Ch8多元函数微分学 基础练习

合集下载

多元函数微分学练习题及答案

多元函数微分学练习题及答案

三. 设Lx, y, z, ln x ln y 3ln z (x2 y2 z2 5R2 )
求得此函数定义域内唯一的稳定点R,,R 3R , 也是所 求函数的最大值点, 所求最大值为f R, R, 3R ln 3 3R5 .
ln x ln y 3ln z ln 3 3R5
u y xf2 ( xz xyz y ) f 3
.
3、f x ( x, y)
(
x
2 xy 3 2 y2
)2
,
x
2
0, x 2 y 2 0
y2
0 ,
f y (x,
y)
x2(x2 (x2
y2 y2 )2
)
,
x2
o, x 2 y 2 0
y2
0
五、(
f1
f2 )dx
y (z) 1
f2 (z) dy. y (z) 1
六、 xe2 y fuu e y fuy xe y f xu f xy e y fu.
4、1; 5、必要条件,但不是充分条件; 6、可微;
7、 2 f (v )2 f 2v ; v 2 y v y 2
8、
9 2
a
3

9、(1,2);10、 1 ; 8
二、(1)当 x y 0时,在点( x, y)函数连续;
(2)当 x y 0时,而( x, y)不是原点时,
则( x, y)为可去间断点,(0,0)为无穷间断点.
4、lim( x 2 y )2 x2 y2 ( ). x0 y0
5、函数 f ( x, y)在点( x0 , y0 )处连续,且两个偏导数 f x ( x0 , y0 ), f y ( x0 , y0 )存在是 f ( x, y)在该点可微

高数下课件 ch8习题课

高数下课件 ch8习题课

=n (2 x, 2 y, − 1) (1,−2,5) = (2, − 4, − 1),
∴ 平面 π 方程为 2( x − 1) − 4( y + 2) − (z − 5) =0,
即 2x − 4 y − z − 5 =0,
x + y + b =0
由直线
l
方程
x
+
ay

z

3
得 =0
y =− x − b z = (1 − a)x − (3 +
22


y x2
= 4 x3 f1′ + 2 xf2′ + x4 yf1′1′ − yf2′2′ .
例3 设=u f ( x, y, z),ϕ ( x2 ,e y= , z) 0= ,y sin x,其中
f ,ϕ 具有一阶连续偏导数,且 ∂ϕ ≠ 0,求 du .
∂z
dx
解 du = ∂f + ∂f ⋅ dy + ∂f dz , dx ∂x ∂y dx ∂z dx
ab)
代入平面 π
方程得
(5 + a)x + (4b + ab − 2) = 0, 所以 a = −5,b = −2.
例12 设 xyz a (其中 a 为常数,且 x > 0,y > 0, z > 0),求函数 u = x + y + z 的最小值.
证一 u = x + y + z ≥ 3 3 xyz = 3 3 a,
解 ∂=z ∂x
f1′⋅
y
+
f

2

1 y
+

高数多元函数微分学

高数多元函数微分学

设 u ( x , y ) 、v ( x , y ) 、w w ( x , y ) 都 在 点 ( x , y ) 具 有 对 x
y 的 偏 导 数 , z f (u,v,w ) 在 对 应 点 (u,v,w ) 具 有 连 续 偏 导 数 , 则
合 函 数 z f [ ( x , y ), ( x , y ), w ( x , y )] 在 对 应 点 ( x , y ) 的 两 个 偏
z 2eu2v
v
z
dv e x
dx
u
x
v
d dx z u zd du x vzd dx veu2v(cox s2ex)
es ixn2ex(co xs2ex)
例2 求 d xsinx ( x 0) dx
这CH是8多幂元指函数函微分学 数的求导
可利用对数求导,可不可以用链式法则?
解 令 ux,vsixn ,zuv
z x
z u
u x
z v
v x

z y
z u
u y
z v
v y
仍为u、v的二元函数
观点要 明确!
即:
z u
fu
f1
u v
vzfv f2
u v
从而也x、 是 y的函.数
复合二阶偏导:
CH8多元函数微分学
z z u z v
x u x v x
f1
u x
f
2
v x
2z x 2
z x x
x
个偏导数存在,且可用下列公式计算
z z u z v x u x v x
z z u z v y u y v y
链式法则如图示
CH8多元函数微分学

(完整版)多元函数微分学测试题及答案

(完整版)多元函数微分学测试题及答案

第8章 测试题1.),(y x f z =在点),(00y x 具有偏导数且在),(00y x 处有极值是 0),(00=y x f x 及0),(00=y x f y 的( )条件.A .充分B .充分必要C .必要D .非充分非必要2.函数(,)z f x y =的偏导数z x∂∂及z y ∂∂在点(,)x y 存在且连续是 (,)f x y 在该点可微分的( )条件.A .充分条件B .必要条件C .充分必要条件D .既非充分也非必要条件3. 设(,)z f x y =的全微分dz xdx ydy =+,则点(0,0) 是( )A 不是(,)f x y 连续点B 不是(,)f x y 的极值点C 是(,)f x y 的极大值点D 是(,)f x y 的极小值点4. 函数22224422,0(,)0,0x y x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在(0,0)处( C )A 连续但不可微B 连续且偏导数存在C 偏导数存在但不可微D 既不连续,偏导数又不存在5.二元函数22((,)(0,0),(,)0,(,)(0,0)⎧+≠⎪=⎨⎪=⎩x y x yf x y x y 在点(0,0)处( A). A .可微,偏导数存在 B .可微,偏导数不存在C .不可微,偏导数存在D .不可微,偏导数不存在6.设),(),,(y x v v v x f z ==其中v f ,具有二阶连续偏导数. 则=∂∂22y z( ). (A)222y v v f y v y v f ∂∂⋅∂∂+∂∂⋅∂∂∂; (B)22y vv f∂∂⋅∂∂;(C)22222)(y v v fy v v f ∂∂⋅∂∂+∂∂∂∂; (D)2222y v v f y v v f ∂∂⋅∂∂+∂∂⋅∂∂.7.二元函数33)(3y x y x z --+=的极值点是( ).(A) (1,2); (B) (1.-2); (C) (-1,2); (D) (-1,-1). 8.已知函数(,)f x y 在点(0,0)的某个邻域内连续,且223(,)(0,0)(,)lim 1()x y f x y xy x y →-=+,则下述四个选项中正确的是( ).A .点(0,0)是(,)f x y 的极大值点B .点(0,0)是(,)f x y 的极小值点C .点(0,0)不是(,)f x y 的极值点D .根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点10.设函数(,)z z x y =由方程z y z x e -+=所确定,求2z y x ∂∂∂ 11.设(,)f u v 是二元可微函数,,y x z f x y ⎛⎫= ⎪⎝⎭,求 z z x y x y ∂∂-∂∂ 12.设222x y z u e ++=,而2sin z x y =,求u x ∂∂11.设(,,)z f x y x y xy =+-,其中f 具有二阶连续偏导数,求 2,z dz x y ∂∂∂.13.求二元函数22(,)(2)ln f x y x y y y =++的极值14.22在椭圆x +4y =4上求一点,使其到直线2360x y +-=的距离最短.第8章测试题答案1.A2.A3.D4.C5.A6.C7.D8.C 8. ()()3(1)z y z y e e ---9. 2122z z x y x y f f x y y x∂∂-=-∂∂ 10.2222(12sin )x y z u xe z y x++∂=+∂11.123123231113223233 ()(),()()dz f f yf dx f f xf dyzf f x y f f x y f xyf x y=+++-+∂=+++-+-+∂∂12.极小值11(0,)f ee-=-13. r h==14. 83(,)55。

第八章 多元函数微分练习题

第八章 多元函数微分练习题

5、已知函数 z f (sin x, y 2 ) ,其中 f (u, v) 有二阶连续偏导数,求 z 、 2 z 。 x xy
6、设
z
xf
(x2,
xy)
其中
f
(u, v)
的二阶偏导数存在,求
z y

2z yx

7、设 z f (2x 3y, xy) 其中 f 具有二阶连续偏导数,求 2 z 。 xy
z x
三、计算题
1、设 z f (x2 , x ) ,其中 f 具有二阶连续偏导数,求 z 、 2 z 。
y
x xy
2、已知 z ln x x2 y 2 ,求 z , 2 z 。 x xy
3、求函数 z tan x 的全微分。 y
4、设 z f (x y, xy) ,且具有二阶连续的偏导数,求 z 、 2 z 。 x xy
x1 (
y0
)
A、-1
B、 0
C、 1
D、 2
8、 函数 z ( x y)2 ,则 dz x1, y0 =(

A、 2dx 2dy B、 2dx 2dy
C、 2dx 2dy D、 2dx 2dy
二、填空题
1、函数 z x y 的全微分 dz 2、设 u e xy sin x ,则 u
y
xy
17、设 z f (x2 y, y2 x) ,其中 f 具有二阶连续偏导数,求 2 z 。 xy
18、设
z
z(x,
y)
是由方程
z
ln
z
xy
0
确定的二元函数,求
2z x2
19、设 z yf ( y2, xy) ,其中函数 f 具有二阶连续偏导数,求 2z 。 xy

多元函数微分学练习题及解答

多元函数微分学练习题及解答

xy
1
ex cos y 8、 lim
x, y0,01 x y
[解]:函数 z ex cos y 在 0, 0点连续,故 lim ex cos y e0 cos 0 1 。
1 x y
x,y0,01 x y 1 0 0
教材 P63 页习题 9-1 第 6 大题求极限。
xy
9、讨论函数
x
f22
x y2
x2
f11
2x2 y2
f12
x2 y4
f22
2x y3
f
2

20、设
f
具有连续导数,
z
xy
xf
y x
,证明
x
z x
y
z y
xy
z
[证明]:
z x
y
f
y x
x
f
y x
y x2
y
f
y x
y x
f
y x
z y
x
x
f
y x
1 x
x
f
y x
x
z x
y
高等数学(B)—多元函数微分学复习题
1、 二元函数 z f x, y在点 P0 x0 , y0 处的两个偏导数存在是 z f x, y在点 P0 x0 , y0 处连
续的 ______ 条件(填:充分、必要、充要或无关)
[解]:无关条件,
2、 如果函数 z f x, y 的两个混合偏导数 2 z , 2 z 在区域 D 内
26、求 3x2 y2 z2 16 在 1, 2, 3处的切平面与 xoy 面夹角的余弦
y
5)
2z y 2
x sin x

第八章 多元函数的微分法及其应用 练习题

第八章  多元函数的微分法及其应用  练习题

第8章 多元函数的微分法及其应用§8.1 多元函数的基本概念一、填空题1.已知22),(y x xyy x f -=+ ,则f(x,y)= 。

2.函数)1ln(4222y x y x Z ---=的定义域为 。

3.11lim0-+→→xy xy y x = 。

二、判断题1. 如果P 沿任何直线y=kx 趋于(0,0),都有A P f kxy x ==→)(lim 0,则A y x f y x =-→→)(lim 00。

( )2. 从0)0,(lim 0=→x f x 和2)2,(lim 0=→x x f x 知),(lim 0y x f y x →→不存在。

( )3. 下面定义域的求法正确吗?)ln(11),(y x y x y x f -+-+=解:012)2()1()2(0)1(01>-⇒+⎩⎨⎧>->-+x y x y x 所以定义域为x>1/2的一切实数。

三、选择题1. 有且仅有一个间断点的函数是( )(A )、x y (B )、)22l n (y x e x +- (C )、yx x+ (D )、arctanxy 2.下列极限存在的是( ) (A )、y x x y x +→→00li m (B )、y x y x +→→1l i m 00 (C )、y x x y x +→→200l i m (D )、yx x y x +→→1s i n lim 00四、求下列函数的定义域,并画出定义域的图形。

1.y x y x z --+=112.221)ln(yx x x y z --+-=3.)]1)(9ln[(2222-+--=y x y x z五、求下列极限,若不存在,说明理由。

1.22101lim y x xy y x +-→→2. 222200cos 1lim y x y x y x ++-→→3.y x x y x +→→00lim§8.2 偏导数一、判断题1. 如果f(x,y)在(x 0,y 0) 处,xf ∂∂存在,则一元函数f(x,y 0)在(x,y 0)处连续。

微积分第七章-多元函数微分学习题

微积分第七章-多元函数微分学习题

总结词
理解偏导数与全微分的关系,掌握二者之间 的转换方法。
详细描述
偏导数是全微分的线性近似,即当 自变量改变量Δx、Δy等趋于0时, 全微分等于偏导数乘以自变量改变 量。因此,在求函数在某一点的切 线斜率时,可以使用偏导数;而在 计算函数在某一点的微小改变量时, 则使用全微分。
03
习题三:方向导数与梯度
THANKS
感谢观看
Delta y]
计算多元函数的梯度
总结词
梯度是多元函数在某点处的方向导数的最大值,表示函数在该点处沿梯度方向变 化最快。
详细描述
梯度的计算公式为:[nabla f(x_0, y_0) = left( frac{partial f}{partial x}(x_0, y_0), frac{partial f}{partial y}(x_0, y_0) right)]梯度向量的长度即为函数在该点 的变化率。
讨论多元函数极值的性质
要点一
总结词
极值的性质包括局部最大值和最小值、鞍点的存在以及多 变量函数的极值与一元函数的极值之间的关系。
要点二
详细描述
在多元函数中,极值具有局部性,即在一个小的区域内, 一个函数可能达到其最大值或最小值。鞍点是函数值在某 方向上增加而在另一方向上减少的点。此外,多变量函数 的极值与一元函数的极值之间存在一些关系,例如,在一 元函数中,可微函数在区间上的最大值和最小值必然在驻 点处取得,但在多元函数中,这一性质不再成立。
利用二阶条件求多元函数的极值
总结词
二阶条件是进一步确定极值点的工具,通过判断二阶偏导数的符号,我们可以确定是否为极值点。
详细描述
在得到临界点后,我们需要进一步判断这些点是否为极值点。这需要检查二阶偏导数的符号。如果所 有二阶偏导数在临界点处都为正,则该点为极小值点;如果所有二阶偏导数在临界点处都为负,则该 点为极大值点;如果既有正又有负,则该点不是极值点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.求下列方程所确定的隐函数的偏导数:
(1) x 2 y 2 z 2 4z 0 ,求 z x , z y ;
(2) z x y (z) , 可导,求 z y / zx .
5.求下列函数的二阶偏导数:
(1) z ye xy ;
(2) z 1 x y x 2 y 2 ;
7.(1)依题意,记 S 为所用材料的面积,则目标函数与约束条件依次为
S 2 r 2 2 rh 2 r(r h), r 2h V0
Lr 4 r 2 h 2 rh 0

L 2 r 2 2 rh ( r 2h V0 ) , 令
(2)某企业的产出 z 与投入 x 及 y 的函数关系为 z 5x 2 y 3 ,在 x y 5 的条件下,
试确定投入量 x 及 y 的比例,使得企业的产出 z 达到最大,并求出最大产出. 参考解答
1.(1)对 x 、 y 无任何限制,因而 D 是 xoy 平面.
( 2 ) 由 对 数 定 义 知 , 定 义 域 D = {(x, y) 1 x y 0, x R, y R} , 即 直 线
(2) z x 1 2x, z xx 2, z xy z yx 0 ,
z y 1 2 y, z yy 2 .
(3) z x 2xy 3 , z xx 2 y 3 , z xy 6xy 2 , z y 3x 2 y 2 , z yy 6x 2 y, z yx 6xy 2 .
得 zx

1

1 y
(
z)
,
zy

(z) 1 y (z)
,故 z y
/ zx
(z).
5.(1) z x y 2e xy , z y e xy xye xy (1 xy)e xy , z xx y 3e xy , z yy xe xy (x x 2 y)e xy , z xy 2 ye xy y 3e xy ye xy (2 y 2 ) , z yx ye xy ( y xy 2 )e xy ye xy (2 y 2 ) .
x dy (ln y)dx . y
(3) z x 2xy 3 , z y 3x 2 y 2 ,故 dz 2xy 3dx 3x 2 y 2dy .
(4) z x
1( y
x )x

2
1 xy
,
zy
x(
1 y
)y

1 2y
x

y
故 dz 1 dx 1 x dy . 2 xy 2 y y
(4) zx ln(1 y),
z xx 0,
z xy
1, 1 y
zy

x, 1 y
z yy

(1
x y)2
,
z yx

1 1 y

6.(1)由 z x b, z y c ,故 dz bdx cdy . (2) dz d (x ln y) xd (ln y) (ln y)dx
y ( y)2

1 x2

y x2 y2

x
x
zy
1 1 ( y)2
1 x
( y)y

x2
x
y2

x
3.(1) z x 2x ,故 z x (1, 1) 2 ,同理, z y (1, 1) 2 .
(2)因为,故 z x (0,
0)

(3) z x 2 y 3 ;
6.求下列函数的全微分:
(1) z a bx cy ;
(4) z x ln(1 y) . (2) z x ln y ;
(3) z x 2 y 3 ;
(4) z x . y
7.应用题:
(1)使用铁皮作一个圆柱形的密封桶,设容积为定数V0 ,试确定桶的高 h 和桶底的半 径 r ,以使所用材料最省?
1 x y 0 上方的点集.
( 3 ) 由 1 x2 0 及 1 y2 0 , 得 定 义 域 是 正 方 形 区 域 :
{(x, y) 1 x 1, 1 y 1, x R, y R} .
(4)由 | x | | y | 1 ,得定义域是由 x y 1 及 x y 1这四条直线围成的
3.求下列函数在指定点的偏导数:
(1) z x 2 y 2 ,求 z x (1, 1) ;
(4) z arcsin( | x | | y | ) .
(2) z xe xy ; (4) z arctan y .
x
(2) z sin x ln( y 1) cos y ln(1 x) ,求 zx (0, 0) 及 z y (0, 0) .
Ch8 多元函数微分学 基础练习
1.求下列函数的定义域:
(1) z 1 x y ;
(2) z ln(1 x y) ;
(3) z 1 x 2 1 y 2 ;
2.求下列函数的偏导数:
(1) z x3 y 2 ;
(3) z ln(x 2 y 4 1) ;
正方形区域.
2.(1) z x 3x 2 y 2 , z y 2x3 y .
(2) z x e xy xye xy , z y x 2e xy .
(3) z x

1
2x x2
y4
,
zy
1
4y3 x2
y4

(4) z x

1
1 ( y)2

y

(
1 x
)x

1
Lh

2 r
r2

0
,解得
L r 2h V0 0
dz ( x, dx
0)
x0

1 1 x
x0
1;又由于
z(0, y) 0 ,故 z y (0, 0) 0 .
4.(1)方程两边对 x 求偏导,得 2x 2zz x 4z x 0 ,解得
zx

x 2
z
.同理,
zy

y 2
z

(2)方程两边分别对 x 及 y 求导,得 z x 1 y (z)z x , z y (z) y (z)z y ,解
相关文档
最新文档