△DEC 的形状,并说明理由;(2)求∠ADB 的度数.**11、如图:四边形ABCD 中,AD=DC ,∠ABC=30°,∠ADC=60°.试探索以AB 、BC 、BD 为边,能否组成直角三角形,并说明理由.**12、已知:△ABC 的周长是4+26,AB=4,AC=6+2.(1)判断△ABC 的形状;(2)若CD 是AB 上的中线,DE ⊥AB ,∠ACB 的平分线交DE 于E ,交AB 于F ,连接BE .求证:DC=DE ,并求△DBE 的面积.一、勾股定理在解决几何问题中的应用技巧:1、构造直角三角形。

根据题意,合理构造直角三角形,比如等腰三角形中的求值或面积问题,经常作高构造直角三角形。

例如:AB=AC=10,BC=6,求三角形ABC面积 2、利用勾股定理列方程:将三角形的边用同一未知数表示,列出方程,解出所求值。

(1)在翻折问题中,大多数求值都是这种应用。

如:如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为(2)求折断物体长度时,使用方程:如:一根竹子高9尺,折断后竹子顶端落在离竹子底端3尺处,折断处离地面高度是3、分类讨论思想已知一个直角三角形的两边长,并没有指明是直角边还是斜边,因此要分类讨论.已知一个直角三角形的两边长是3cm 和4cm ,求第三边的长.4、数形结合思想几何与代数问题的综合。

在一棵树的10米高处有两只猴子,其中一只爬下树走向离树20米的池塘,而另一只爬到树顶后直扑池塘,如果两只猴子经过的距离相等,问这棵树有多高?二.特殊几何图形中的勾股定理计算规律:1、 含有30°的直角三角形。

(1)30°角所对的直角边是斜边的一半。

(2)60°角所对的直角边是30°角所对直角边的3倍。

2、等边三角形:(1)高等于任何一边的23倍。

(2)面积等于43(边长)2例题1在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S 1+S 2与S 3的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图3 B A B C 30° D CBA图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S 1+S 2与S 3的关系(如图3).例题2A 1A 2B 是直角三角形,且A 1A 2=A 2B=a ,A 2A 3⊥A 1B ,垂足为A 3,A 3A 4⊥A 2B ,垂足为A 4,A 4A 5⊥A 3B ,垂足为A 5,…,A n+1A n+2⊥A nB ,垂足为A n+2,则线段A n+1A n+2(n 为自然数)的长为( )A .n a2 B .1)2( n a C .2a D .n a 2分类讨论求值充分考虑不同情况下的求值。

实例:在△ABC 中,AB=15,AC=13,BC 边上的高AD=12,则边BC 的长是( )A .14B .4C .14或4D .56生活中的勾股定理方案设计在实际生活中应用勾股定理。

实例:某园艺公司对一块直角三角形的花园进行改造,测得两直角边长分别为a=6米,b=8米.现要将其扩建成等腰三角形,且扩充部分是以b 为直角边的直角三角形,则扩建后的等腰三角形花圃的周长为( )米.A .32或20+45 B .32或36或380 C .32或380或20+45 D .32或36或380或20+45一、选择题1、观察以下几组勾股数,并寻找规律:①4,3,5;②6,8,10;③8,15,17;④10,24,26;…,根据以上规律的第⑦组勾股数是( )A .14、48、49B .16、12、20C .16、63、65D .16、30、342 如图,一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么梯子的底端的滑动距离( )A .等于1米B .大于1米C .小于1米D .不能确定*3已知△ABC 是斜边长为1cm 的等腰直角三角形,以Rt △ABC的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是( )A .n 2cm B .12-n cmC .2n cmD .12+n cm *4如图所示,一只小蚂蚁从棱长为1的正方体的顶点A 出发,经过每个面的中心点后,又回到A 点,蚂蚁爬行最短程S 满足( )A .5<S≤6B .6<S≤7C .7<S≤8D .8<S≤9**5、如图,△ABC 是等腰直角三角形,∠BAC=90°,点D 、E 在BC上,且∠DAE=45°,现将△ACE 绕点A 旋转至△ABE′处,连接DE′和EE′,则下列结论中 ①AB ⊥DE′②∠ADE=∠BAE ③△AEE′是等腰直角三角形 ④AD ⊥EE′⑤BD 2+CE 2=DE 2正确的有( )A .1个B .2个C .3个D .4个. 二、填空题:*6 如图,一牧童在A 处放羊,牧童的家在B 处,A 、B 距河岸的距离AC 、BD 分别为500m和700m ,且C 、D 两地相距500m ,天黑前牧童要将羊赶往河边喝水再回家,那么牧童至少应该走 m .*7如图,为安全起见,幼儿园打算加长滑梯,将其倾斜角由45°降至30°.已知滑梯AB 的长为3m ,点D ,B ,C 在同一水平地面上,那么加长后的滑梯AD 的长是 m .**8 勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,我国古代三国时期吴国的数学家赵爽创造的弦图,是最早证明勾股定理的方法,所谓弦图是指在正方形的每一边上各取一个点,再连接四点构成一个正方形,它可以验证勾股定理.在如图的弦图中,已知:正方形EFGH 的顶点E 、F 、G 、H 分别在正方形ABCD 的边DA 、AB 、BC 、CD 上.若正方形ABCD 的面积=16,AE=1;则正方形EFGH 的面积= .**9、图(1)是一个面积为1的正方形,经过第一次“生长”后,在它的左右肩上生出两个小正方形,其中三个正方形围成的三角形是直角三角形,如图(2);经过第2次“生长”后变成图(3),经过第3次“生长”后变成图(4),如果继续“生长”下去,它将变得更加“枝繁叶茂”,这就是美丽的“勾股树”.已知“生长”后形成的图形中所有正方形的面积和存在一定的变化规律,请你利用这一规律求:①经过第一次“生长”后的所有正方形的面积和为 ,②经过第10次“生长”后,图中所有正方形的面积和为:三、解答题:*10我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是**11已知:如图,点O是等腰直角△ABC斜边AB的中点,D为BC边上任意一点.操作:在图12中作OE⊥OD交AC于E,连接DE.探究OD、BD、CD三条线段之间有何等量关系?请探究说明.**12如图平面直角坐标系xoy中,A(1,0)、B(0,1),∠ABO的平分线交x轴于一点D.(1)求D点的坐标;(2)如图所示,A、B两点在x轴、y轴上的位置不变,在线段AB上有两动点M、N,满足∠MON=45°,下列结论(1)BM+AN=MN,(2)BM2+AN2=MN2,其中有且只有一个结论成立,请你判断哪一个结论成立,并证明成立的结论.(1)(2)。

相关文档
最新文档