概率论与数理统计第五章 大数定律及中心极限定理
概率论与数理统计第五章 大数定律及中心极限定理

在100次炮击中炮弹命中的总颗数
100
X = ∑ Xk k =1
相互独立地服从同一分布,
E(Xk)=2, D(Xk)=1.52 (k=1,2,…,100)
随机变量
∑ 1
100 × 1.5
100 k =1
(
X
k
−
2)
=
1 15
(
X
−
200)
2. 伯努利定理 事件发生的频率依概率收敛于事件的概率
3. 辛钦定理 (随机变量序列独立同分布且数学期望存在)
n个随机变量的算术平均值以概率收敛于算术 平均值的数学期望。
给出了“频率稳定性”的严格数学解释. 提供了通过试验来确定事件概率的方法. 是数理统计中参数估计的重要理论依据之一.
§5.2 中心极限定理
望 E( Xk ) = µ (k = 1,2,"),则对于任意ε > 0,有
∑ lim
n→∞
P {|
1 n
n k =1
Xk
−
µ
|<
ε
}
=
1
说明
伯努利大数定理是辛钦定理的特殊情
况。n个随机变量的算术平均值以概率收敛于算
术平均值的数学期望。
三 小结
1、切比雪夫(Chebyshev)定理的特殊情况 算术平均值依概率收敛于数学期望
= 1 − P { V − 100 ≤ 0.387 } (10 12 ) 20
∫ 0.387
≈ 1−
1
e − t 2 dt
−∞ 2π
= 1 −Φ (0.387) = 0.348
所以 P{V > 105} ≈ 0.348
概率论与数理统计第五章 大数定律及中心极限定理

定理五(李雅普诺夫中心极限定理) 李雅普诺夫
设随机变量 X1, X2 ,, Xn ,相互独立, 它 们具有数学期望 和方差:
E( Xk ) k , D( Xk ) k2 0 (k 1,2,),
n
记
Bn2
2 k
,
k 1
若存在正数 , 使得当 n 时,
1
Bn2
n
E{|
k 1
Xk
k
的 即对于任意正数 ,当n充分大时, 不
意 义
等式 | X | 成立的概率很大.
lim P{| X
n
|
}
lim
n
P
1 n
n k 1
Xk
1.
证明
E
1 n
n k 1
Xk
1 n
n k 1
E(Xk )
1 n
n
,
Dn1
n k 1
Xk
1 n2
n k 1
D( Xk
)
1 n2
n
2
2
n
定理二(伯努利大数定理)
伯努利
设 nA 是 n 次独立重复试验中事件 A 发生 的次数, p 是事件 A 在每次试验中发生的概率,
则对于任意正数 0, 有
lim
n
P
nA n
p
1
或
lim
n
P
nA n
p
0.
证明 引入随机变量
0, 若在第k 次试验中 A 不发生,
Xk
1,
若在第k 次试验中 A 发生, k 1,2,.
,
由切比雪夫不等式可得
P
1 n
n k 1
X
k
概率论与数理统计 第五章

Xn ⎯ ⎯→ X 2. 依概率收敛与依分布收敛的关系
依概率收敛 ⇒ 依分布收敛
L
3. 定义:中心极限定理 设随机变量 X ~ N(0,1),{Xi },i = 1, 2, … 相互独 立,且数学期望和方差都存在, 若标准化随机变量序列
∑
n
i =1
Xi −
∑ E(X
i =1
n
i
)
∑
n
i =1
D(X i)
所以结论成立。 由此有,若X ~ B( n, p ),对于足够大的n,有 ⎧ m1 − np X − np m2 − np ⎫ ⎪ ⎪ < ≤ P{m1 < X ≤ m2 }= P ⎨ ⎬ np(1 − p) np(1 − p) ⎪ ⎪ np(1 − p) ⎩ ⎭
⎧ Yn − np ⎫ ⎪ ⎪ ≤ x ⎬ = Φ( x ) lim P ⎨ n →∞ ⎪ np(1 − p ) ⎪ ⎩ ⎭
证明:对于任意正整数n,随机变量Yn 可表示为 证明:对于任意正整数n Yn = X1+ X2+…+ Xn X1, X2,…, Xn 相互独立,Xi ~ B( 1, p ),且有 E( Xi ) = p , D( Xi ) = p(1-p) 所以随机变量序列{ Xi }, i =1,2,…满足独立同分布 中心极限定理条件。即有
切比雪夫不等式的应用 1)估计随机变量落在某个区间内的概率 (P125例5.5.2) 2)估计ε的值, 使 P(│X - E(X)│<ε) ≥ a (0<a<1) 3)证明大数定律。
二. 大数定律 定义: 依概率收敛 设{Xn}是一个随机变量序列,X 是一个随机变量 或常数,若对于任意的ε> 0,有 lim P{| X n − X |≥ ε } = 0
概率论与数理统计 第5章 大数定律和中心极限定理

5.1 大 数 定 律 作为上述定理得特殊情况,可以得到如下重要定 理: 定理 5.3 (伯努利大数定律)设 nA 是 n 重伯努利试 验中事件 A 发生的次数, p 是事件 A 在每次试验中 发生的概率,则对于任意正数,有
nA P nA 即 (5.4) p ( n ) limP p 1 n n n
第五章 大数定律和中心极限定理 【吸烟率调查问题】 某卫生组织为确定某城市成年男子的吸烟率p,将 被调查的成年男子中吸烟的频率作为p的估计,现在 要保证有 90% 以上的把握,使得调查对象吸烟者的
频率与该城市成年男子的吸烟率p之间的差异不大于
5%,问至少要调查多少对象?
5.1
大 数定 律
对某个随机变量 X进行大量的重复观测,所得到 的大批观测数据的算术平均值也具有稳定性,由于 这类稳定性都是在对随机变量进行大量重复试验的 条件下呈现出来的,历史上把这种试验次数很大时 出现的规律统称为大数定律.
即对于任意正数,有
1 n limP X i 1 n n i 1
1 n P X (n ) 也即 (5.3) i n i 1 n n 1 1 1 证:因为 E ( X i ) E ( X i ) n n n i 1 n i 1 1 n 1 D( X i ) 2 n i 1 n
nA p 实际上几乎是必定要发生的,即对于给 n
用事件发生的频率来近似地代替事件发生的概率.
5.1 大 数 定 律 上 述 契 比 谢 夫 大 数 定 律 中 要 求 随 机 变 量 X1 , X2 , … , Xn , … 的方差存在,实际上,在高等概率
论中已经证明了在不要求D(Xi)(i = 1,2,…)存在
概率论与数理统计 第二版 第五章 大数定律及中心极限定理

解 设Xi表示 “装运的第i箱的重量”(单位:千克), n为所n求箱数,则X1, X2,
, X n相互独立同分布, n箱的总重量 T n =X1+X2+ +X n = Xi ,且 E(Xi)=50,
D(Xi)=25, 由林德伯格-列维中心极限定理知
n
i 1
n
P{Tn
5000}=P{
n i 1
Xi
5000
}=P
i
1
Xi 50n
5n
5000
50n
=P
i 1
5n
Xi 5
50n
1000
10n
n
n
( 1000 10n) >
0.977=(2) ,
解得 n < 98.0199 ,
n
所以每辆汽车最多装 98 箱 .
第五章 大数定律及中心极限定理 §5.2 中心极限定理
μ
|
ε}
1,
1 n
lim
n
P{|
n
i 1
Xi
μ|
ε}
0
.
第五章 大数定律及中心极限定理 §5.1 大数定律
例1 (P149例1)设随机变量X1 , X2 , , X n , 相互独立同服从参
数为 2的指数分布, 则当n∞时, Yn =
1 n
n
i 1
X
2 i
依概率收敛于
____
.
解 因为随机变量 X1 , X2 , , X n 相互独立同分布, 所以
定理1 (伯努利大数定律) 设随机变量序列 X1 , X2 , , X n ,
概率论与数理统计第五章大数定律及中心极限定理

概率论与数理统计第五章大数定律及中心极限定理课前导读概率论是研究大量试验后呈现出的统计规律性的一门理论。
数学中研究大量的工具是极限。
因此这一章学习概率论中的极限定理。
第一节大数定律随着试验次数的增大,事件的频率逐步稳定到事件的概率。
意味着随着试验次数的增多,在其中一种收敛意义下,频率的极限是概率。
大数定律解释了这一结论。
首先介绍切比雪夫不等式。
一、切比雪夫(Chebyshev)不等式随机变量X的取值总是围绕着其期望变动,若X的分布已知时,可以计算事件\{,X-E(X),\geq \epsilon \}的概率。
切比雪夫不等式:对切比雪夫不等式的直观理解:方差越小,X在其期望附近取值的密集程度越高,原理期望的区域的概率上加越小。
进一步说明了方差的概率意义,方差时随机变量取值与其中心位置的偏离程度的一种度量指标。
当随机变量X的分布未知时,可由X的观测数据估计得到X的期望和方差,然后使用切比雪夫不等式估计X关于E(X)的偏离程度。
二、依概率收敛随机变量序列即由随机变量构成的一个序列。
不能用类似定义数列极限的方式定义随机变量序列的极限,因为序列中的每一个元素X_n是随机变量,取值不确定,不可能和一个常数c的距离任意小。
只能说一些事件A发生的频率f_n(A)收敛到A的概率P(A)。
依概率收敛的定义:定理2:三、大数定律三个大数定律:切比雪夫大数定律、辛钦大数定律和伯努利大数定律。
注意这三个大数定律的条件有何异同。
定理3 切比雪夫大数定律:若随机变量序列相互不相关,方差存在且一致有上界,当n充分大时,随机序列的前n项的算术平均值和自身的期望充分接近几乎总是发生的。
定理4 相互独立同分布的大数定律(辛钦大数定律):辛钦大数定律为算术平均值法则提供了理论依据。
伯努利大数定律:伯努利大数定律是相互独立同分布大数定律的特例,限定分布为两点分布。
伯努利大数定律体现了:随着试验次数的增大,事件的频率逐步稳定到时间的概率,这里的稳定即为依概率收敛。
大学《概率论与数理统计》课件第五章 大数定律与中心极限定理

例5 某单位有200台电话分机,每台分机有5%的时间 要使用外线通话。假定每台分机是否使用外线是相互独 立的,问该单位总机要安装多少条外线,才能以90%以 上的概率保证分机用外线时不等待? 解 设有X 部分机同时使用外线,则有 其中 设有N 条外线.由题意有 由德莫佛-拉普拉斯定理得
第五章 大数定律与中心极限定理
§5.1 大数定律 §5.2 中心极限定理
§5.1 大数定律 一、切比雪夫Chebyshev不等式 二、几个常见的大数定律
定义1 设随机变量序列
在常数 a ,使得对于任意
有:
则称 依概率收敛于a ,记为
,如果存
注意
以概率收敛比高等数学中的普通意义下的收敛弱 一些,它具有某种不确定性.
且
是独立同分布的随机变量. 且
累计误差即总距离误差为1200 X k 近似 N (0,100) k 1
由定理1可得
下面介绍定理1 的特殊情况.
定理2(棣莫佛-拉普拉斯定理(De Moivre-Laplace)
设随机变量 服从参数为
的二项分布
则对任意的x ,有
即 或
证 因为 所以 其中 相互独立,且都服从(0-1)分布。
定理1(独立同分布的中心极限定理)
设
为一列独立同分布的随机变量,
且具有相同的期望和方差
则对任意实数x,有
即
,或
例1 根据以往经验,某种电器元件的寿命服从均值为 100小时的指数分布. 现随机地取16只,设它们的寿命 是相互独立的. 求这16只元件的寿命的总和大于1920小 时的概率. 解 设第i 只元件的寿命为Xi , i=1,2, …,16 由题给条件知,诸Xi 独立,E( Xi ) =100, D( Xi ) =10000 16只元件的寿命的总和为
第五章 大数定律与中心极限定理 《概率论》PPT课件

概率论与数理统计
§5.2 中心极限定理
2)中 心极限 定理表明,若 随 机 变 量 序 列
X 1 , X 2 , , X n 独立同分布,且它们的数学期
望及方差存在,则当n充分大时,其和的分布,
n
即 X k 都近似服从正态分布. (注意:不一定是 k 1
标准正态分布)
3)中心定理还表明:无论每一个随机变量 X k ,
概率论与数理统计
§5.1 大数定律
定理1(Chebyshev切比雪夫大数定律)
假设{ Xn}是两两不相关的随机
变量序列,EXn , DXn , n 1,2, 存在,
其方差一致有界,即 D(Xi) ≤L,
i=1,2, …, 则对任意的ε>0,
lim P{|
n
1 n
n i1
Xi
1 n
n i1
E(Xi ) | } 1.
概率论与数理统计
§5.2 中心极限定理
现在我们就来研究独立随机变量之和所 特有的规律性问题.
在概率论中,习惯于把和的分布 收敛于正态分布这一类定理都叫做中心 极限定理.
下面给出的独立同分布随机变量序 列的中心极限定理, 也称列维——林德 伯格(Levy-Lindberg)定理.
概率论与数理统计
§5.2 中心极限定理
大量的随机现象平均结果的稳定性
大量抛掷硬币 正面出现频率
生产过程中的 字母使用频率 废品率
概率论与数理统计
§5.1 大数定律
一、大数定律
阐明大量的随机现象平均结果的稳定性的一系
列定理统称为大数定律。
定义1 如果对于任意 0, 当n趋向无穷时,事件
" Xn X " 的概率收敛到1,即
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计作业
班级 姓名 学号 任课教师
第五章 大数定律及中心极限定理
教学要求:
一、了解大数定律的直观意义; 二、掌握Chebyshev 不等式;
三、了解Chebyshev 大数定理和贝努里大数定理; 四、会用中心极限定理估算有关事件的概率.
重点:中心极限定理.
难点:切比雪夫不等式、大数定律、中心极限定理.
综合练习题
一、选择题
1.设12,,,n X X X 是独立同分布的随机变量序列,且
1,2,,i n = .令∑==n
i i n X Y 1
,1,2,,i n = ,()x Φ为标准正态分布函数,则
()=⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧≤--∞
→11lim p np np Y P n n (B ). (A )0 ; (B )()1Φ; (C )()11Φ-; (D )1.6 . 2.设()x Φ为标准正态分布函数,0,1,i A X A ⎧=⎨
⎩事件不发生,
事件发生,
()100,,2,1 =i ,且
()8.0=A P ,10021,,,X X X 相互独立.令∑==100
1
i i X Y ,则由中心极限定理知Y 的分布函
数()y F 近似于(B ). (A )()y Φ; (B )⎪⎭
⎫
⎝⎛-Φ480y ; (C )()8016+Φy ; (D )()804+Φy .
3.设随机变量 ,,,,21n X X X 相互独立,且i X () ,,,2,1n i =都服从参数为
2
1
的指数分布,则当n 充分大时,随机变量∑==n
i i n X n Z 1
1的概率分布近似服从(B ).
(A )()4,2N ; (B )⎪⎭⎫ ⎝⎛n N 4,2; (C )⎪⎭
⎫
⎝⎛n N 41,21; (D )()n n N 4,2. 二、填空题
1.设随机变量 ,,,,21n X X X 相互独立且同分布,它们的期望为μ,方差为2
σ,
令∑==n
i i n X n Z 1
1,则对任意正数ε,有{}=≤-∞→εμn n Z P lim 1 .
2.设 ,,,,21n X X X 是独立同分布的随机变量序列,且具有相同数学期望和方差
()μ=i X E ,()02>=σi X D ,() ,2,1=i , 则对任意实数x , =⎪⎪⎭
⎪
⎪⎬⎫
⎪⎪⎩⎪⎪⎨⎧≤-∑=∞
→x n n X P n i i n σμ1lim ()x Φ. 3.设()1-=X E ,()4=X D ,则由切比雪夫不等式估计概率{}42P X -<<≥
9
5
. 4.设随机变量[]1,0~U X ,由切比雪夫不等式可得≤⎭⎬⎫⎩⎨⎧≥-
3121X P 4
1. 5.设随机变量()
2.0,100~B X ,应用中心极限定理可得{}≈≥30X P 0062.0.(其中
()()9938.05.2=Φ)
三、应用题
1. 100台车床彼此独立地工作着,每台车床的实际工作时间占全部工作时间的80%, 求任一时刻有70至86台车床在工作的概率.
解:设⎩⎨
⎧=台车床没有工作
第台车床正在工作
第i i X i .0.1(100,,2,1 =i ),且()8.0,1~B X i ,
则100台车床中在任一时刻正在工作的机床台数为10021X X X X +++= ,且()80=X E ,()16=X D ,(其中10021,,,X X X 独立同分布),于是由德莫弗-拉普拉斯中心极限定理近似可得
()⎪⎪⎭⎫
⎝⎛-≤-≤-=≤≤168086168016
80708670X P X P
()()()()927.015.25.15.25.1=-Φ+Φ=-Φ-Φ≈.
2. 某计算机系统有120个终端,每个终端在1小时内平均有3分钟使用打印机,假定各终端使用打印机与否是相互独立的,求至少有10个终端同时使用打印机的概率.
解:设
,,0,1⎩
⎨⎧=个终端没有使用打印机第个终端正在使用打印机第i i X i (120,,2,1 =i ),且
()05.0,1~B X i ,
则120个终端中同时使用打印机的台数为12021X X X X +++= ,且()6=X E ,()7.5=X D (其中12021,,,X X X 独立同分布),于是由德莫弗-拉普拉斯中心极限定理近似可得:
()()⎪⎪⎭⎫
⎝⎛-<--=<-=≥7.56107
.56110110X P X P X P
()0465.09535.0168.11=-=Φ-≈.
3.设某产品的废品率为0.005,从这批产品中任取1000件,求其中废品率不大于0.007的概率.
解:设1000件设产品的废品数为
n μ,易知()005.0,1000~B n μ,则
()()(),975.41,5=-===p np D np E n n μμ 相应的废品率为
n
n
μ,()1000
=n 由德莫弗-拉普拉斯中心极限定理知:当n 充分大时n μ近似地服从正态分布,于是由中心极限定理近似可得
()⎪⎪⎭⎫ ⎝⎛-≤-=≤=⎪⎭⎫
⎝⎛≤975.457975
.457007.0n n n P P n P μμμ
()8159.09.0=Φ≈.
4.在掷硬币的试验中,至少掷多少次,才能使正面出现的频率落在(0.4,0.6)区间
的概率不小于0.9?
解:设A n 表示n 次试验中正面出现的次数,;
.0.1⎩
⎨
⎧=次试验中出现反面第次试验中出现正面
第i i X i (n i ,,2,1 =),显然()5.0,~21n B X X X n n A +++= (其中n X X X ,,,21 独立同
分布),()(),25.0,5.0n n D n n E A A ==于是正面出现的频率
n
n A
应满足9.06.04.0≥⎪⎭
⎫
⎝⎛<<n n P A .从而由中心极限定理知:
()
n n n P n n P A A 6.04.06.04.0<<=⎪⎭
⎫
⎝⎛<<
⎪⎪⎭⎫
⎝
⎛-<-<-=n n n n n n n n n P A 25.05.06.025.05.025.05.04.0
()()()
12.022.02.0-Φ=-Φ-Φ≈n n n , 要使9.06.04.0≥⎪⎭
⎫
⎝⎛<<
n n P A ,只要(
)9.012.02≥-Φn ,即()
95.02.0≥Φn .反查表可得65.12.0≥n ,即06.68≥n ,所以至少掷69次,才能使正面出现的频率落在(0.4,0.6)区间的概率不小于0.9.
5.设一个系统由100个相互独立起作用的部件组成,每个部件损坏的概率为0.1,必须有85个以上的部件正常工作,才能保证系统正常运行,求整个系统正常工作的概率.
解:设X 为100个相互独立的部件中正常工作的部件数,则()9.0,100~B X ,
()()(),91.09.01001,909.0100=⨯⨯=-==⨯==p np X D np X E 整个系统正常工
作的概率为()85>X P .由中心极限定理知:
()()⎪⎪⎭⎫
⎝
⎛-≤--=≤-=>99085990185185X P X P X P
9525.035351=⎪⎭
⎫
⎝⎛Φ=⎪⎭⎫ ⎝⎛-
Φ-≈. 6.有一批建筑房屋用的木柱,其中80%的长度不小于3米,现从这批木材中随机抽取
100根,问其中至少有30根短于3米的概率是多少?
解:设X 为100根木柱中长度小于3米的根数,易知()2.0,100~B X ,
()(),16,20==X D X E 则所求问题为()30≥X P ,由中心极限定理知:
()()⎪⎪⎭⎫
⎝⎛-<--=<-=≥16203016
20130130X P X P X P
()0062.09938.015.21=-=Φ-≈.
7.某车间有同型号机床200台,它们独立地工作着,每台开动的概率均为0.7,开动时耗电均为1.5千瓦,问电厂至少要供给该车间多少电力,才能以99..5%的概率保证用电需要?
解:设⎩
⎨
⎧=台机床没有工作第台机床正在工作
第i i X i .0.1(200,,2,1 =i ),且()7.0,1~B X i ,
记X 某时刻正在工作的机床数,则20021X X X X +++= ,()(),42,140==X D X E 于是某时刻该车间的耗电数为X Y 5.1=千瓦.
设供给该车间的电力数为α千瓦,则问题要求是()995.0=≤αY P ,由德莫弗-拉普拉斯中心极限定理知:
()()⎪⎭⎫ ⎝
⎛≤=≤=≤5.15.1αααX P X P Y P
995.0421405.1421405.142140=⎪⎪⎪⎪⎭
⎫
⎝⎛-Φ≈⎪⎪⎪⎪⎭⎫
⎝⎛-≤-=ααX P , 查标准正态分布表,得58.242
1405
.1=-α
,即 235=α.所以电厂至少要供给该车间235千
瓦的电力,才能以%5.99的概率保证用电需要.。