压力传感器的基本特性测量及电子秤的设计

压力传感器的基本特性测量及电子秤的设计
压力传感器的基本特性测量及电子秤的设计

压力传感器的基本特性测量及电子秤的设计

一、实验目的

1.了解金属箔式应变片的应变效应和性能,单臂单桥的工作原理和工作情况。

2.测量应变式传感器的压力特性,计算其灵敏度。

3.测量应变式传感器的电压特性,作出输出电压与工作电压的关系特性图。

4.根据应变式传感器的压力特性设计一个电子秤。

三、实验仪器

YJ-WLT-I物理综合实验平台、压力传感器实验装置、电桥模块与差动放大器(含调零模块)一起提供线路板、万用表、标准砝码等。

四、实验原理

金属导体的电阻随其所受机械形变(伸长或缩短)的大小而发生变化,其原因是导体的电阻与材料的电阻率以及它的几何尺寸(长度和截面)有关。由于导体在承受机械形变过程中,其电阻率、长度和截面积都要发生变化,从而导致其电阻发生变化,因此电阻应变片能将机械构件上应力的变化转换为电阻的变化。电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:

△R/R=Kε(1)

式中△R/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=△ L/L为电阻丝长度相

对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转

换被测部位受力状态变化,电桥的作用完成电阻到电压的比例变化,电桥的输出电压

反映了相应的受力状态。

要由双孔平衡梁和粘贴在梁上的电阻应变片

R1—R4组成,电阻应变片一般由敏感栅、基底、

粘合剂、引线、盖片等组成。应变片的规格一

般以使用面积和电阻值来表示,如

“3×10mm2,350Ω”。

敏感栅由直径约0.01mm--0.05mm高电阻

系数的细丝弯曲成栅状,它实际上是一个电阻

元件,是电阻应变片感受构件应变的敏感部分。

敏感栅用粘合剂将其固定在基片上.基底应保证将构件上的应变准确地传送到敏感栅

上去,故基底必须做得很薄(一般为0.03mm--0.06mm),使它能与试件及敏感栅牢固

地粘结在一起;另外,它还应有良好的绝缘性、抗潮性和耐热性.基底材料有纸、胶膜

和玻璃纤维布等。引出线的作用是将敏感栅电阻元件与测量电路相连接,一般由0.1mm--0.2mm 低阻镀锡铜丝制成,并与敏感栅两端输出端相焊接,盖片起保护作用。

在测试时,将应变片用粘合剂牢固地粘贴在被测试件的表面上,随着试件受力变形,应变片的敏感栅也获得同样的形变,从而使电阻随之发生变化。通过测量电阻值的变化可反映出外力作用的大小。

压力传感器是将四片电阻分别粘贴在弹性平行梁的上下两表面适当的位置,梁的一端固定,另一端自由用于加载荷外力F 弹性梁受载荷作用而弯曲,梁的上表面受拉,电阻片R 1和R 3亦受拉伸作用电阻增大;梁的下表面受压,R 2和R 4电阻减小。这样,外力的作用通过梁的形变而使四个电阻值发生变化,这就是压力传感器。应变片R 1= R 2= R 3= R 4。 应变片可以把应变的变化转换为电阻的变化。为了显示和记录应变的大小,还需把电阻的变化再转化为电压或电流的变化。最常用的测量电路是由应变片组成的电桥测量电路,如图2所示。当应变片受到压力作用时,引起弹性体的变形,

使得粘贴在弹性体上的电阻应受片R 1--R 4的阻值发生变化,

电桥将产生输出,其输出电压正比于所受到的压力。

0U SF ?= 五、实验内容

压力传感器的基本特性的测量

1.压力传感器的压力特性的测量

(1) 将100g 传感器输出电缆线接入压力传感器实验模板

的电缆座中,用导线将压力传感器实验模板中的电桥输出端与YJ-WLT-I 物理综合实验平台的数字电压表的输入端相连,测量选择置于200mV, 然后用导线将压力传感器实验模板中的电桥的电源端与YJ-WLT-I 物理综合实验平台的电压输出端相连.接通电源,调节工作电压为2V, 按顺序增加砝码的数量(每次增加10g )至100g ,分别测传感器的输出电压.

(2)按顺序减去砝码的数量(每次减去10g )至0g ,分别测量传感器的输出电压. (3)用逐差法处理数据,求灵敏度S 。 2. 压力传感器的电压特性的测量 保持传感器的压力不变(如50g ),改变工作电压分别为3V 、4V 、5V 、6V 、7V 、8V ,9V 测量传感器电源电压E 与电桥输出电压ΔU 0的关系,作E -ΔU 0关系曲线, 求灵敏度Sv 。

3.应变式压力传感器实验模板如图5所示,R 1—R 4应变式压力传感器的四个应变电阻,由R 1—R 4等电阻组成的电压为U 01,R w1为零点调节。由R 7—R 13、IC 1等组成的差动放大器放大倍数由R w3调节,输出的电压为U 02。

使用、调试方法:

(1)用导线连接实验仪各电源插座和实验模板相对应的接线柱,并将100g 传感器电缆线接入实验模板,用导线短路放大器输入端,放大器的输出端与实验平台电压测量输入相连,测量选择置200mV 档,打开实验平台电源开关,调节放大器调零旋钮R w2使放大器输出电压为0.0mV ,去掉短路线用连接线将放大器的输入端与非平衡电

200mV 档.

(2)在压力传感器秤盘上没有任何重物时,测量放大器的输出电压,调节零点调节R w1旋钮使放大器的输出电压为0.0mV

(3)将100g 标准砝码置于压力传感器秤盘上,测量放大器的输出电压,调节放大倍数调节R w3旋钮使放大器的输出电压为100.0mV.(0.1mV 相当于0.1g.)

(4)改变压力传感器秤盘上的标准砝码,检验放大器的输出电压与标准砝码的标称值是否对应.

(5)重复2)、3)步操作,使误差最小. (6)评估你设计制作的电子秤。

电子称的设计

根据应变式传感器的压力特性,设计一个电子秤,参考电路见图 1、 设计要求 量程:0—100.0g ;

精度:在量程范围内,额定误差小于最大量程的0.5%; 灵敏度:0. 1 g ;

显示:电压输出0—100.0mV 2、 可提供的仪器和元件

YJ-WLT-I 物理综合实验平台、压力传感器实验装置、电桥模块与差动放大器(含调零模块)一起提供线路板、万用表、标准砝码等。

100g 传感器

零点调节 放大倍数调

放大器调零 图5

3、参考设计方案

电子秤的测量原理。首先是通过压力传感器采集到被测物体的重量并将其转换成电压信号。由于应变式压力传感器输出的电压仅为毫伏量级,如果后级采用数字电压表作为显示仪表,则应把压力传感器输出的毫伏信号放大到相应的电压信号输出。放大后的电压信号经A/D转换电路送到单片机中,再经过单片机控制译码显示器,从而显示物体重量。

整套装置的组成框图如图3所示。

(1)总体方案设计

根据对测量所提出的精度和灵敏度的要求,各组成部分的主要性能参数要求如下:就本设计而言,应变式压力传感器是关键部分,它的特性指标将对放大电路及显示仪表的选择起决定性的作用。因此,首先要研究和测量压力传感器的特性指标。

(2)压力传感器的参数测试和性能研究

测量传感器内部各桥臂的电阻值:

将100g传感器电缆线接入实验模板,用万用表测量R1、R2、R3、R4的电阻值。

R1=1.745kΩR2=1.8508kΩR3=1.7013kΩR4=1.8064KΩ.

测定压力传感器的其它性能:

①压力传感器灵敏度及线性

即在某一定的供桥电压下,单位荷载变化所引起的输出电压变化,用S表示:

S=△U0/△F

实验中,不但要求出S值,还要求利用两个变量的统计计算法求输出电压U0和压力F之间的相关系数,即线性度。

②压力传感器电压灵敏度

即在额定荷载下,供桥电压变化所引起的输出变化,用Sv表示,则

Sv=△U0/ △U桥

同样,也要研究其线性,求其相关系数。实验仪器有数字电压表、稳压电源、砝码若干。

(3)决定其他部分的设计参数

根据压力传感器的量程和电子秤的称重范围,在充分利用传感器量程的前提下,设计计算放大器的放大倍数和传感器的工作电压。

设计放大电路,并进行调试和安装测定。可在指导老师的指导下熟悉有关的放大线路,并进行线路的测定和调试。由于压力传感器输出的信号是很小的,一般为毫伏的量级,根据设计的要求,要在0—100.0g的称量范围内,直接以电压值显示,所以需要放大系统将该信号进行放大再输入显示系统显示物体的重量。本设计中采用差动放大器实现,测量放大电路除可自行安装调试外,也可直接采用实验室提供的放大倍数可调的实验模板,模板使用和调试方法参见附录。

(4)整机测定和调试

把传感器、放大器和显示装置(采用适当量程和精度的数字电压表)连成一体,进行模拟测试,求物体重量变化与输出电压示值的关系,验证各项指标是否达到要求。

六、数据分析:

表1 压力传感器的压力特性

用逐差法求灵敏度为:

加ΔU 时:

S=△U0/△F=42.18/(50*9.8)=0.086(V/N)

减ΔU时:

S=△U0/△F=42.3/(50*9.8)=0.086(V/N)

用两个变量的统计计算法求输出电压U0和压力F之间的相关系数为:

加ΔU 时r=0.999956

减ΔU时r=0.999986

输出电压U0和压力F线性度比较好。

表2压力传感器的电压特性

用逐差法求灵敏度为:

额定荷载为0g时:

Sv=△U0/ △U桥=0.000004

额定荷载为50g时:

Sv=△U0/ △U桥=0.017

用两个变量的统计计算法求输出电压U0和供桥电压U桥之间的相关系数为:额定荷载为0g时:

r=0.355335

输出电压U0和供桥电压U桥线性度不好。

额定荷载为50g时:

r=0.999934

输出电压U0和供桥电压U桥线性度比较好。

智能压力传感器的研究与开发定稿

智能压力传感器的研究与开发 摘要 为了提高压力传感器的精度,解决功能单一的问题设计了一种新型的智能压力传感器。该压力传感器以MSP430单片机为控制核心,通过A/D转换接口实现对压力传感器的温度和压力信号的采集,利用BP网络算法实现了对采集信号的数据拟合,利用LED显示,利用RS485串口通讯实现数据交换及压力值输出,完成功能要求。 详细叙述了压力传感器的温度补偿方法,重点讨论了人工神经网络中的BP网络算法。BP网络算法主要包括BP网络的结构,基于MATLAB神经网络工具箱的BP网络仿真。根据BP网络的数据连接关系实现了BP网络的C语言表示,根据BP网络的权值、阈值由数组连接实现了向MSP430单片机的程序移植,完成信号的控制。提出了基于遗传模拟退火BP网络算法的压力传感器温度补偿系统。 设计了压力传感器的硬件电路。利用MPM280压力传感器测量压力,通过放大器实现温度和压力信号的放大,利用MSP430自带A/D转换的12位MSP430单片机实现信号处理,通过RS485实现输出,设计了显示功能,设计了丰富的电源电路,并且通过相应的电压转换芯片实现对各个模块的不同电压供电。 实现了压力传感器的软件设计,在MSP430编译软件IAR上利用C语言实现了初始化子程序,温度和压力A/D采样程序,BP网络信号处理子程序,显示子程序和RS485通讯子程序。设计了基于MATLAB GUI的串行通讯压力传感器标定软件,在GUI上实现了对单片机的信号采集,BP网络训练以及对单片机的串行通信实现的在线标定的功能。 研究设计的智能压力传感器具有体积小、精度高,并实现了基于MATLAB的BP网络在线标定。通过仿真对软、硬件进行了充分的调试,效果良好,在工业现场已经应用实现,在众多压力测控系统中有着广阔的应用前景。 关键词:压力传感器,MSP430单片机,温度补偿,BP网络算法

压力传感器(大学物理)

一、实验目的 1. 了解应变压力传感器的组成、结构及工作参数。 2. 了解非电量的转换及测量方法——电桥法。 3. 掌握非平衡电桥的测量技术。 4. 掌握应变压力传感器灵敏度及物体重量的测量。 5. 了解多个应变压力传感器的线性组成、调整与定标。 二、实验原理 压力传感器是把一种非电量转换成电信号的传感器。弹性体在压力(重量)作用下产生形变(应变),导致(按电桥方式联接)粘贴于弹性体中的应变片,产生电阻变化的过程。 压力传感器的主要指标是它的最大载重(压力)、灵敏度、输出输入电阻值、工作电压(激励电压)(VIN)、输出电压(VOUT)范围。 压力传感器是由特殊工艺材料制成的弹性体、电阻应变片、温度补偿电路组成;并采用非平衡电桥方式联接,最后密封在弹性体中。 弹性体: 一般由合金材料冶炼制成,加工成S 型、长条形、圆柱型等。为了产生一定弹性,挖空或部分挖空其内部。 电阻应变片: 金属导体的电阻R 与其电阻率ρ、长度L 、截面A 的大小有关。 A L R ρ = (1) 导体在承受机械形变过程中,电阻率、长度、截面都要发生变化,从而导致其电阻变化。 A A L L R R ?- ?+ ?=?ρ ρ (2) 这样就把所承爱的应力转变成应变,进而转换成电阻的变化。因此电阻应变片能将弹性体上应力的变化转换为电阻的变化。 电阻应变片的结构:电阻应变片一般由基底片、敏感栅、引线及履盖片用粘合剂粘合而成。 电阻应变片的结构如图1所示: 1-敏感栅(金属电阻丝) 2-基底片 3-覆盖层 4-引出线 图1 电阻丝应变片结构示意图 敏感栅:是感应弹性应变的敏感部分。敏感栅由直径约0.01~0.05毫米高电阻系数的细丝弯曲成栅状,它实际上是一个电阻元件,是电阻应变片感受构件应变的敏感部分.敏感栅用粘合剂固定在基底片上。b ×l 称为应变片的使用面积(应变片工作宽度,应变片标距(工作基长)l ),应变片的规格一般以使用面积和电阻值来表示,如3×10平方毫米,350欧姆。 基底片:基底将构件上的应变准确地传递到敏感栅上去.因此基底必须做得很薄,一般为0.03~0.06毫米,使它能与试件及敏感栅牢固地粘结在一起,另外它还具有良好的绝缘性、抗潮性和耐热性.基底材料有纸、胶膜和玻璃纤维布等。 引出线的作用是将敏感栅电阻元件与测量电路相连接,一般由0.1-0.2毫米低阻镀锡钢丝制成,并与敏感栅两输出端相焊接,覆盖片起保护作用.

智能压力传感器的设计

密级: NANCHANG UNIVERSITY 学士学位论文 THESIS OF BACHELOR (2009—2013年) 题目智能化压力传感器的设计 学院:环化学院系测控系 专业班级:测控技术与仪器093班 学生姓名:钟刚学号: 5801209114 指导教师:刘诚职称:讲师 起讫日期: 2013.3.15—2013.6.6 南昌大学 学士学位论文原创性申明 本人郑重申明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本申明的法律后果由本人承担。

作者签名:日期: 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在年解密后适用本授权书。 本学位论文属于 不保密□。 (请在以上相应方框内打“√”) 作者签名:日期: 导师签名:日期:

传感器及转换器形成系统的“前端”,没有它,许多现代化的电子系统都无法正常工作。传感器已广泛的应用于工业控制系统和能源工业装置当中(如石油和天然气的生产、配电工业)。它们也是制造录音机和录像机这些原始设备产品的重要内在组成部分。大多数这些数字电子系统之所以具有普遍性和强大优势是得益于传感器广泛应用于这些电子电路中。 本课题将深入研究智能压力传感器系统理论及其在压力测试方面的应用,对新型智能压力传感器系统的智能化功能、智能化软件和硬件配置进行全面的设计。提出了一种差动电容式传感器的前置电路,基于电容/ 电压转换的原理,对微小电容变化量进行测量。电路输出的直流电压与差动电容变化量成线性关系,且能对偏差电容和电路的漂移进行自动补偿。 完善智能化软件,实现温度补偿、自动校准、总线数字通讯、自动增益控制等多种智能化特性,使智能化程度尽可能的提高。 关键词:传感器;压力;智能化。

扩散硅压阻式压力传感器的压力测量实验

实验十一 扩散硅压阻式压力传感器的压力测量实验 一、实验目的: 了解扩散硅压阻式压力传感器测量压力的原理与方法。 二、实验仪器 压力传感器模块、温度传感器模块、数显单元、直流稳压源+5V 、±15V。 三、实验原理 在具有压阻效应的半导体材料上用扩散或离子注入法,摩托罗拉公司设计出X 形硅压力传感器如下图所示:在单晶硅膜片表面形成4个阻值相等的电阻条。并将它们连接成惠斯通电桥,电桥电源端和输出端引出,用制造集成电路的方法封装起来,制成扩散硅压阻式压力传感器。 扩散硅压力传感器的工作原理:在X 形硅压力传感器的一个方向上加偏置电压形成电流 i ,当敏感芯片没有外加压力作用,内部电桥处于平衡状态,当有剪切力作用时,在垂直电流方向将会产生电场变化i E ??=ρ,该电场的变化引起电位变化,则在端可得到被与电流 垂直方向的两测压力引起的输出电压Uo 。 i d E d U O ???=?=ρ (11-1) 式中d为元件两端距离。 实验接线图如图11-2所示,MPX10有4个引出脚,1脚接地、2脚为U o+、3脚接+5V电源、4脚为Uo-;当P1>P2时,输出为正;P1

压力传感器原理

目录 1 概述 2 工作原理 1. 2.1 电阻应变片 2. 2.2 陶瓷型 3 选型要点 4 常见故障 5 四个无法避免的误差 6 抗干扰措施 7 八大发展趋势 将压力转换为电信号输出的传感器。通常把压力测量仪表中的电测式仪表称为压力传感器。压力传感器一般由弹性敏感元件和位移敏感元件(或应变计)组成。弹性敏感元件的作用是使被测压力作用于某个面积上并转换为位移或应变,然后由位移敏感元件或应变计转换为与压力成一定关系的电信号。有时把这两种元件的功能集于一体。压力传感器广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。 力学传感器的种类繁多,但常用的压力传感器有电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器,光纤压力传感器等。应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。 压力传感器是使用最为广泛的一种传感器。传统的压力传感器以机械结构型的器件为主,以弹性元件的形变指示压力,但这种结构尺寸大、质量轻,不能提供电学输出。随着半导体技术的发展,半导体压力传感器也应运而生。其特点是体积小、质量轻、准确度高、温度特性好。特别是随着MEMS技术的发展,半导体传感器向着微型化发展,而且其功耗小、可靠性高。 压阻式应变压力传感器的主要由电阻应变片按照惠斯通电桥原理组成。 电阻应变片

一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变 电阻应变片内部结构 片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变, 使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 金属电阻应变片的内部结构 如图所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 惠斯通原理

【人力资源】实验4-18用压力传感器和温度传感器资料

第五章 热学实验 热学实验是大学物理实验中的重要内容。在理想热学实验中,应遵循两条基本原则:其一是保持系统为孤立系统;其二是测量一个系统的状态参量时,应保证系统处于平衡态。我们的实验内容设计了对空气的比热容比进行测定。 §5.1空气比热容比的测定 气体的定压比热容与定容比热容之比称为气体的绝热指数,它是一个重要的热力学常数,在热力学方程中经常用到,本实验用新型扩散硅压力传感器测空气的压强,用电流型集成温度传感器测空气的温度变化,从而得到空气的绝热指数;要求观察热力学现象,掌握测量空气绝热指数的一种方法,并了解压力传感器和电流型集成温度传感器的使用方法及特性。 【预习重点】 1.了解理想气体物态方程,知道理想气体的等温及绝热过程特征和过程方程。 2.预习定压比热容与定容比热容的定义,进而明确二者之比即绝热指数的定义。 3.认真预习实验原理及测量公式。 【实验目的】 1.用绝热膨胀法测定空气的比热容比。 2.观测热力学过程中状态变化及基本物理规律。 3.了解压力传感器和电流型集成温度传感器的使用方法及特性。 【实验原理】 理想气体的压强P 、体积V 和温度T 在准静态绝热过程中,遵守绝热过程方程:PV γ 等于恒量,其中γ是气体的定压比热容P C 和定容比热容V C 之比,通常称γ=V P C C /为该气体的比热容比(亦称绝热指数)。 如图5.1.1所示,我们以贮气瓶内空气(近似为理想气体)作为研究的热学系统,试进行如下实验过程。

(1)首先打开放气阀A ,贮气瓶与大气相通,再关闭A ,瓶内充满与周围空气同温(设为0T )同压(设为0P )的气体。 (2)打开充气阀B ,用充气球向瓶内打气,充入一定量的气体,然后关闭充气阀B 。此时瓶内空气被压缩,压强增大,温度升高。等待内部气体温度稳定,即达到与周围温度平衡,此时的气体处于状态I (1P ,1V ,0T )。 (3)迅速打开放气阀A ,使瓶内气体与大气相通,当瓶内压强降至0P 时,立刻关闭放气阀A ,将有体积为ΔV 的气体喷泻出贮气瓶。由于放气过程较快,瓶内保留的气体来不及与外界进行热交换,可以认为是一个绝热膨胀的过程。在此过程后瓶中的气体由状态I (1P ,1V ,0T )转变为状态II (0P ,2V ,1T )。2V 为贮气瓶容积,1V 为保留在瓶中这部分气体在状态I (1P ,0T )时的体积。 (4)由于瓶内气体温度1T 低于室温0T ,所以瓶内气体慢慢从外界吸热,直至达到室温 0T 为止,此时瓶内气体压强也随之增大为2P 。则稳定后的气体状态为III (2P ,2V ,0T )。从 状态II →状态III 的过程可以看作是一个等容吸热的过程。由状态I →II →III 的过程如图5.1.2所示。 图5.1.1 试验装置简图 图5.1.2 气体状态变化及P-V

压阻式压力传感器的特性测试实验

压阻式压力传感器的特性测试实验 一、实验目的 了解扩散硅压阻式压力传感器测量压力的原理和标定方法。 二、实验内容 掌握压力传感器的压力计设计。 三、实验仪器 传感器检测技术综合实验台、压力传感器实验模块、压力传感器、导线。 四、实验原理 扩散硅压阻式压力传感器的工作机理是半导体应变片的压阻效应,在半导体受到力变形时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻率发生变化,这种物理现象称之为半导体的压阻效应。一般半导体应变采用N型单晶硅为传感器的弹性元件,在它上面直接蒸镀扩散出多个半导体电阻应变薄膜(扩散出敏感栅)组成电桥。在压力(压强)作用下弹性元件产生应力,半导体电阻应变薄膜的电阻率产生很大变化,引起电阻的变化,经电桥转换成电压输出,则其输出电压的变化反映了所受到的压力变化。图13-1为压阻式压力传感器压力测量实验原理图。 + - 放大单元主台体上电压表 +4V 压阻式压力传感器Vo+ VS+ Vo- Vs- 图13-1 压阻式压力传感器压力测量实验原理 五、实验注意事项 1、严禁将信号源输出对地短接。 2、实验过程中不要带电拔插导线。 3、严禁电源对地短路。 六、实验步骤 1、将引压胶管连接到压力传感器上,其他接线按图13-2进行连接,确认连线无误且打开主台体电源、压力传感器实验模块电源。

电电电电 电电电电电电 Vin Vin Vout GND 电电电电电电±15V 电电 D5 C4++E2 C5 D4D6R29S1C1 R12 R13 R17R16 C2 R1 IC1 R14 R3 R5R4 R6 D1IC4 R7R20 R19 R9 C3 RW1 -15V GND +15V VCC GND Vout-Vout+R8R10 D2 R21电电电电电 D3E1D5R28IC2 IC3 R2 R18RW2 电电电电电电电电 电电电 电 电电 电电 电电电电电电电 R30 R31R21R21 1234567 810K 20K 51K 100K P1 +5V

智能压力传感器外文翻译文献

智能压力传感器外文翻译文献 (文档含中英文对照即英文原文和中文翻译) 译文: 基于C8051F350的智能压力传感器的设计 摘要 为了克服传统的压力传感器的缺陷。设计一种智能压力传感器,根据组合物的应用范围的智能传感器系统中,进行温度校正,充分考虑共同的组件之间的连接参数协调,我们选择了一个良好的可用性、高可靠性和低成本元件,80C51单片机进行控制和处理,对于整个测量系统组成而言,该系统具有自动测量、放大、A / D转换的温度和压力参数、微弱信号的锁定放大、相敏检波(PSD)、共模信号抑制、采集到的信号消噪处理、交叉敏感的脱钩的功能,并能够将结果显示,它还具有自动自检、温度补偿和上侧的通信和其它功能。 关键词:压力传感器,锁-放大器;80C51F350的单片机硬件电路 手稿编号:1674-8042(2011)02-0157-04 DIO:10.3969/j.issn.1674-8042.2011.02.14

1 引言 随着时代的发展,电子计算机,自动化生产,调制解调器信息,军工,交通运输,化工,环保,能源,海洋开发,遥感,空间科学与技术,传感器的需求越来越大的发展,其应用已渗透进入该地区国民经济各个部门和人们的日常的日常文化生活。可以说,从太空到海洋,从各种复杂的工程系统的基本日常生活的必需品不能分开从各种传感器,传感器技术,为国民经济的日益发展,起着巨大的作用。然而。目前市场上销售的智能传感器有许多不足之处,如单天资讯指标和质量参差不齐。这样的设计总结了上述缺陷,以往的经验的基础上,使用锁相放大器,相敏检波,并巧妙地解决了有用信号从噪声中提取的低缺陷和问题的去耦的交叉灵敏度和使用的技术双电源供应电力,以及提高系统性能,增加新的故障诊断和使用一个共同的数字的接口技术和国际市场的通信协议等。因此,有非常广阔的应用前景。 2 系统硬件设计 智能传感器的传感器_信息的检测和处理。智能传感器包括收集,处理,交流信息的功能。它是集成传感器和微处理器的产品的组合。智能压力传感器的组合物,如图2.1所示。 图2.1 基于CS051F350的智能压力传感器框图 设计主要是提供了一个稳定的电源电压,结合单片机通过外围电路设计。然后,单RS485通信接口 电源 单片机(C8051F350) 温度传感器 锁定增强 压力传感器 传感器校正

压力传感器的基本特性测量及电子秤的设计

压力传感器的基本特性测量及电子秤的设计 一、实验目的 1.了解金属箔式应变片的应变效应和性能,单臂单桥的工作原理和工作情况。 2.测量应变式传感器的压力特性,计算其灵敏度。 3.测量应变式传感器的电压特性,作出输出电压与工作电压的关系特性图。 4.根据应变式传感器的压力特性设计一个电子秤。 三、实验仪器 YJ-WLT-I物理综合实验平台、压力传感器实验装置、电桥模块与差动放大器(含调零模块)一起提供线路板、万用表、标准砝码等。 四、实验原理 金属导体的电阻随其所受机械形变(伸长或缩短)的大小而发生变化,其原因是导体的电阻与材料的电阻率以及它的几何尺寸(长度和截面)有关。由于导体在承受机械形变过程中,其电阻率、长度和截面积都要发生变化,从而导致其电阻发生变化,因此电阻应变片能将机械构件上应力的变化转换为电阻的变化。电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: △R/R=Kε(1) 式中△R/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=△ L/L为电阻丝长度相 对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转 换被测部位受力状态变化,电桥的作用完成电阻到电压的比例变化,电桥的输出电压 反映了相应的受力状态。 要由双孔平衡梁和粘贴在梁上的电阻应变片 R1—R4组成,电阻应变片一般由敏感栅、基底、 粘合剂、引线、盖片等组成。应变片的规格一 般以使用面积和电阻值来表示,如 “3×10mm2,350Ω”。 敏感栅由直径约0.01mm--0.05mm高电阻 系数的细丝弯曲成栅状,它实际上是一个电阻 元件,是电阻应变片感受构件应变的敏感部分。 敏感栅用粘合剂将其固定在基片上.基底应保证将构件上的应变准确地传送到敏感栅 上去,故基底必须做得很薄(一般为0.03mm--0.06mm),使它能与试件及敏感栅牢固 地粘结在一起;另外,它还应有良好的绝缘性、抗潮性和耐热性.基底材料有纸、胶膜

智能化压力传感器的设计开题报告

本科生毕业设计(论文)开题报告题目:智能化压力传感器的设计 学院:环境与化学工程学院系化工系 专业:测控技术与仪器 班级: 学号: 姓名: 指导教师:刘诚 填表日期:年月日

一、选题的依据及意义 随着计算机技术和传感器技术的发展,两者的结合也愈来愈紧密,智能化传感器作为两者结合的新兴的研究方向,越来和越受到更多人的关注。近年来,虽然取得了一定的研究和开发成果,但是实际的需求还远远得不到满足。压力测控系统正急需发展,已经开发和使用的压力传感器在无法满足需求,智能化的压力传感器系统,即将信息采集、信息处理和数字通信功能集于一身,能自主管理的开发和使用具有巨大意义。 此次选题是打算对智能压力传感器系统理论及其压力测量方面的应用进行深入研究,提出对智能压力传感器的设计开发和设计。利用集成程度高,功能强大的新型微处理器控制压力传感器,微处理器内部集成大量模拟和数字外围模块,会具有很强大的数据处理能力。 此次论文将在对智能压力传感器系统的智能化功能深入研究的基础上,设计了较为完善的智能化软件,实现了自动增益控制、温度补偿、自动校准、总线数字通讯等多种智能化特性,使传感器具有较高的智能化程度。提出了利用传感元件自身特性实现温度补偿的算法以及对系统非线性补偿的算法。并对传感器系统进行了较全面的抗干扰和系统故障自诊断设计,保证了系统的稳定性和可靠性。提出一种带有程序判断的智能数字滤波算法,它既具有较好的平滑能力,又具有较快的响应速度。 本系统在软件上运用C语言编程,系统采用与PC机通信,完成数据转换、数据处理以及实时数据显示等功能,便于实现系统集中监控。 本研究设计的智能压力传感器系统具有体积小、成本低、可靠性好、响应速度快、智能化程度高等特点,通过仿真对软、硬件进行了充分的调试,效果良好,在众多压力测控系统中有着广阔的应用前景。 二、国内外研究现状及发展趋势(含文献综述) 传感器技术是现代测量和自动化技术的重要技术之一。从宇宙探索到海洋开发,从生产过程的控制到现代文明生活,几乎每一项现代科学技术都离不开传感器。在工业、农业、国防、科技等各个领域,传感器技术都得到了广泛的应用,并展现出极其广阔的前景。因此。许多国家对传感器技术的发展十分重视。例如在日本传感器技术被列为六大核心技术(计算机、通信、激光、半导体、超导和传感器)之一?“,并且是将传感器列为十大技术之首;美国将90年代看作是传感器时代,将传感器技术列为90年代22项关键技术之一”“。我国对传感器的研究也有二十多年的历史并取得了很大的成就“?。目前,在“科学技术就是第一生产力”的思想指引下,各项科学技术取得了突飞猛进的发展,传感器技术也越来越受到各方面的重视,虽然在某些方面已赶上或者接近世晃先进水平。但是从总体来看,与国外传感器技术的发展相比,我国对传感器技术的研究和生产还比较落后,现正处于方兴未艾的阶段。 据了解,1994年世界传感器市场总的交易额高达260亿美元,并且在2000年以的前,世界传感器市场规模年增幅为7%以上,其中高档的传感器增幅可达18%以上,而那些采用微机械加工技术和微系统技术等高新技术制造的各类型新型智能传感器.其年增长率可达30%以上。从市场销售情况来看,压力传感器占第一位。利用硅材料制作的半导体传感器除具有固体传感器的一般优点以外,还可以把一些集成电路与传感器制作在一起从而构成集成化传感器。集成电路部分若制作了微处理机,则形成智能化传感器。到目前为止,高精确度、高可靠性、小型化、低成本的智能传感器已成为世界传感器市场的主流。

智能压力传感器的设计

前言 (1) 1 压力传感器 (1) 1.1压力传感器的简介 (1) 1.2 压力传感器的种类 (1) 1.3压力传感器的结构与特点 (1) 2 智能压力传感器 (1) 2.1智能压力传感器的构造 (1) 2.2智能压力传感器的作用 (2) 2.3智能压力传感器的优势 (2) 与传统传感器相比,智能压力传感器的特点是: (2) 2.4智能压力传感器的前景 (3) 3 智能压力传感器的系统设计 (3) 3.1系统结构整体设计 (3) 3.2系统的特点 (3) 4 系统硬件设计 (4) 4.1前端传感器模块 (4) 4.2信号调理电路模块 (5) 4.3 A/D转换模块 (5) 4.4微处理器 (8) 4.5显示模块 (9) 4.6温度补偿模块 (11) 4.7 硬件设计原理图 (11) 5软件程序设计 (16) 5.1软件程序语言介绍 (16) 5.2程序流程图 (16) 5.3 C语言程序设计 (16) 6问题与探究 (16) 7总结................................................................................... 错误!未定义书签。

参考文献 (17)

淮南师范学院2014届本科毕业论文 前言 压力传感器是目前最为大众常见所知的传统传感器,这种传感器以压力形变为指标体现压力变化,这种结构传感器存在质量大,敏感度低,不能和电路器件相连使用等缺陷。随便科技的进步,半导体的迅猛发展,半导体压力传感器的诞生弥补了这些不足,半导体压力传感器,不仅体积小,重量轻,而且可以和电路元器件配套使用,从而大大的提高了智能化和可操作性。压力传感器大大的推动了传感器的发展,让人们能够更好的实现压力体现发展。 1 压力传感器 1.1压力传感器的简介 压力传感器是最为普遍的一种传感器,大多使用在各种自动化环境中,涉及到电力石化,军工科技,船舶制造,数码产品等多方面。一般压力传感器都是用模拟信号转换成输出信号,将输出信号转换为数值表现。这种转换方式大大的提高了工作效率。进而为智能化提供了强有力的发展基础。 1.2 压力传感器的种类 压力传感器通常分为以下几种:1;电容式,2;电阻式,3;压电式,4;电感式,5;智能式。智能式传感器是通过和微处理器相连,与传感器相结合,从而产生了智能化效果,它具有信号处理,信号记忆和逻辑思辨的能力。 1.3压力传感器的结构与特点 本次论文采用差压式电容传感器,电容式传感器灵敏度高,性价比高,操作简单,质量高,过载能力强,在极端环境下,能够稳定工作,提供持续的传感能力,保证了整个元器件工作,并把环境影响降到最低,特点鲜明。 2 智能压力传感器 2.1智能压力传感器的构造 智能压力传感器是利用精密机械制造工艺和集成电路原理,将智能芯片和传感器紧密结合在一个半导体原件上,与传统传感器相比,智能式传感器体积更小,质量小,适用范围更大。整个智能压力传感器结构如下图所示;

压力传感器数据采集

题目:压力传感器数据采集

摘要 压力传感器是自动控制中使用最多的测量装置之一。在大型的化工项目中,几乎包含了所有压力传感器的应用:差压、绝压、表压、高压、微差压、高温、低温,以及各种材质及特殊加工的远传法兰式压力传感器。近年来压力传感器在市场上大热,在各类消费产品中都可以看到传感器的应用,既丰富了产品的功能又提高了产品的方便性和易用性,成为吸引消费者关注的新亮点。压力传感器具有全密封不锈钢焊接结构、小体积、高灵敏度、零点满度可调节应可用于液压、压铸、中央空调系统、恒压供水、机车制动系统轻工、机械、冶金、石化、环保、空压机等其他自动控制系统。 无线技术能在短距离内用发射、接收模块代替有线电缆的连接。本文给出了一种基于无线技术的智能压力传感器数据采集系统,由数据采集发射端和接收端两部分组成。主要介绍了硬件结构设计、软件系统工作流程及测试结果,并且应用多项式标准化拟合的方法对压力值作了热零点漂移补偿,提高了传感器的测量精度及温度稳定性。该系统可以在一些特殊的场所实现信号的采集、处理和发送,解决了复杂的现场连线,并且具有成本低、可靠性好、实用性强等优点。 关键词:压力传感器无线技术数据采集

Abstract Pressure sensor is one of the most frequently used measuring devices in automatic control. In large-scale chemical projects, including almost all the pressure sensor application: differential pressure, absolute pressure, gauge pressure, high pressure, differential pressure, high temperature, low temperature, and a variety of materials and special processing transmission flange type pressure sensor. In recent years, pressure sensor in the market hot, in a wide range of consumer products can see sensor application, not only enrich the functions of the product and improve the products of the convenience and ease of use, become to attract consumer attention, a new bright spot. The pressure sensor has the whole sealing stainless steel welded structure, small volume, high sensitivity, zero full adjustable should be used for hydraulic, die-casting, central air-conditioning system, constant pressure water supply, locomotive brake system light industry, machinery, metallurgy, petrochemical, environmental protection, air compressor and other automatic control system. Wireless technology can be used in a short distance to transmit and receive module instead of cable connection. In this paper, a data acquisition system based on wireless technology is presented, which is composed of two parts, the transmitter and receiver. This paper mainly introduces the hardware structure design, software system work flow and test results, and applies the method of polynomial fitting. The thermal zero drift compensation is used to improve the measurement accuracy and temperature stability of the sensor. The system can realize the signal acquisition, processing and transmission in some special places, which can solve the complicated scene connection, and has the advantages of low cost, good reliability and strong practicability. Key words: pressure sensor, wireless technology, data collection

压力传感器特性的研究

实验2 压力传感器特性的研究 压力传感器是利用应变电阻效应,将力学量转换成易于测量的电压量的器件。压力传感器是最基本的传感器之一,主要用在各种电子秤、应力分析仪等仪器上。传感器的种类很多,应用极为广泛。根据要求精度和使用方式不同,可选用不同型号的压力传感器。 一、实验目的 1. 了解压力传感器的工作原理。 2. 研究压力传感器的静态特性。 3. 了解电位差计的工作原理,熟悉其使用方法。 二、实验仪器 压力传感器、电位差计、稳压电源、电压表、砝码等。 三、 实验原理 本实验所用的传感器,是由四片电阻应变片组成,分别粘贴在弹性体的平行梁上、下两表面上。四个应变片组成电桥,采用 非平衡电桥原理,把压力转化成不平衡 电压进行测量。下面我们从三个方面对 压力传感器进行讨论。 1. 应变与压力的关系 电阻应变片是将机械应变转换为电 阻阻值的变化。将电阻应变片粘贴在悬 臂梁式弹性体上。常见的悬臂梁形式有 等截面梁、等强度悬臂梁、带副梁的悬 臂梁以及双孔,单孔悬臂梁。 图2-1是等截面梁结构示意图,弹 性体是一端固定,截面积S 处处相等的等截面悬臂梁(S =bh ,宽度为b ,厚度为h ),在距载荷F 着力点L 0的上下表面,顺L 方向粘贴有受拉应变片R 1、R 3和受压的R 2、R 4应变片,粘贴应变片处的应变为 Y bh FL Y f 2006==ε (2-1) 式中f 是应变片处的应力,Y 是弹性体的弹性模量。从式(2-1)可看出,除压力F 外,其余各量均为常量。所以,应变ε0与压力F 成正比。

图 2-2 应变片差动电桥电路 由于弹性体的应变发生了变化,粘贴在其上的电阻应变片的电阻值也随之发生变化,受拉的电阻应变片电阻值增加,而受压的电阻应变片电阻值减少,把四个电阻应变片组成一个电桥,这便成为差动电桥,如图2-2所示。此时电桥的输出电压U 为: S S U R R R R R R U R R R R R R U 4 43344221111??????-++---+++= (2-2) 若R 1=R 2=R 3=R 4和ΔR 1=ΔR 2=ΔR 3=ΔR 4,则有 S S S U R R U R R R U R R R U 1 111111122???=--+= (2-3) 由上式可知,电压U 与电阻值的变化成 正比。由此可看出差动电桥既没有非线性误 差,又具有较高的灵敏度,同时还具有适应 温度变化的补偿能力等优点。实验中,电桥 的不平衡电压U 可由电位差计测出。 3. 压力传感器的静态特性 压力传感器的基本特性分为静态特性 和动态特性两种。所谓静态特性是指输入不 随时间而变化的特性,即在静载荷(力值) 作用下,用实验的方法求得输入的力与传感 器输出电压(示值)之间的关系(线性关系), 即U=a+bF 。由输入和输出的关系,就可研究其静态特性。 1.灵敏度S 传感器在静态工作条件下,其单位压力所产生的输出电压,称为静态灵敏度。在通常意义上,如指一台传感器灵敏度高,也指其分辨率高。用公式表示如下: dF dU F U S F =?? ? ????=→?0lim (2-4) 这实际上就是传感器输入输出特性曲线上某点的斜率。非线性传感器各处的灵敏度是不相同的,对于线性传感器灵敏度则为: 0F F U U S --= (2-5) 图2-3所示为上述两种情况下灵敏度的图解表示,其中左图为非线性灵敏度,右图为

适应压力传感器信号的智能IC

Maxim 适应压力传感器信号的智能IC Intelligent IC Conditions Pressure-Sensor Signals 摘要:本应用笔记介绍了呼吸监控器。此监控器采用一个硅压阻式传感器(PRT)来检测与吸入和呼出相对应的减少和增加的压力。PRT输出提供给MAX1457信号调理IC以校正PRT 固有的错误,并且传给ADC一个补偿电压信号。ADC输出(降压力信号数字化)供给PC接口并转换成RS-232电平。 Abstract: This application note presents a respiration monitor to detect anxiety. The monitor uses a silicon piezoresistive transducer (PRT) to detect the decrease and increase of pressure corresponding to inhalation and exhalation. The PRT output is fed to a MAX1457 signal conditioning IC that corrects for errors inherent in the PRT and then passes a compensated voltage signal to the ADC. The ADC output (a digitized version of the pressure signal) is then fed to a PC interface and converted to RS-232 levels. These in turn are passed to a PC, which displays the respiration waveform and allows analysis of the breathing. While writing this article I often stopped to take a breather, and while waiting to see if it would be accepted I was breathless with anticipation. I hope I don't choke while presenting it. When finished, though, I can breathe easy. These metaphors show the close connection between the physical act of breathing and the mental states of anxiety and their opposite-relaxation (Fesmire 1994). Anxiety isn't the only influence on breathing patterns; it may be that every feeling affects our respiration. Psychologists investigate these links between emotion and breathing patterns in a number of research areas (Boiten, et al. 1994). Most such investigations require some form of electronic patient-monitoring equipment, partially because the very act of watching one's breathing changes its pattern. A Respiration Monitor with Smart-Sensor Technology The respiration monitor of Figure 1 displays breathing patterns while giving a rough idea of the respiration amplitude. The monitor displays several important parameters used to detect anxiety: rate of breathing, regularity of breathing pattern, and the duration of pauses after expiration and before inspiration. Because calm, positive emotions usually produce a pattern of longer expiration than inspiration, the ratio of inspiration to expiration time can serve as an additional indicator of anxiety. A relatively higher level of thoracic breathing (vs. abdominal breathing) also indicates anxiety. Thus, an observation of increased thoracic breathing can augment the monitor's visual information.

《压力传感器的静态标定实验》指导书

《自动检测技术》实验指导书 北京交通大学机电学院测控系 2006年9月

实验一压力传感器的静态标定实验 一、实验目的要求 1、了解压力传感器静态标定的原理; 2、掌握压力传感器静态标定的方法; 3、确定压力传感器静态特性的参数。 二、实验基本原理 传感器的标定,就是通过实验建立传感器输入量和输出量之间的关系,同时也确定出不同使用条件下的误差关系。压力传感器的静态标定,主要指通过一系列的标定曲线得到其静态特性指标:非线性、迟滞、重复性和精度等。 三、实验系统 1、系统连接 2、实验设备 活塞式压力计(型号:YS/YU-600型)、标准压力表(精度:0.4级,量程:0~10MPa)、被标定的压力传感器(型号:AF1800,量程:0~10MPa)、数字万用表、标准砝码、工作液体(蓖麻油)。

3、活塞式压力计结构原理 测量活塞以及砝码的重力与螺旋压力发生器共同作用于密闭系统内的工作液体,当系统内工作液体的压力与此重力相平衡时,测量活塞1将被顶起而稳定在活塞筒3内的任一平衡位置上。这时有压力平衡关系: g m m A p )(1 0+= 式中:p 为系统内的工作液体压力;m 与m 0分别为活塞与砝码的质量;g 为重力加速度;A 为测量活塞的有效面积。对于一定的活塞压力计,A 为常数。 在承重托盘上换不同的砝码,由螺旋压力发生器推动工作活塞,工作液体就可处于不同的平衡压力下,因此可以方便而准确地由平衡时所加的砝码和活塞本身的质量得到压力p 的数值。此压力可以作为标准压力,用以校验压力表。如果把被校压力表6上的示值与这一准确的压力p 相比较,便可知道被校压力表的误差大小。也可以关闭a 阀,在b 阀上部接入标准压力表,由压力发生器改变工作液压力,比较被校表和标准表上的示值进行校准。同样,将被校压力表换成压力传感器,就可以通过比较压力传感器测量的压力值和标准表上的示值进行校准,对压力传感器进行静态标定。 4、扩散硅压力传感器 扩散硅压力传感器在单晶硅的基片上扩散出P 型或N 型电阻条,接成电桥。在压力作用下,根据半导体的压阻效应,基片产生压力,电阻条的电阻率产生很大变化,引起电阻的变化,把这一变化引入测量电路。则其输出电压的变化反映了所受到的压力变化。 四、实验方法和要求 1、根据实验设备设计实验电路连线图,装配、检查各种仪器、传感器及压 力表。 2、检查实验电路及油路。

相关文档
最新文档