(完整word版)常用函数的拉氏变换

合集下载

拉氏变换表(包含计算公式)

拉氏变换表(包含计算公式)

拉氏变换及反变换公式3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)(式中,n s s s ,,,21 是特征方程A(s)=0的根。

i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:)()(lim s F s s c i s s i i-=→或iss i s A s B c ='=)()(式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts n i i ie c -=∑1②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+ =nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→- )()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1( (F-6)。

拉氏变换表(包含计算公式)

拉氏变换表(包含计算公式)

拉氏变换及反变换公式3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)(式中,n s s s ,,,21 是特征方程A(s)=0的根。

i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:)()(lim s F s s c i s s i i-=→或iss is A s B c ='=)()(式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts n i i ie c -=∑1②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+ =nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11111111)()()(式中,1s 为F(s)的r 重根,1 r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→-)()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1( (F-6)(注:可编辑下载,若有不当之处,请指正,谢谢!)。

拉普拉斯变换表word版本

拉普拉斯变换表word版本

拉普拉斯变换表附录A 拉普拉斯变换及反变换收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==----ΛΛ (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110-Λ都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)(ΛΛ (F-1) 式中,n s s s ,,,21Λ是特征方程A(s)=0的根。

i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:)()(lim s F s s c is s i i-=→ (F-2) 或is s i s As B c ='=)()( (F-3)式中,)(s A'为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=t s n i i ie c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11nr rs s s s s s s B s F ---=+Λ =nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++--ΛΛΛ11111111)()()(收集于网络,如有侵权请联系管理员删除式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c rs s r -=→ )]()([lim 111s F s s dsd c rs s r -=→- M)()(lim !11)()(1s F s s dsd j c rj j s s j r -=→- (F-5) M)()(lim )!1(11)1()1(11s F s s dsd r c rr r s s --=--→ 原函数)(t f 为[])()(1s F L t f -= ⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L ΛΛΛ111111111)()()( t s nr ii t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1(Λ (F-6)。

拉氏变换

拉氏变换
s 0
s 0
f () lim sF ( s ) s 0 终值定理说明f(t)稳定值与sF(s)在s=0时的初值相同。
7、求解拉氏反变换的部分分式法 部分分式法 如果f(t)的拉氏变换F(s)已分解成为下列分量:
F(s)=F1(s)+F2(s)+…+Fn(s) 假定F1(s), F2(s), …,Fn(s)的拉氏反变换
0

est dt 称为拉普拉氏积分;
F(s)称为函数f(t)的拉普拉氏变换或象函 数,它是一个复变函数;f(t)称为F(s)的
原函数;
L为拉氏变换的符号。
2、拉氏反变换
1 j f (t ) L F ( s) F ( s)e st ds , t 0 j 2j
( n 1)
(0)
当f(t)及其各阶导数在t=0时刻的值均为零时 (零初始条件):
df (t ) L dt sF ( s ) d 2 f (t ) 2 L dt 2 s F ( s ) d n f (t ) n L dt n s F ( s )
s s
df (t ) df (t ) lim L lim e st dt 其中: s dt s 0 dt df (t ) df (t ) st 0 lim dt e dt 0 dt 0dt 0 s
为了应用上述方法,将F(s)写成下面的形式:
c0 s m c1s m1 cm1s c0 F ( s) ( s p1 )(s p2 )(s pn )
式中,-p1,-p2,…,-pn为方程A(s)=0的根的负值, 称为F(s)的极点;ci=bi /a0 (i = 0,1,…,m)。 此时,即可将F(s)展开成部分分式。

常用函数的拉氏变换

常用函数的拉氏变换

附录A 拉普拉斯变换及反变换4192.表A-2 常用函数的拉氏变换和z变换表4204213. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)( (F-1)式中,n s s s ,,,21 是特征方程A(s)=0的根。

i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i-=→ (F-2)或iss i s A s B c ='=)()( (F-3)式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts n i i ie c -=∑1(F-4)②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+422=nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→-)()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1( (F-6)。

拉氏变换

拉氏变换
st 0


0
1 st [ f (t )dt ] de s
e st e st [ f (t )dt d] |0 f (t )dt d 0 s s f ( 1) (0) F ( s ) s s
f
(n)
(t ) f (t )dt

且: f
(t ) (t )dt d 1

L[ (t )] (t )e dt 1
st 0
典型函数的拉氏变换 5、正弦函数
1 f ( t ) sin t ( e j t e j t ) 2j 1 j t jt st L[sin t ] (e e )e dt 0 2j 1 ( s j ) t ( s j )t (e e )dt 2j 0 1 1 1 ( ) 2 2 j s j s j s 2
若f 1 (0) f 2 (0) f n (0) 0
li f ( t ) lim lim li sF ( s )
t0 s
li f ( t ) lim lim li sF F (s)
t s 0
典型函数的拉氏变换 6、余弦函数
1 j t j t ) f (t ) cos t ( e e 2
s L[cos [ t] 2 s 2
常用函数的拉氏变换表(重要)
f(t)
F(s) 1 1/s 1/s2
f(t) Sinωt Cosωt
F(s)
δ(t)
u(t) t

s
L [e at f (t )] F ( s a )
dn L[ n f (t )] s n F ( s ) 若f (0) f(0) f (n2)) (0) f (n1)) (0) 0 dt

第二章附录-拉氏变换

第二章附录-拉氏变换

例3 : y(3) 3y 3y y 1, y(0) y(0) y(0) 0 求微分方程.
F (s)
1 s(s 1)3
b3 (s 1)3
b2 (s 1)2
b1 s 1
c4 s
b3
[
s(s
1 1)3
(s
1)3 ]s1
1
b2
d
ds
[
s(s
1 1)3
(s
1)3
]
s1
[d ds
(
1 s
一.拉氏变换
1.定义:设函数f(t)当t≥0时有定义,而且积

F (s) f (t)est dt
0
存在,则称F(s)是f(t)的拉普拉斯变换。
简称拉氏变换。记为 F (s) L[ f (t)]
f(t)称为 F(s)的拉氏逆变换。记为:
f (t) L1[F (s)]
2.常用函数的拉氏变换
单位阶跃函数1(t) f(t)
ci是常数
M (s) ci [ D(s) (s pi )]s pi
例1: F(s)
1
(s 1)(s 2)(s 3)
c1 c2 c3 s 1 s 2 s 3
c1
[ (s
1)(s
1 2)(s
3)
(s
1)]s 1
1 6
1
1
c2
[ (s
1)(s
2)(s
3)
(s
2)]s2
15
c3
[ (s
证:
a L[ f ( t )] f ( t )est dt
a 0a
令t / a ,则原式 f ( )esa ad aF(as)
0
(8)卷积定理

拉氏变换表(包含计算公式)

拉氏变换表(包含计算公式)

1拉氏变换及反变换公式1. 拉氏变换的基本性质 1线性定理齐次性)()]([s aF t af L =叠加性)()()]()([2121s F s F t f t f L ±=±2微分定理一般形式=-=][ '- -=-=----=-∑11)1()1(1222)()()0()()(0)0()(])([)0()(])([k k k k nk kn nnndtt f dt ffss F s dtt f dL f sf s F s dt t f dL f s sF dt t df L )(初始条件为0时)(])([s F s dtt f dL nnn=3 积分定理一般形式∑⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰==+-===+=++=+=nk t nn k n nnn t t t dt t f sss F dt t f L sdt t f sdt t f ss F dt t f L s dt t f ss F dt t f L 112222]))(([1)(])()([]))(([])([)(]))(([])([)(])([个共个共初始条件为0时nnn ss F dt t f L )(]))(([=⎰⎰个共4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts-=--5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=-6 终值定理 )(lim )(lim 0s sF t f s t →∞→=7 初值定理 )(lim )(lim 0s sF t f s t ∞→→=8 卷积定理)()(])()([])()([21021021s F s F d t f t f L d f t f L tt =-=-⎰⎰τττττ22. 常用函数的拉氏变换和z 变换表 序号 拉氏变换E(s)时间函数e(t) Z 变换E(z)1 1δ(t)12 Tse--11∑∞=-=)()(n T nT t t δδ1-z z 3 s1 )(1t1-z z 4 21st2)1(-z Tz5 31s22t32)1(2)1(-+z z z T6 11+n s!n tn)(!)1(limaTnn na ez zan -→-∂∂-7 as +1 ate- aTez z -- 8 2)(1a s + atte- 2)(aTaT ez Tze --- 9 )(a s s a + ate--1 ))(1()1(aTaTez z ze-----10 ))((b s a s ab ++- btatee---bTaTez z ez z ----- 11 22ωω+s tωsin 1cos 2sin 2+-T z z T z ωω12 22ω+s s tωcos1cos 2)cos (2+--T z z T z z ωω13 22)(ωω++a s t eatωsin - aTaT aTeT zez T ze22cos 2sin ---+-ωω 14 22)(ω+++a s a st eatωcos -aTaTaTeT ze zTzez 222cos 2cos ---+--ωω15aT s ln )/1(1-Tt a/az z-33. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附录A 拉普拉斯变换及反变换
419
420
421
3. 用查表法进行拉氏反变换
用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式
1110
111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++=
=----ΛΛ (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110-Λ都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根
这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=n
i i
i n n i i s s c s s c s s c s s c s s c s F 122
11)(ΛΛ (F-1)
式中,n s s s ,,,21Λ是特征方程A(s)=0的根。

i c 为待定常数,称为F(s)在i s 处的留数,可
按下式计算:
)()(lim s F s s c i s s i i
-=→ (F-2)

i
s
s i s A s B c ='=
)()
( (F-3)
式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数
[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 11
1
)()(=t
s n i i i
e c -=∑1
(F-4)

0)(=s A 有重根
设0)(=s A 有r 重根1s ,F(s)可写为
())
()()()
(11n r r
s s s s s s s B s F ---=
+Λ =
n
n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++--ΛΛΛ11
111
111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;
422
其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:
)()(lim 11
s F s s c r s s r -=→
)]()([lim
111
s F s s ds
d
c r s s r -=→- M
)()(lim !11)()
(1s F s s ds
d j c r j j s s j
r -=→- (F-5) M
)()(lim )!1(11)1()
1(11s F s s ds
d r c r r r s s --=--→
原函数)(t f 为 [])()(1
s F L
t f -=
⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L ΛΛΛ11
111
1111)()()
( t s n
r i i t s r r r r i
e c e c t c t r c t r c ∑+=---+⎥⎦
⎤⎢⎣⎡+++-+-=112211
1
)!2()!1(Λ (F-6)。

相关文档
最新文档