高中物理实验探究单摆的摆长与周期的关系学案
高中物理单摆摆幅教案

高中物理单摆摆幅教案目标:让学生通过实验掌握单摆的摆幅与周期的关系。
实验材料:1. 单摆(如小球挂在细绳上)2. 计时器3. 直尺4. 笔记本实验步骤:1. 挂起单摆,使摆球的位置稍微拉开,以确保摆球放开后可以摆动。
2. 计时器开始计时,并记录摆球从左侧摆至右侧再回到原点所需的时间T1。
3. 重复步骤2,记录多次时间T1,并求平均值T1_avg。
4. 测量单摆的摆长L(即细绳长度)。
5. 使用公式T = 2π√(L/g) 计算出预期的摆周期T_expected。
6. 比较实际测量出的平均周期T1_avg 和预期周期T_expected 的关系,观察是否存在差异。
数据分析:1. 比较实际测得的平均周期T1_avg 与预期周期T_expected 的关系,观察是否存在误差。
2. 讨论可能导致误差的因素,如空气阻力、摆球质量、摆长测量误差等。
3. 提出改进实验的方法,以减小误差并提高实验结果的准确性。
讨论与总结:1. 讨论单摆的摆幅与周期的关系,明确摆长、重力加速度对摆动的影响。
2. 总结实验中的观察结果,以及对误差及改进实验的认识。
3. 引导学生反思实验中的体验,培养科学精神和实验技能。
延伸拓展:1. 可以在实验中加入不同重量的摆球,探讨质量对摆幅与周期的影响。
2. 可以设计不同摆长的单摆进行实验,比较不同摆长对摆幅与周期的影响。
本实验旨在帮助学生深入理解单摆的基本原理,培养其实验设计和数据分析能力,以及科学思维和探究精神。
通过实验,学生将能够更加直观地掌握单摆的摆幅与周期的关系,提高对物理学的兴趣和理解。
实验九 探究单摆的周期与摆长的关系

2.数据处理 (1)公式法:利用多次测得的单摆周期及对应摆长,借助公式 4π2l g= T2 求出加速度 g,然后算出 g 的平均值. 4π2l (2)图象法:由公式 g= T2 ,分别测出一系 列摆长 l 对应的周期 T, 作出 l-T2 的图象, 如图实-9-2 所示,图象应是一条通过原 点的直线,求出图线的斜率 k,即可求得 g 值. l Δl g=4π k,k=T2=ΔT2.
[解析 ]
本实验主要考查用单摆测定重力加速度的实验步
骤、实验方法和数据处理方法. (1)测量筒的下端口到摆球球心之间的距离 L,用到毫米刻 度尺,测单摆的周期用秒表,所以测量工具选 B、D. (2)设摆线在筒内部分的长度为 h,由 T=2π
2 2 4π 4π T2= g L+ g h,可知 T2-L 关系图象为 a.
近速率甚小,滞留时间不易确定,引起的时间误差较 大. 8.要准确记好摆动次数,不要多记或少记次数.
六、误差分析
1.本实验的系统误差主要来源于单摆模型本身是否符合 要求,即:悬点是否固定,球、线是否符合要求,振 动是圆锥摆还是在同一竖直平面内的振动等. 2.本实验的偶然误差主要来自时间的测量,因此,要从
(4)BD
[例2] 将一单摆装置竖直悬挂于某一深度为h(未知)且开口 向下的小筒中(单摆的下部分露于筒外),如图实-9-4甲所 示,将悬线拉离平衡位置一个小角度后由静止释放,设单 摆摆动过程中悬线不会碰到筒壁,如果本实验的长度测量
工具只能测量出筒的下端口到摆球球心的距离L,并通过改
变L而测出对应的摆动周期T,再以T2为纵轴、L为横轴作出 函数关系图象,那么就可以通过此图象得出小筒的深度h和 当地的重力加速度g.
台(带铁夹)、刻度尺、秒表、游标卡尺.
高中物理_4 探究单摆的周期与摆长的关系教学设计学情分析教材分析课后反思

《探究单摆周期与摆长的关系》教学设计【课标要求】《课程标准》要求学生通过实验,探究单摆的周期与摆长的关系。
会用单摆测定重力加速度。
为了研究周期与各种因素是否有关以及有怎样的关系,可以采用控制变量的方式进行定性和定量相结合的方案来研究这些关系【教学目标】1.知识与技能目标(1)知道单摆周期与哪些因素有关。
(2)知道单摆的周期公式。
(3)能运用单摆的周期公式解答有关实际问题。
2.过程与方法目标(1)通过单摆振动周期规律探究,培养学生猜想能力,实验设计能力,数据处理能力,交流协作能力。
(2)通过单摆周期公式的应用,培养学生运用物理知识解答实际问题的能力。
3.情感态度与价值观目标(1)结合物理学史介绍物理学家对单摆的研究,法展学生对自然的好奇性,激发学生乐于探究自然的奥秘。
(2)在单摆周期规律的探究中,培养学生的交流协作精神,使学生体验科学探究的艰辛和喜悦。
【学情分析】1.通过前面的学习,学生已经知道了单摆的概念,单摆的回复力等知识。
也了解了单摆做简谐运动的条件。
2.高二学生已有一定的物理学科方法,如观察实验,控制实验,假说方法,从现象归纳规律等,可以实现教材渗透的方法教育意图3.可能存在的困难:学生对实验的数据处理。
【教学重难点】1.教学重点:自足探究单摆的周期与哪些因素有关。
2.教学难点:定量实验,得出单摆的周期T与L的关系并对数据的处理。
【课前准备】1.课前完成对小组长学案题目完成情况的的检查和实验操作的指导培训。
【教学过程】一、实验目的:探究单摆的周期与摆长的关系。
二、实验器材:铁架台细线摆球(中间有孔)游标卡尺直尺秒表三、实验方法:控制变量法四、实验步骤:1、组装仪器2、测量摆长3、测量周期4、数据处理5、重复测量【自主探究】:探究一:探究单摆的周期与什么因素有关?物理量振幅(A)质量(M)摆长(L)周期(T)振幅(A)改变不变不变质量(M)不变改变不变摆长(L)不变不变改变探究二:探究单摆周期与摆长之间有什么定量的关系?物理量/组数 1 2 3 4 5摆长(L)周期(T)周期(T2)猜想:先通过简单的数据分析,对周期T与摆长L的定量关系做出猜猜,例如可能是T ∝L、 T∝L2或者、……然后按照猜测来确定纵坐标轴和横坐标轴。
高中物理单摆实验教案

高中物理单摆实验教案实验目的1. 观察并了解单摆的构造和运动特点。
2. 掌握测量单摆周期的方法。
3. 验证单摆周期与摆长、重力加速度的关系。
4. 学会处理实验数据,得出单摆周期公式。
实验原理单摆是由一根不可伸长的轻绳和一个小质点组成的简单摆动系统。
在不计空气阻力和绳子质量的理想情况下,单摆的周期T与其摆长L和当地重力加速度g有关,其关系可由以下公式表示:\[ T = 2\i \sqrt{\frac{L}{g}} \]其中,T是单摆的周期,即完成一次完整摆动所需的时间;L是摆长,即固定点到质点的距离;g是重力加速度。
实验器材- 支架和摆球- 米尺或卷尺- 秒表- 夹子或挂钩(用于固定摆线)- 细线- 重物(如小铁球)实验步骤1. 搭建单摆:将细线的一端用夹子固定在支架上,另一端连接重物作为摆球。
2. 测量摆长:使用米尺或卷尺从固定点到摆球中心的距离即为摆长L。
3. 调整摆球位置,使摆线水平拉直,并确保摆球在垂直平面内摆动。
4. 释放摆球,让其自由摆动,避免给予初速度或外力干扰。
5. 测量周期:启动秒表,记录摆球完成30至50次完整摆动的总时间,然后除以摆动次数得到平均周期T。
6. 改变摆长,重复步骤2至5,记录不同摆长下的周期时间。
7. 数据处理:利用实验数据计算得出不同摆长下的周期T,并与理论公式进行对比分析。
注意事项- 确保摆球质量足够大,以忽略空气阻力的影响。
- 测量时,应保持摆球在同一平面内摆动,避免出现圆锥摆现象。
- 记录时间要准确,减少人为误差。
- 多次测量取平均值,以提高实验准确性。
实验结果分析学生应根据收集的数据,绘制摆长L与周期平方T²的关系图,通过线性拟合验证T²与L 是否成正比关系。
最终,学生应能够根据图表和数据,验证单摆周期公式的正确性,并理解其中物理量之间的关系。
结论。
实验九 探究单摆的周期与摆长的关系

(3)将T2=0,L=-30 cm代入上式可得:
h=30 cm=0.3 m;
将T2=1.20,L=0代入上式可求得:g=π2 m/s2=9.86 m/s2. [答案] (1)BD (2)a (3)0.3 9.86
1.(2011· 北京海淀区测试)某同学做“用单摆测定重力加速 度”的实验时,测得的重力加速度数值明显大于当地的重 力加速度的实际值.造成这一情况的可能原因是 A.测量摆长时,把悬挂状态的摆线长当成摆长 B.测量周期时,当摆球通过平衡位置时启动秒表,此后 摆球第 30 次通过平衡位置时制动秒表,读出经历的时 t 间为 t,并由计算式 T= 求得周期 30 C.开始摆动时振幅过小 D.所用摆球的质量过大 ( )
图实-9-9
(2)如果测得的g值偏小,可能的原因是________(填写代号). A.测摆长时,忘记了摆球的半径 B.摆线上端悬点未固定,振动中出现松动,使摆线长度增 加了
C.开始计时时,秒表过早按下
D.实验中误将39次全振动次数记为40次
(3)某同学在实验中,测量6种不同摆长情况下单摆的振动 周期,记录表格如下: l/m 0.4 0.5 0.8 0.9 1.0 1.2
图实-9-7
解析:(1)小球应放在测脚下部位置,图乙正确. (2)由R随t的变化图象可知,单摆半个周期的时间为(t1+
t0)-t1=t0,所以单摆的周期为2t0.当换用直径为原来2倍
的小球做实验时,该单摆的摆长将会变大,故周期T将会 变大.Δt表示小球通过光敏电阻与激光器之间的时间, 当摆球直径变大时,通过的时间将变长. 答案:(1)乙 (2)2t0 变大 变大
台(带铁夹)、刻度尺、秒表、游标卡尺.
四、实验操作
1.实验步骤 (1)做单摆:让细线的一端穿过小球的小孔, 并打一个比小孔大一些的结,然后把线 的另一端用铁夹固定在铁架台上,并把
单摆实验教案.doc

实验:探究单摆周期与摆长的关系合肥八中物理组汪国安一、教学目标1、知识与技能:(1)探究摆长对单摆周期的影响及其定量关系(2)理解单摆周期与摆长的定量关系(3)学会借助计算机处理实验数据2、过程和方法:体验用计算机辅助系统进行科学探究的过程,学会科学探究的基本思想和基本方法3、情感、态度和价值观:科学研究的浓厚兴趣,培养科学探究能力,培养团队合作精神二、教学重点与难点重点:实验探究单摆周期与摆长的定量关系难点:精确测量摆长三、教学结构教学内容教师活动 学生活动 提出问题:单摆的周期可能和哪些物理量有关?用各种不同摆长,不同质量,不 同振幅的单摆作演示,提出问 题。
观察实验并根据观察到的现 象作出猜测 研究方案讨论引导学生先着重研究摆长对周 期的影响 实验方案设计(控制变量法) 学生通过实验探讨:单摆的周期和摆长有怎么样的关系实验:测量多组摆长和周期 数据 实验数据分析:曲线拟合用拟合方法处理实验数据 用改变参量方法处理数据 得出结论:单摆的周期与摆长的平方根成正比总结探究的思路和方法 探讨单摆周期与其他物理量之间关系提出问题:如何研究小球质量、 振幅、摆角等因素对单摆周期的 影响? 设计实验方案:周期与小球 质量,周期与振幅之间关系 学生通过实验研究周期与质量和振幅关系指导实验 学生分成三大组,分组实验 总结实验结论:周期与小球质量和振幅无关 总结实验结论,提出单摆等时性四、教学过程(一) 情景导入,提出问题复习单摆理想模型,分析描述单摆作简谐振动的条件。
(二) 观察实验,做出猜测1. 两摆的振幅不同2. 两摆的质量不同3. 两摆的摆长不同(三) 设计方案与讨论1:利用米尺和游标卡尺分别测量出细线长度和小球的半径,算出摆长。
2;让单摆做简谐运动,用秒表测出振动周期。
(课件出示注意事项)注意事项1.为减小误差,测量时间时从摆球经过平衡位置计时,此处摆球速度最大,计时误差相对较小。
2.为提高测量准确度,采取叠加测量,即测量30个周期时间,再除以次数,也可减小测量误差。
1 实验十一 探究单摆周期与摆长的关系

实验十一探究单摆周期与摆长的关系一、实验目的1.知道把单摆的运动看做简谐运动的条件.2.会探究与单摆的周期有关的因素.3.会用单摆测定重力加速度.二、实验原理单摆在摆角小于10°时,其振动周期跟摆角的大小和摆球的质量无关,单摆的周期公式是T=2πlg,由此得g=4π2lT2,因此测出单摆的摆长l和振动周期T,就可以求出当地的重力加速度值.三、实验器材带孔小钢球一个、细丝线一条(长约1 m)、毫米刻度尺一把、秒表、游标卡尺、带铁夹的铁架台.四、实验步骤1.做单摆:取约1 m 长的细丝线穿过带孔的小钢球,并打一个比小孔大一些的结,然后把线的另一端用铁夹固定在铁架台上,并把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂.2.测摆长:用米尺量出摆线长l (精确到毫米),用游标卡尺测出小球直径D (也精确到毫米),则单摆的摆长l ′=l +D2.3.测周期:将单摆从平衡位置拉开一个角度(小于10°),然后释放小球,记下单摆做30~50次全振动的总时间,算出平均每一次全振动的时间,即为单摆的振动周期.反复测量三次,再算出测得周期数值的平均值.4.改变摆长,重做几次实验. 五、数据处理1.公式法:将测得的几次的周期T 和摆长l 代入公式g =4π2lT 2中算出重力加速度g 的值,再算出g 的平均值,即为当地的重力加速度的值.2.图象法:由单摆的周期公式T =2π·l g 可得l =g4π2T 2,因此以摆长l 为纵轴、以T 2为横轴作出的l -T 2图象是一条过原点的直线,如图所示,求出斜率k ,即可求出g 值.g =4π2k ,k =lT 2=Δl ΔT 2.六、注意事项1.选择材料时应选择细、轻又不易伸长的线,长度一般在1 m 左右,小球应选用密度较大的金属球,直径应较小,最好不超过2 cm.2.单摆悬线的上端不可随意卷在铁夹的杆上,应夹紧在铁夹中,以免摆动时发生摆线下滑、摆长改变的现象.3.注意摆动时控制摆线偏离竖直方向不超过10°.可通过估算振幅的办法掌握. 4.摆球振动时,要使之保持在同一个竖直平面内,不要形成圆锥摆.5.计算单摆的振动次数时,应从摆球通过最低位置时开始计时,为便于计时,可在摆球平衡位置的正下方作一标记.以后摆球每次从同一方向通过最低位置时进行计数,且在数“零”的同时按下秒表,开始计时计数.七、误差分析1.系统误差:主要来源于单摆模型本身是否符合要求.即:悬点是否固定,摆球是否可看做质点,球、线是否符合要求,摆动是圆锥摆还是在同一竖直平面内振动以及测量哪段长度作为摆长等.只要注意了上面这些问题,就可以使系统误差减小到远小于偶然误差而达到忽略不计的程度.2.偶然误差:主要来自时间(即单摆周期)的测量上.因此,要注意测准时间(周期).要从摆球通过平衡位置开始计时,并采用倒计时计数的方法,即4,3,2,1,0,1,2,…在数“零”的同时按下秒表开始计时.不能多计或漏计振动次数.为了减小偶然误差,应进行多次测量后取平均值.对实验原理操作及误差分析的考查【典题例析】某同学利用单摆测量重力加速度.(1)为了使测量误差尽量小,下列说法正确的是________.A.组装单摆须选用密度和直径都较小的摆球B.组装单摆须选用轻且不易伸长的细线C.实验时须使摆球在同一竖直面内摆动D.摆长一定的情况下,摆的振幅尽量大(2)如图所示,在物理支架的竖直立柱上固定有摆长约1 m的单摆.实验时,由于仅有量程为20 cm、精度为1 mm的钢板刻度尺,于是他先使摆球自然下垂,在竖直立柱上与摆球最下端处于同一水平面的位置做一标记点,测出单摆的周期T1;然后保持悬点位置不变,设法将摆长缩短一些,再次使摆球自然下垂,用同样方法在竖直立柱上做另一标记点,并测出单摆的周期T2;最后用钢板刻度尺量出竖直立柱上两标记点之间的距离ΔL.用上述测量结果,写出重力加速度的表达式g=________.[解析](1)应选用密度较大且直径较小的摆球,A错.在摆动中要尽力保证摆长不变,故应选用不易伸长的细线,B对.摆动中要避免单摆成为圆锥摆,摆球要在同一竖直面内摆动,C对.摆动中摆角要控制在5°以内,所以D错.(2)设两次摆动时单摆的摆长分别为L1和L2,则T1=2πL1g,T2=2πL2g,则ΔL=g4π2·(T21-T22),因此,g=4π2ΔLT21-T22.[答案](1)BC(2)4π2ΔLT21-T22(1)构成单摆的条件:细线的质量要小、弹性要小,选用体积小、密度大的小球,摆角不超过5°.(2)要使摆球在同一竖直面内摆动,不能形成圆锥摆,方法是将摆球拉到一定位置后由静止释放.(3)测周期的方法①要从摆球过平衡位置时开始计时.因为此处速度大、计时误差小,而最高点速度小、计时误差大.②要测多次全振动的时间来计算周期.如在摆球从某一方向经过平衡位置时开始计时,且在数“零”的同时按下秒表,以后每当摆球从同一方向通过平衡位置时计数1次.某实验小组在探究单摆周期与摆长的关系的实验中:(1)用游标卡尺测定摆球的直径,测量结果如图所示,则该摆球的直径为________cm.(2)小组成员在实验过程中有如下说法,其中正确的是________(填选项前的字母).A.把单摆从平衡位置拉开30°的摆角,并在释放摆球的同时开始计时B.测量摆球通过最低点100次的时间t,则单摆周期为t100C.用悬线的长度加摆球的直径作为摆长,代入单摆周期公式计算得到的重力加速度值偏大D.选择密度较小的摆球,测得的重力加速度值误差较小解析:(1)主尺刻度加游标尺刻度的总和等于最后读数,0.9 cm+7×110mm=0.97 cm,不需要估读.(2)单摆在摆角较小时才能看做简谐运动,其周期公式才成立,为减小计时误差,应从摆球速度最大的最低点瞬间计时,A错误;通过最低点100次的过程中,经过的时间是50个周期,B错误;应选用密度较大、直径较小的球以减小空气阻力的影响,D错误;悬线的长度加摆球的半径才等于摆长,由单摆周期公式T=2πl+rg可知,若摆长记录值偏大,测定的重力加速度也偏大,C正确.答案:(1)0.97(2)C对实验数据处理的考查【典题例析】(2020·湖州调研)下表是探究单摆周期与摆长的关系实验中获得的有关数据:(2)利用图象,取T2=4.2 s2时,l=________m.重力加速度g=________m/s2.[解析](1)由T=2πl g得g=4π2·lT2或l=g4π2·T2,所以图象是过原点且斜率为g4π2的一条直线.l-T2图象如图所示.(2)T2=4.2 s2时,从图中画出的直线上可读出其摆长l=1.05 m,将T2与l代入公式g=4π2l2.T2,得g=9.86 m/s[答案](1)见解析图(2)1.059.86某同学用实验的方法探究影响单摆周期的因素.(1)他组装单摆时,在摆线上端的悬点处,用一块开有狭缝的橡皮夹牢摆线,再用铁架台的铁夹将橡皮夹紧,如图所示.这样做的目的是________(填字母代号).A.保证摆动过程中摆长不变B.可使周期测量得更加准确C.需要改变摆长时便于调节D.保证摆球在同一竖直平面内摆动(2)他组装好单摆后在摆球自然悬垂的情况下,用毫米刻度尺从悬点量到摆球的最低端的长度L =0.999 0 m ,再用游标卡尺测量摆球直径,结果如图所示,则该摆球的直径为________mm ,单摆摆长为________m.(3)下列振动图象真实地描述了对摆长约为1 m 的单摆进行周期测量的四种操作过程,图中横坐标原点表示计时开始,A 、B 、C 均为30次全振动的图象,已知sin 5°=0.087,sin 15°=0.26,这四种操作过程合乎实验要求且误差最小的是______(填字母代号).解析:(1)用一块开有狭缝的橡皮夹牢摆线的目的是保证摆动过程中摆长不变,需要改变摆长时便于调节,A 、C 正确.(2)根据游标卡尺读数规则,摆球直径为12.0 mm ,单摆摆长为L -d2=0.999 0 m -0.0060 m =0.993 0 m.(3)单摆测量周期,必须从平衡位置开始计时,且摆角小于10°,所以合乎实验要求且误差最小的是A.答案:(1)AC(2)12.00.993 0(3)A[随堂检测]1.(2020·丽水质检)在“用单摆测定重力加速度”的实验中:(1)下面所给器材中,选用哪些器材较好,请把所选用器材前的字母依次填写在题后的横线上.A.长1 m左右的细线B.长30 cm左右的细线C.直径2 cm的铅球D.直径2 cm的铝球E.秒表F.时钟G.最小刻度是厘米的直尺H.最小刻度是毫米的直尺所选用的器材是________.(2)实验时对摆线偏离竖直线的偏角要求是___________________________________.解析:本实验的原理:振动的单摆,当摆角<10°时,其振动周期与摆长的平方根成正比,与重力加速度的平方根成反比,而与偏角的大小(振幅)、摆球的质量无关,周期公式为T=2πlg,变换这个公式可得g=4π2lT2.因此,本实验中测出单摆的摆长l和振动周期T,就可以求出当地的重力加速度g的值,本实验的目的是测量重力加速度g的值,而非验证单摆的振动规律.因此实验中应选用较长的摆长l,这样既能减小摆长的测量误差,又易于保证偏角θ不大于10°,而且由于振动缓慢,方便计数和计时.本实验所用的实际摆要符合理论要求,摆长要有1 m左右,应选用不易伸长的细线,摆球直径要小于2 cm,应选用较重的小球,故选A、C.由于重力加速度g与周期的平方成反比,周期T的测量误差对g的影响是较大的,所用计时工具应选精确度高一些的,故选E.由于摆长l 应是悬点到铅球的边缘的距离l 加上铅球的半径r .铅球半径用游标卡尺测量出(也可由教师测出后提供数据),因此l 应读数准确到毫米位.实验中应用米尺或钢卷尺来测量,故选H.答案:(1)A 、C 、E 、H (2)小于10°2.(2016·10月浙江选考)在“探究单摆周期与摆长的关系”实验中,测量单摆的周期时,图中________(填“甲”“乙”或“丙”)作为计时开始与终止的位置更好些.答案:乙3.某同学在做“利用单摆测重力加速度”的实验时,先测得摆线长为101.00 cm ,摆球直径为2.00 cm ,然后用秒表记录了单摆振动50次所用的时间为101.5 s ,则(1)他测得的重力加速度g =________m/s 2.(2)为了提高实验精度,在实验中可改变几次摆长l 并测出相应的周期T ,从而得出一组对应的l 与T 的数据,再以l 为横坐标、T 2为纵坐标将所得数据连成直线,并求得该直线的斜率k .则重力加速度g =________.(用k 表示)解析:(1)本次实验中的摆长l =L +r =(101.00+1.00)cm =1.020 0 m ,周期T =t N =101.550s =2.03 s ,由公式g =4π2lT2可以解得g =9.76 m/s 2.(2)由公式g =4π2l T 2得:T 2=4π2g l ,这是一条T 2关于l 的一元一次函数(如y =kx ),所以它的斜率是k =4π2g ,所以g =4π2k.答案:(1)9.76 (2)4π2k4.(2020·湖州质检)在做“用单摆测定重力加速度”的实验过程中:(1)小李同学用游标卡尺测得摆球的直径如图所示,则摆球直径d =________cm.(2)小张同学实验时却不小心忘记测量小球的半径,但测量了两次摆线长和周期,第一次测得悬线长为L 1,对应振动周期为T 1,第二次测得悬线长为L 2,对应单摆的振动周期为T 2,根据以上测量数据也可导出重力加速度的表达式为________.解析:(1)游标卡尺为20分度,精确度为0.05 mm ,主尺读数为20 mm ,游标尺读数为0.05×6=0.30 mm ,所以测得摆球的直径d =2.030 cm.(2)设摆球半径为r ,则:T 1=2πL 1+r g ,T 2=2π L 2+r g 联立两式解得:g =4π2(L 1-L 2)T 21-T 22. 答案:(1)2.030 (2)4π2(L 1-L 2)T 21-T 22。
实验 探究单摆周期与摆长的关系

跟踪训练 1 (2011· 福建)某实验小组在利用单摆测定当地 重力加速度的实验中: (1)用游标卡尺测定摆球的直径,测量结果如图所示,则该 摆球的直径为________ cm.
(2)小组成员在实验过程中有如下说法,其中正确的是 ________.(填选项前的字母) A.把单摆从平衡位置拉开 30° 的摆角,并在释放摆球的同 时开始计时 t B.测量摆球通过最低点 100 次的时间 t,则单摆周期 100 C.用悬线的长度加摆球的直径作为摆长,代入单摆周期 公式计算得到的重力加速度值偏大 D.选择密度较小的摆球,测得的重力加速度值误差较小
3.用刻度尺量出摆线长度 l′,精确到毫米,用游标卡尺 d 测出摆球的直径 d,即得出小球的半径为 ,计算出摆长 l=l′ 2 d + . 2 4.把单摆从平衡位置处拉开一个很小的角度(不超过 5° ), 然后放开小球,让小球摆动,待摆动平稳后测出单摆完成 N(一 般为 30~50)次全振动所用的时间 t,计算出小球完成 1 次全振 t 动所用的时间,这个时间就是单摆的振动周期,即 T= (N 为 N 全振动的次数),反复测 3 次,再算出周期 T 的平均值.
三、实验器材 铁架台、中心有小孔的金属小球、长约 1 m 的细线、秒表、 刻度尺、游标卡尺.
四、实验步骤 1.让线的一端穿过小球的小孔,然后打一个线结,做成单 摆. 2. 把线的上端用铁夹固定在铁架台上,把铁架台放在实验 桌边,使铁夹伸到桌面以外,让摆球自由下垂,在单摆平衡位 置处作上标记,如图所示.
F.时钟 G.最小刻度是厘米的直尺 H.最小刻度是毫米的直尺 所选用的器材是________. (2)实验时对摆线偏离竖直线的偏角要求是________.
答案 (1)ACEH (2)小于 10°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十三 探究单摆的摆长与周期的关系考纲解读1.知道把单摆的运动看做简谐运动的条件.2.会探究与单摆的周期有关的因素.3.会用单摆测定重力加速度.基本实验要求 1.实验原理当偏角很小时,单摆做简谐运动,其运动周期为T =2πlg,它与偏角的大小及摆球的质量无关,由此得到g =4π2lT 2.因此,只要测出摆长l 和振动周期T ,就可以求出当地的重力加速度g 的值.2.实验器材带有铁夹的铁架台、中心有小孔的金属小球,不易伸长的细线(约1米)、秒表、毫米刻度尺和游标卡尺. 3.实验步骤(1)让细线的一端穿过金属小球的小孔,然后打一个比小孔大一些的线结,做成单摆.(2)把细线的上端用铁夹固定在铁架台上,把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂,在单摆平衡位置处作上标记,如实验原理图所示.(3)用毫米刻度尺量出摆线长度l ′,用游标卡尺测出摆球的直径,即得出金属小球半径r ,计算出摆长l =l ′+r.(4)把单摆从平衡位置处拉开一个很小的角度(不超过5°),然后放开金属小球,让金属小球摆动,待摆动平稳后测出单摆完成30~50次全振动所用的时间t ,计算出金属小球完成一次全振动所用时间,这个时间就是单摆的振动周期,即T =t N (N 为全振动的次数),反复测3次,再算出周期T =T 1+T 2+T 33.(5)根据单摆周期公式T =2πl g 计算当地的重力加速度g =4π2l T2. (6)改变摆长,重做几次实验,计算出每次实验的重力加速度值,求出它们的平均值,该平均值即为当地的重力加速度值.(7)将测得的重力加速度值与当地的重力加速度值相比较,分析产生误差的可能原因. 规律方法总结 1.注意事项(1)构成单摆的条件:细线的质量要小、弹性要小,选用体积小、密度大的小球,摆角不超过5°.(2)要使摆球在同一竖直面内摆动,不能形成圆锥摆,方法是将摆球拉到一定位置后由静止释放. (3)测周期的方法:①要从摆球过平衡位置时开始计时.因为此处速度大、计时误差小,而最高点速度小、计时误差大.②要测多次全振动的时间来计算周期.如在摆球过平衡位置时开始计时,且在数“零”的同时按下秒表,以后每当摆球从同一方向通过平衡位置时计数1次.(4)本实验可以采用图象法来处理数据.即用纵轴表示摆长l ,用横轴表示T 2,将实验所得数据在坐标平面上标出,应该得到一条倾斜直线,直线的斜率k =g4π2.这是在众多的实验中经常采用的科学处理数据的重要办法. 2.数据处理处理数据有两种方法:(1)公式法:测出30次或50次全振动的时间t ,利用T =tN 求出周期;不改变摆长,反复测量三次,算出三次测得的周期的平均值T ,然后代入公式g =4π2lT 2求重力加速度.(2)图象法:由单摆周期公式不难推出:l =g 4π2T 2,因此,分别测出一系列摆长l 对应的周期T ,作l -T 2的图象,图象应是一条通过原点的直线,求出图线的斜率k =Δl ΔT 2,即可利用g =4π2k 求得重力加速度值,如图1所示.图1 3.误差分析(1)系统误差的主要来源:悬点不固定,球、线不符合要求,振动是圆锥摆而不是在同一竖直平面内的振动等.(2)偶然误差主要来自时间的测量上,因此,要从摆球通过平衡位置时开始计时,不能多计或漏计振动次数.考点一 实验操作与误差分析例1 (2020·天津·9(2))某同学用实验的方法探究影响单摆周期的因素.①他组装单摆时,在摆线上端的悬点处,用一块开有狭缝的橡皮夹牢摆线,再用铁架台的铁夹将橡皮夹紧,如图2所示.这样做的目的是________(填字母代号).图2A .保证摆动过程中摆长不变B .可使周期测量得更加准确C .需要改变摆长时便于调节D .保证摆球在同一竖直平面内摆动②他组装好单摆后在摆球自然悬垂的情况下,用毫米刻度尺从悬点量到摆球的最低端的长度L =0.999 0 m ,再用游标卡尺测量摆球直径,结果如图3所示,则该摆球的直径为________mm ,单摆摆长为________m.图3③下列振动图象真实地描述了对摆长约为1 m 的单摆进行周期测量的四种操作过程,图中横坐标原点表示计时开始,A 、B 、C 均为30次全振动的图象,已知sin 5°=0.087,sin 15°=0.26,这四种操作过程合乎实验要求且误差最小的是____(填字母代号).解析 ①在“探究影响单摆周期的因素”实验中,应使单摆在摆动过程中摆长不变,而且摆长便于调节,故选项A 、C 正确,选项B 、D 错误. ②摆球的直径d =12 mm +0×0.1 mm =12.0 mm摆长l =L -d2=0.999 0 m -0.006 0 m =0.993 0 m.③单摆振动的摆角θ≤5°,当θ=5°时单摆振动的振幅A =lsin 5°=0.087 m =8.7 cm ,且为了计时准确,应在摆球摆至平衡位置时开始计时,故选项A 正确,选项B 、C 、D 错误. 答案 ①AC ②12.0 0.993 0 ③A 变式题组1.[实验操作](2020·安徽·21Ⅰ)根据单摆周期公式T =2πlg,可以通过实验测量当地的重力加速度.如图4甲所示,将细线的上端固定在铁架台上,下端系一小钢球,就做成了单摆.图4(1)用游标卡尺测量小钢球直径,示数如图乙所示,读数为________mm. (2)以下是实验过程中的一些做法,其中正确的有________. a .摆线要选择细些的、伸缩性小些的,并且尽可能长一些 b .摆球尽量选择质量大些、体积小些的c .为了使摆的周期大一些,以方便测量,开始时拉开摆球,使摆线相距平衡位置有较大的角度d .拉开摆球,使摆线偏离平衡位置不大于5°,在释放摆球的同时开始计时,当摆球回到开始位置时停止计时,此时间间隔Δt 即为单摆周期Te .拉开摆球,使摆线偏离平衡位置不大于5°,释放摆球,当摆球摆动稳定后,从平衡位置开始计时,记下摆球做50次全振动所用的时间Δt,则单摆周期T =Δt50答案 (1)18.6 (2)abe解析 (1)十分度游标尺的第6个刻度线与主尺刻度线对齐,所以读数为18.6 mm.(2)对于单摆,摆线质量可忽略且不可伸长,所以应选伸缩性小的细线,摆球应选密度较大、体积小的钢球;为使摆的周期大一些,由T =2πlg知,摆线应长些,所以选项a 、b 正确,为使单摆具有等时性,摆角应小于5°,要减小测量周期的误差,计时起点应选在摆球的平衡位置,且测量多次(N)全振动的总时间(Δt),然后再算出周期T =ΔtN,选项e 正确. 2.[误差分析]某实验小组在利用单摆测定当地重力加速度的实验中:图5(1)用游标卡尺测定摆球的直径,测量结果如图5所示,则该摆球的直径为________cm. (2)小组成员在实验过程中有如下说法,其中正确的是________(填选项前的字母). A .把单摆从平衡位置拉开30°的摆角,并在释放摆球的同时开始计时 B .测量摆球通过最低点100次的时间t ,则单摆周期为t100C .用悬线的长度加摆球的直径作为摆长,代入单摆周期公式计算得到的重力加速度值偏大D .选择密度较小的摆球,测得的重力加速度值误差较小 答案 (1)0.97 (2)C解析 (1)由游标尺的“0”刻线在主尺上的位置读出摆球直径的整毫米数为9mm=0.9 cm ,游标尺中第7条刻度线与主尺刻度线对齐,所以应为0.07 cm ,所以摆球直径为0.9 cm +0.07 cm =0.97 cm. (2)单摆应从最低点计时,故A 错;因一个周期内,单摆有2次通过最低点,故B 错;由T =2πlg得,g =4π2lT 2,若用悬线的长度加摆球的直径作为摆长,则g 偏大,C 对;因空气阻力的影响,选密度小的摆球,测得的g 值误差大,D 错.考点二 实验数据的处理例2 在探究单摆周期与摆长关系的实验中,(1)关于安装仪器及测量时的一些实验操作,下列说法中正确的是( ) A .用米尺测出摆线的长度,记为摆长lB .先将摆球和摆线放在水平桌面上测量摆长l ,再将单摆悬挂在铁架台上C .使摆线偏离竖直方向某一角度α(接近5°),然后由静止释放摆球D .测出摆球两次通过最低点的时间间隔记为此单摆振动的周期 (2)实验测得的数据如下表所示:次数 1 2 3 4 5 摆长l/cm80.00 90.00 100.00 110.00 120.00 30次全振动时间t/s 53.8 56.9 60.0 62.8 65.7 振动周期T/s 1.79 1.90 2.00 2.09 2.19 振动周期的平方T 2/s 23.203.614.004.374.802图6(3)根据数据及图象可知单摆周期的平方与摆长的关系是________.(4)根据图象,可求得当地的重力加速度为________m/s 2.(π=3.14,结果保留3位有效数字)解析 (1)本实验中,应将摆球和摆线组成单摆之后再测量其摆长,摆长应为悬点到摆球球心的距离,故A 、B 错误;测量单摆的周期时,应为相邻两次通过最低点并且通过最低点的速度方向相同,即单摆做一次全振动,这段时间才为一个周期,为了减小误差,须测量单摆的多个周期,然后再取平均值求出一个周期,故D 错误;单摆在摆角小于5°时可认为做简谐运动,故C 正确. (2)通过描点、连线可得到单摆的T 2-l 图象,近似为一条直线. (3)通过作出的图象说明单摆周期的平方和摆长成正比.(4)根据图象求出图线的斜率k ,再根据单摆的周期公式可得g =4π2k ,进而求出重力加速度g.答案 (1)C (2)如图所示(3)成正比 (4)9.86 变式题组3.[数据处理]下表是用单摆测定重力加速度实验中获得的有关数据:摆长l m 0.5 0.6 0.8 1.1 周期T 2 s 22.02.43.24.4(1)利用上述数据,在图7的坐标系中描绘出l -T 2图象.图7(2)利用图象,取T 2=4.2 s 2时,l =________ m ,重力加速度g =________ m/s 2.(结果保留三位有效数字) 答案 (1)见解析图 (2)1.05 9.86 解析 由T =2πl g 得l =g 4π2T 2,所以图象是过原点且斜率为g4π2的一条直线. (1)l -T 2图象如图所示.(2)T 2=4.2 s 2时,从图中可读出其摆长l =1.05 m ,将T 2和l 代入公式g =4π2l T2,得g ≈9.86 m/s 2.4.[数据处理]某同学在“用单摆测定重力加速度”的实验中进行了如下的操作:(1)用游标尺上有10个小格的游标卡尺测量摆球的直径如图8甲所示,可读出摆球的直径为________ cm.把摆球用细线悬挂在铁架台上,测量摆线长,通过计算得到摆长L.(2)用秒表测量单摆的周期.当单摆摆动稳定且到达最低点时开始计时并记为n =1,单摆每经过最低点记一次数,当数到n =60时秒表的示数如图乙所示,该单摆的周期是T =________ s(结果保留三位有效数字).(3)测量出多组周期T 、摆长L 的数值后,画出T 2-L 图线如图丙,此图线斜率的物理意义是( ) A .g B.1gC.4π2g D.g 4π2(4)在(3)中,描点时若误将摆线长当作摆长,那么画出的直线将不通过原点,由图线斜率得到的重力加速度与原来相比,其大小( )A .偏大B .偏小C .不变D .都有可能(5)该小组的另一同学没有使用游标卡尺也测出了重力加速度,他采用的方法是:先测出一摆线较长的单摆的振动周期T 1,然后把摆线缩短适当的长度ΔL,再测出其振动周期T 2.用该同学测出的物理量表示重力加速度g =________. 答案 (1)2.06 (2)2.28 (3)C (4)C (5)4π2ΔL T 21-T 22解析 (1)摆球的直径为d =20 mm +6×110mm =20.6 mm =2.06 cm.(2)秒表的读数为t =60 s +7.4 s =67.4 s ,根据题意t =60-12T =592T ,所以周期T =2t59≈2.28 s .(3)根据单摆周期公式T =2πL g ,可得T 2L =4π2g=k(常数),所以选项C 正确.(4)因为T 2L =4π2g =k(常数),所以ΔT 2ΔL =4π2g =k ,若误将摆线长当作摆长,画出的直线将不通过原点,但图线的斜率仍然满足T 21-T 22L 1-L 2=4π2g =k ,所以由图线的斜率得到的重力加速度不变.(5)根据(4)的分析,ΔT 2ΔL =4π2g ,所以g =4π2ΔL ΔT 2=4π2ΔLT 21-T 22.5.[数据处理]有两个同学利用假期分别去参观北大和南大的物理实验室,各自利用先进的DIS 系统较准确地探究了“单摆的周期T 与摆长L 的关系”,他们通过校园网交换了实验数据,并由计算机绘制了T 2-L 图象,如图9甲所示 .去北大的同学们所测实结果对应的图线是________(选填“A ”或“B ”).另外,在南大做探究的同学还利用计算机绘制了两种单摆的振动图象(如图乙),由图可知,两单摆摆长之比L AL B =________.答案 B 2 解析 由T =2πL g 得,T 2=4π2g L ,根据题图甲可知4π2g A >4π2g B,即g A <g B ,因为北大更靠近北极,其所在的重力加速度更大些,所以应选B ;根据题图甲可知g A g B =g A 4π2·4π2g B =k B k A =89,由题图乙可得T A T B =32,根据T 2=4π2g L 得L A L B T 2A g AT 2B g B=2.考点三 实验拓展与创新例3 (1)在“探究单摆周期与摆长的关系”实验中,两位同学用游标卡尺测量小球的直径的操作如图10甲、乙所示.测量方法正确的是________(选填“甲”或“乙”).图10(2)实验时,若摆球在垂直纸面的平面内摆动,为了将人工记录振动次数改为自动记录振动次数,在摆球运动的最低点的左、右两侧分别放置一激光光源与光敏电阻,如图11甲所示.光敏电阻与某一自动记录仪相连,该仪器显示的光敏电阻阻值R 随时间t 的变化图线如图乙所示,则该单摆的振动周期为________.若保持悬点到小球顶点的绳长不变,改用直径是原小球直径2倍的另一小球进行实验,则该单摆的周期将________(填“变大”“不变”或“变小”),图乙中的Δt 将________(填“变大”“不变”或“变小”).图11解析 (1)游标卡尺应该用两外测量爪对齐的地方测量,正确的是图乙.(2)一个周期内小球应该两次经过最低点,使光敏电阻的阻值发生变化,故周期为t 1+2t 0-t 1=2t 0;小球的直径变大后,摆长变长,周期变大;同时小球直径变大后使得每次经过最低点时摆球的挡光的时间变长,即Δt 变大.答案 (1)乙 (2)2t 0 变大 变大 变式题组6.[实验创新]为了研究滑块的运动,选用滑块、钩码、纸带、毫米刻度尺、带滑轮的木板以及由漏斗和细线构成的单摆等组成如图12甲所示装置,实验中,滑块在钩码作用下拖动纸带做匀加速直线运动,同时让单摆垂直于纸带运动方向做小摆幅摆动,漏斗可以漏出很细的有色液体,在纸带上留下的痕迹记录了漏斗在不同时刻的位置,如图乙所示.图12(1)漏斗和细线构成的单摆在该实验中所起的作用与下列哪个仪器相同?________(填写仪器序号). A .打点计时器 B .秒表 C .毫米刻度尺 D .电流表(2)已知单摆周期T =2 s ,在图乙中AB =24.10 cm ,BC =27.90 cm 、CD =31.90 cm 、DE =36.10 cm ,则单摆在经过D 点时,滑块的瞬时速度为v D =________ m/s ,滑块的加速度为a =________ m/s 2(结果保留两位小数).答案 (1)A (2)0.34 0.04解析 (1)单摆振动具有周期性,摆球每隔半个周期经过纸带中线一次,单摆在该实验中所起的作用与打点计时器相同,故选A.(2)在匀变速直线运动中时间中点的瞬时速度大小等于该过程中的平均速度大小,故有v D =x CET =0.34 m/s据匀变速直线运动的推论Δx=aT 2,有: x 4-x 2=2a 1(T 2)2 ① x 3-x 1=2a 2(T 2)2②联立①②有:a =a 1+a 22=x 4+x 3-x 2-x 1T 2代入数据得a =0.04 m/s 27. [实验创新]将一单摆装置竖直悬挂于某一深度为h(未知)且开口向下的小筒中(单摆的下部分露于筒外),如图13所示,将悬线拉离平衡位置一个小角度后由静止释放,单摆振动过程中悬线不会碰到筒壁,如果本实验的长度测量工具只能测量出筒的下端口到摆球球心的距离L ,并通过改变L 而测出对应的摆动周期T ,再以T 2为纵轴、L 为横轴作出T 2-L 函数关系图象,那么就可以通过此图象得出小筒的深度h 和当地的重力加速度g.图13(1)如果实验中所得到的T 2-L 关系图象如图14所示,那么真正的图象应该是a 、b 、c 中的________;图14(2)由图可知,小筒的深度h =________ m ,当地重力速度g =________ m/s 2;(计算结果保留三位有效数字)(3)在实验中,每次测量时总是错误地把摆线加上球直径当成了摆长,如果仍然采用题中图象方法处理数据,你认为会对实验结果造成怎么样的影响?对h 的影响是________,对g 的影响是________. A .无影响 B .比真实值小 C .比真实值大 D .不确定 答案 (1)a (2)0.315 9.86 (3)B A 解析 (1)由单摆周期公式T =2πL +h g 得T 2=4π2L g +4π2h g当L =0时,T 2=4π2hg>0,则真正的图象是a.(2)当T 2=0时,L =-h ,即图象与L 轴交点坐标h =-L =31.5 cm =0.315 m .图线的斜率大小k =4π2g,由图象可得k =4,代入解得:g ≈9.86 m/s 2.(3)根据(1)中分析可知把摆线加上球直径当成了摆长,即L 偏大,导致图线的纵轴截距偏小,斜率不变.故对h 的影响是比真实值小,对g 的值没有影响.高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。