大数据关联分析模型
工业大数据概念、架构、分析模型

一工业大数据的发展背景当前,以大数据、云计算、移动物联网等为代表的新一轮科技革命席卷全球,正在构筑信息互通、资源共享、能力协同、开放合作的制造业新体系,极大扩展了制造业创新与发展空间。
新一代信息通信技术的发展驱动制造业迈向转型升级的新阶段——工业大数据驱动的新阶段,这是在新技术条件下制造业生产全流程、全产业链、产品全生命周期数据可获取、可分析、可执行的必然结果。
大数据(Big Data)指的是大容量的、复杂的、不断增长的、具有多个自主来源的数据集。
工业大数据是工业互联网的核心要素。
《中国制造2025》规划中明确指出,工业大数据是我国制造业转型升级的重要战略资源,需要针对我国工业自己的特点有效利用工业大数据推动工业升级。
一方面,我国是世界工厂,实体制造比重大,但技术含量低、劳动密集、高资源消耗制造的比重也大,实体工厂和实体制造升级迫在眉睫;另一方面,我国互联网产业发展具有领先优势,过去十多年消费互联网的高速发展使互联网技术得到长足发展,互联网思维深入人心,需要充分发挥这一优势,并将其与制造业紧密结合,促进制造业升级和生产性服务业的发展。
二工业大数据的内涵工业大数据即工业数据的总和,其来源主要包括企业信息化数据、工业物联网数据、“跨界”数据。
企业信息系统存储了高价值密度的核心业务数据,积累的产品研发数据、生产制造数据、供应链数据以及客户服务数据存在于企业或产业链内部,是工业领域传统数据资产。
近年来,物联网技术快速发展,工业物联网成为工业大数据新的、增长最快的来源之一,它能实时自动采集设备和装备运行状态数据,并对它们实施远程实时监控。
互联网也促进了工业与经济社会各个领域的深度融合,人们开始关注气候变化、生态约束、政治事件、自然灾害、市场变化等因素对企业经营产生的影响,因此外部跨界数据已成为工业大数据不可忽视的来源。
人和机器是产生工业大数据的主体。
人产生的数据是指由人输入计算机中的数据,例如设计数据、业务数据等;机器数据是指由传感器、仪器仪表和智能终端等采集的数据。
大数据分析师如何进行数据挖掘和关联分析

大数据分析师如何进行数据挖掘和关联分析一. 数据挖掘的概念和流程数据挖掘是通过运用统计分析、机器学习和模式识别等技术,从大量的数据中发现有用的模式、规律和知识。
数据挖掘的过程通常包括数据收集、数据预处理、特征选择、模型构建、模型评估和模型应用等步骤。
1. 数据收集数据挖掘的第一步是收集相关的数据。
数据可以来自各种来源,如数据库、文本文件、传感器、社交媒体等。
大数据分析师需要了解业务需求,确定需要收集的数据类型和来源,并采用合适的方法获取数据。
2. 数据预处理数据预处理是数据挖掘中非常重要的一步,它包括数据清洗、数据集成、数据转换和数据规约。
数据清洗是指去除数据中的噪声和异常值,确保数据的质量和准确性。
数据集成是将多个数据源的数据整合到一起,方便后续分析。
数据转换是对数据进行规范化和变换,以适应挖掘算法的需要。
数据规约是对数据进行简化和压缩,减少数据存储和计算的开销。
3. 特征选择特征选择是从大量的特征中选择出最具有代表性和区分性的特征。
通过特征选择可以减少数据维度,提高模型的训练和预测效率。
大数据分析师需要运用统计方法、信息论和机器学习等技术,对特征进行评估和选择。
4. 模型构建模型构建是数据挖掘的核心步骤,它根据业务需求选择合适的挖掘算法和模型。
常用的挖掘算法包括关联规则挖掘、分类和回归分析、聚类分析和时序分析等。
大数据分析师需要根据业务场景和数据特点选择合适的算法,并对模型进行建立和调优。
5. 模型评估模型评估是对挖掘模型进行性能评估和验证。
通过评估可以判断模型的准确性、稳定性和可信度。
评估方法包括交叉验证、混淆矩阵、ROC曲线等。
大数据分析师需要对模型进行评估,识别潜在的问题和改善的方向。
6. 模型应用模型应用是将挖掘模型应用到实际业务中,为决策提供支持和指导。
大数据分析师需要将挖掘结果进行解释和可视化,以便业务人员理解和接受,并根据反馈信息对模型进行迭代和优化。
二. 关联分析的方法和应用关联分析是一种常见的数据挖掘方法,它用于发现数据中的相关性和依赖关系。
大数据分析中关联分析技术的使用教程

大数据分析中关联分析技术的使用教程大数据分析已经成为当今信息时代的重中之重,企业和组织通过对数据进行深入分析,能够获得有价值的洞察,为业务决策提供有力支持。
而在大数据分析中,关联分析技术被广泛用于揭示数据之间的关联关系,发现隐藏在数据背后的规律和潜在的相关性。
在本篇文章中,我们将为您介绍关联分析技术的基本概念、常用算法以及实际应用。
一、关联分析概述关联分析是一种从大规模数据集中寻找有趣关系、相互依赖的任务。
它通过发现项目集中的频繁模式来完成,频繁模式指的是在数据集中经常出现的物品组合。
关联分析被广泛应用于市场篮子分析、商品推荐、交叉销售等领域。
二、关联分析算法1. Apriori算法Apriori算法是关联分析中最常用的算法之一,它基于频繁模式的性质。
Apriori算法通过扫描数据集多次来找到频繁项集,利用逐层递加的方式来发现频繁项集的超集,直到无法找到更多频繁项集为止。
Apriori算法的核心思想是:如果一个物品组合是频繁的,那么它的子集也一定是频繁的。
2. FP-Growth算法FP-Growth算法是一种高效的关联分析算法,通过构造FP树(频繁模式树)来实现快速的频繁模式挖掘。
与Apriori算法相比,FP-Growth算法避免了多次扫描事务数据库的操作,通过构造FP树和利用后缀路径来发现频繁模式。
FP-Growth算法适合处理包含大量事务和高维度特征的数据集。
3. Eclat算法Eclat算法也是一种经典的关联分析算法,它通过交集来计算频繁模式。
Eclat算法首先构建一个频繁项集的垂直格式数据结构,然后利用递归的方式来生成频繁项集。
与Apriori算法和FP-Growth算法相比,Eclat算法更适用于处理稀疏数据集。
三、关联分析的实际应用1. 市场篮子分析市场篮子分析是关联分析的经典应用之一,它通过挖掘购物篮中的频繁模式,从而揭示商品之间的关联关系。
利用市场篮子分析,商户可以了解消费者购买习惯,进行商品陈列、促销策略的优化,提高销售额和客户满意度。
大数据挖掘导论与案例课件:关联分析概念与方法

根据数据的抽象层次,关联规则可以分为单层关联规则和多层关联规则。在单层关联
规则中,没有考虑现实数据的多层次性。多层关联规则是指在规则挖掘中,对数据的
多层性进行了充分考虑。
6.2
关联分析的方法
6.2.1 先验原理
大数据挖掘导论与案例
由此可见,在生成规则的过程中,一旦有低置信度的规则出现,就可以利用它进行剪枝,
此过程称为基于置信度的剪枝(confidence-based pruning),如下图所示。
采用剪枝策略可有效降低关联规则生成的计算复杂度。
6.2.3 Apriori算法生成关联规则
基于置信度的剪枝
大数据挖掘导论与案例
6.2.4 Apriori算法效率提升
任何具有反单调性的度量都能够直接结合到挖掘算法中,对候选项集的指数搜索空间有
效地进行剪枝,以降低生成频繁项集的计算代价。
6.2.2 Apriori算法产生频繁项集
大数据挖掘导论与案例
Apriori算法是关联规则挖掘的经典算法,它开创性地使用了基于支持度的剪枝技术来控
制候选项集的指数增长。此处以下表所示的事务数据集为例,展示Apriori算法挖掘频繁
大数据挖掘导论与案例
在对购物篮数据进行关联分析时,需要处理两个关键问题:第一,计算复杂度问题。从
大型事务数据集中发现有意义的规则在计算上要付出很高的代价;第二,规则的筛选问
题。所发现的某些规则可能是虚假的或不令人感兴趣的,因为它们可能是偶然发生的或
者是已经被研究者所熟知的。
除了购物篮分析外,关联分析也被应用于公共管理、生物信息学、医疗诊断、网页挖掘
和推荐系统等领域。
BDS大数据安全平台产品介绍

不兼容的也可以通过日志格式说明和样例,2天实现编译支持
非我司出口设备场景:BDS与SAM联动收集ip与账户对应信息,并与第三方出口设备日志关联实现实名制留存和查询
超级日志版——实现实名制日志
我司出口设备场景:出口设备(RSR77、NGFW、EG、UAC等)与SAM联动实现实名制原始日志,并发送实名日志给BDS解析和标准化实现实名留存和查询
Hadoop
PB级以上数据,BDS使用Hadoop集群部署
描述
关系型数据库
分布式索引和存储引擎
分布式文件系统(HDFS)和分布式数据库(HBASE)
说明
1.严格遵循ACID特性,能保证数据很强的一致性
2.读写性能最慢
1.查询速度最快,特别是边写入边查询
2.集群部署最简易
1.支持最大量的数据
2.支持最广泛的分析方法
大数据安全平台解决之道——“看见”安全
大数据安全平台解决之道——兼容开放,看见“八方”
全网日志统一收集兼容第三方厂商
将原始日志标准化统一格式
STEP 1 统一收集并标准化海量数据,构建安全大数据仓库
大数据安全平台解决之道——大数据关联分析 “看见关键”风险
海量原始事件、漏洞进行大数据关联分析,直击要害问题
法律生效:2017年6月1日开始实施日志留存:“出口日志60天” 变为“整网日志6个月“适用对象:在中华人民共和国境内建设、运营、维护和使用网络,以及网络安全的监督管理,适用本法
政策变化——网络安全法
未按规定留存日志就是违法,属于行政案件重庆公安局网安总队已成功查出未留存日志的违法行为
政务行业政务大数据分析与决策支持方案

政务行业政务大数据分析与决策支持方案第一章政务大数据概述 (2)1.1 政务大数据的定义与特点 (2)1.1.1 政务大数据的定义 (2)1.1.2 政务大数据的特点 (2)1.2 政务大数据的应用价值 (3)1.2.1 提高治理能力 (3)1.2.2 优化公共服务 (3)1.2.3 促进经济社会发展 (3)1.2.4 增强国家安全和社会稳定 (3)1.2.5 推动科技创新 (3)第二章政务大数据采集与整合 (3)2.1 政务数据采集策略 (3)2.2 政务数据整合方法 (4)2.3 政务数据质量保障 (4)第三章政务大数据存储与管理 (5)3.1 政务大数据存储技术 (5)3.1.1 分布式存储 (5)3.1.2 云存储 (5)3.1.3 内存数据库 (5)3.2 政务大数据管理策略 (5)3.2.1 数据清洗与转换 (5)3.2.2 数据集成与融合 (5)3.2.3 数据质量管理 (5)3.3 数据安全与隐私保护 (5)3.3.1 数据加密 (6)3.3.2 访问控制 (6)3.3.3 隐私保护 (6)第四章政务大数据分析与挖掘 (6)4.1 政务大数据分析方法 (6)4.2 政务大数据挖掘技术 (6)4.3 政务大数据可视化 (7)第五章政务大数据决策支持系统构建 (7)5.1 决策支持系统架构 (7)5.2 政务大数据决策模型 (8)5.3 决策支持系统应用案例 (8)第六章政务大数据应用场景 (8)6.1 公共安全与应急指挥 (8)6.1.1 火灾预警与防控 (9)6.1.2 突发事件应对 (9)6.2 城市管理与智慧城市建设 (9)6.2.1 城市交通管理 (9)6.2.2 环境保护与治理 (9)6.3 社会保障与民生服务 (9)6.3.1 社会保障 (9)6.3.2 民生服务 (10)第七章政务大数据政策法规与标准 (10)7.1 政务大数据政策法规概述 (10)7.2 政务大数据标准制定 (10)7.3 政务大数据监管与评估 (10)第八章政务大数据人才培养与培训 (11)8.1 政务大数据人才培养策略 (11)8.2 政务大数据培训体系 (11)8.3 政务大数据人才评价 (12)第九章政务大数据国际合作与交流 (12)9.1 国际政务大数据发展现状 (12)9.2 政务大数据国际合作机制 (12)9.3 政务大数据交流平台建设 (13)第十章政务大数据未来发展展望 (13)10.1 政务大数据发展趋势 (13)10.2 政务大数据创新应用 (14)10.3 政务大数据发展挑战与对策 (14)第一章政务大数据概述1.1 政务大数据的定义与特点1.1.1 政务大数据的定义政务大数据是指在管理和公共服务过程中产生的,涉及政治、经济、社会、文化等多个领域的大量数据。
大数据分析工具常用的数据分析模型

大数据分析工具常用的数据分析模型随着大数据时代的到来,大数据分析已经成为了企业决策和发展的关键因素之一。
然而,要从大量的数据中获得有价值的信息和洞察力并不容易。
为此,大数据分析工具应运而生,帮助企业更轻松地掌握数据并进行深入分析。
在这些工具中,数据分析模型则起到了至关重要的作用。
本文将介绍一些大数据分析工具中常用的数据分析模型。
1. 关联分析模型关联分析模型用于发现数据集合中的项与项之间的关联性。
其中最为著名的算法是Apriori算法,它可以通过对数据进行频繁项集的挖掘,从而找到不同项之间的相关性。
通过关联分析模型,企业可以发现某些特定产品或服务之间的关联关系,从而提供更精准的推荐系统或者交叉销售策略。
2. 聚类分析模型聚类分析模型用于将数据集合中的对象或样本划分为不同的组,使得同一组内的对象具有相似性,而不同组之间的对象具有明显差异性。
聚类分析模型的一个典型算法是k-means算法,它通过计算数据样本之间的距离和相似性,将样本划分为若干个聚类。
企业可以利用聚类分析模型来实现客户细分,发现不同群体的需求和行为特征,从而提供个性化的产品和服务。
3. 预测分析模型预测分析模型用于通过对历史数据进行分析和建模,预测未来的趋势和模式。
其中最为常用的预测算法包括线性回归、时间序列分析等。
企业可以利用预测分析模型来预测销售额、市场需求、客户流失率等指标,从而制定相应的营销策略和业务计划。
4. 分类分析模型分类分析模型通过对已知的数据集合进行学习和分类建模,然后对未知的数据进行分类。
其中最为常用的算法包括决策树、支持向量机、朴素贝叶斯等。
分类分析模型可以用于客户分类、欺诈检测、舆情分析等场景,帮助企业更好地了解和管理数据。
5. 文本分析模型。
ai大数据模型种类

ai大数据模型种类AI大数据模型种类随着人工智能和大数据技术的快速发展,各种类型的AI大数据模型也应运而生。
这些模型在不同的领域和应用中发挥着重要的作用。
本文将介绍几种常见的AI大数据模型,并分别阐述它们的特点和应用。
一、监督学习模型监督学习模型是一种常见的AI大数据模型,其基本原理是通过已有的带标签数据进行训练,从而使模型能够识别和分类新的输入数据。
其中,最常见的监督学习模型包括决策树、支持向量机和神经网络等。
决策树是一种以树形结构表示决策规则的模型。
它通过对数据进行分类和划分,最终生成一棵决策树,从而实现对新数据的分类。
决策树模型适用于分类和回归问题,并且具有易于理解和解释的特点。
支持向量机是一种二分类模型,其目标是找到一个最优的超平面,将两类数据分开。
支持向量机模型具有较强的泛化能力和较高的准确率,在文本分类、图像识别等领域得到了广泛应用。
神经网络是一种模拟人脑神经元网络的模型。
它通过多层神经元之间的连接和权重调整,实现对输入数据的学习和处理。
神经网络具有较强的非线性建模能力,适用于复杂的分类和回归问题。
二、无监督学习模型无监督学习模型是一种不需要事先标记数据的模型,通过对数据的自动聚类和关联分析,发现数据中的隐藏模式和结构。
常见的无监督学习模型包括聚类分析、关联规则和主成分分析等。
聚类分析是一种将相似的数据样本自动分组的方法。
它通过计算数据之间的相似度或距离,将数据划分为不同的簇。
聚类分析在市场细分、图像分割等领域具有广泛的应用。
关联规则是一种用于发现数据中的关联性的方法。
它通过挖掘数据中的频繁项集和关联规则,揭示不同项之间的关联关系。
关联规则在市场篮子分析、推荐系统等领域有着重要的应用价值。
主成分分析是一种通过线性变换将原始数据转换为新的变量的方法。
它可以降低数据的维度,减少数据的冗余信息,从而提取出数据中的主要特征。
主成分分析在数据压缩和特征提取等方面具有广泛的应用。
三、深度学习模型深度学习模型是一种基于神经网络的AI大数据模型,其特点是具有多层隐藏层和大量的参数。