金属切削运动和切削要素
切削运动及切削用量三要素

目的:保证零件的加工精度和表面质量的同时考虑刀具耐用度和生产率 选择:根据表面粗糙度的要求选择较小进给量;切削速度要避免产生积屑 瘤,硬质合金刀具采用较高的切削速度,高速钢刀具采用较低的切削速度
综上所述,在保证加工质量的条件下,首先选尽可能大的吃刀量, 其次选用尽可能大的进给量,最后选尽可能高的切削速度。
切削运动及切削用量三要素
一、切削加工运动分析
2.切削运动分类
(2)进给运动:使金属不断投入切削ห้องสมุดไป่ตู้加工出完整表面的运动。速度较低、 消耗功率较少,即可连续,也可间歇,可以没有,有一个或多个。 进给运动方向:是指切削刃选定点相对于工件的瞬时进给运动方向。
切削运动及切削用量三要素
一、切削加工运动分析
2.切削运动分类
影响刀具强度的最大因素是背吃刀量,其次是进给量,最小的 是切削速度;
影响表面质量的最大因素是进给量,其次是切削速度,最小的 是背吃刀量。
切削运动及切削用量三要素
2、切削用量的合理选择
(1) 粗加工
目的:提高生产率,尽快切去全部加工余量,并保证规定的刀具耐用度。 选择:应选取较大的背吃刀量,较大进给量,使余量尽量一次切完,选择 较低或中等切削速度。
切削运动及切削用量三要素
二、切削要素
3、切削层尺寸要素
(1)切削层公称厚度hD mm
hD=f*sinkr
(2)切削层公称宽度bDmm
bD=ap/sinkr
(3)切削层公称横截面积ADmm2
√材料切除率Q mm3/s
切削运动及切削用量三要素
三、车削加工工艺特点及应用
• (1)易保证工件各加工面的位置精度 • (2)加工范围广 • (3)生产率高
金属切削加工的基本知识

进给速度vf是单位时间内刀具对工件沿进给方
向的相对位移,单位是mm/s或mm/min。
进给量f是工件或刀具每回转一周时两者沿进
给运动方向的相对位移,单位是mm/r。
二者关系:
vf=f×n
切 削 用 量 三 要 素
(3)背吃刀量 工件上已加工表面和待加工表面间的垂直距 离,单位为mm。 外圆柱表面车削的深度可用下式计算: ap=(dw-dm)/2 mm 对于钻孔工作 ap=dm/2 mm 上两式中 dm——已加工表面直径(mm) dw—— 待加工表面直径(mm)
(3)金刚石
是目前人工制造出的最硬的物质,分天然和人造两种。
特点:
耐磨性好,可用于加工硬质合金、陶瓷、高硅铝合金及耐磨塑料等高硬度、
高耐磨的材料;
其热稳定性差, 强度低、脆性大、对振动敏感,只宜微量切削; 与铁有极强的化学亲合力,不适于加工黑金属。
(4)立方氮化硼
由软的立方氮化硼在高温高压下加入催化剂转变而成。
切 削 层 横 截 面 要 素
由切削刃正在切削的这一层金属叫作切削层。切削层的 截面尺寸称为切削层参数。它决定了刀具切削部分所承受的 负荷和切屑尺寸的大小,通常在基面Pr内度量。 1. 切削厚度 ac (λs= 0)
ac= f sinκr
2. 切削宽度 aw
aw= ap/sinκr
3. 切削层面积 Ac ( κr = 0)
特点:Leabharlann 有很高的硬度及耐磨性; 热稳定性好,可用来加工高温合金; 化学惰性大,可用与加工淬硬钢及冷硬铸铁; 有良好的导热性、较低的摩擦系数。
第二节 金属切削过程中的基本规律
一、切削变形
1.变形区的划分
金属切削的基础知识

切削过程: 三个变形区
(1)第一变形区
(2)第二变形区: (3)第三变形区:
制造技术
切屑种类:
1)带状切屑
外形连绵不断,与前刀 面接触的面很光滑,背面呈毛 茸状。用较大前角、较高的切 削速度和较小的进给量切削塑 性材料时,容易得到带状切屑。
制造技术
2)崩碎切屑 切削铸铁等脆性材料
制造技术
二、切削热的传散
在一般干切削的情况下,大部分的切削热由切屑传散出 去,其次由工件和刀具传散,而周围介质传散出去的热量很 少。但各种传散热量的比例,随着工件材料、刀具材料、切 削用量、刀具角度及切削方式等切削条件的不同而异。 切削热传散给切削及周围介质,对切削加工没有影响, 且传散得越多越好。 切削热传散给刀具切削部分,使刀具磨损加快,缩短刀 具的使用寿命;切削热传散给工件,影响工件的加工精度和 表面质量。 为了减小切削热对工件加工质量的不良影响,可采取的 两方面工艺措施:一是减小工件材料的变形抗力和摩擦阻力, 降低功率消耗和减少切削热;二是要加速切削热的传散,以 降低切削温度。
面粗糙度;严重时,会引起崩刀打刀,加速刀具的磨损。 二、表层材质变化
1.加工硬化
加工硬化是指在切削过程中,工件已加工表面受刀刃和后 面的挤压和摩擦而产生塑性变形,使表层组织发生变化,硬度 显著提高的现象。硬化层深度可达到0.02~0.03mm,表层硬度 约为工件材料的1.2~2倍。
制造技术
对加工硬化的影响因素:刀具几何参数、切削条件、工件
制造技术
2.润滑作用 金属切削加工液(简称切削液)在切削过程中的润滑作用, 可以减小前刀面与切屑,后刀面与已加工表面间的摩擦,形成部 分润滑膜,从而减小切削力、摩擦和功率消耗,降低刀具与工件 坯料摩擦部位的表面温度和刀具磨损,改善工件材料的切削加工 性能。在磨削过程中,加入磨削液后,磨削液渗入砂轮磨粒-工 件及磨粒-磨屑之间形成润滑膜,使界面间的摩擦减小,防止磨 粒切削刃磨损和粘附切屑,从而减小磨削力和摩擦热,提高砂轮 耐用度以及工件表面质量。 3.清洗和排屑作用 在金属切削过程中,要求切削液有良好的清洗作用。除去生 成切屑、磨屑以及铁粉、油污和砂粒,防止机床和工件、刀具的 沾污,使刀具或砂轮的切削刃口保持锋利,不致影响切削效果。 对于油基切削油,粘度越低,清洗能力越强,尤其是含有煤油、 柴油等轻组份的切削油,渗透性和清洗性能就越好。含有表面活 性剂的水基切削液,清洗效果较好,因为它能在表面上形成吸附
机械加工技术

形及塑性变形产生的变形抗力,二是刀具与切屑及工件表面 间的摩擦阻力,这两方面的力构成了切削合力,作用于前刀 面和后刀面上。切削力的形成,是切削加工中的基本物理现 象之一,切削合力的大小、方向和作用位置是零件工艺分析 和机床、夹具、刀具强度设计的主要参数依据。实际应用时, 常将切屑合力F分解到需要的方向上,如图2 -5所示。
究。在切削加工过程中,零件的3个表面始终处于不断的变化 之中,这一次加工走刀的待加工表面,即为上一次加工走刀 的已加工表面,过渡表面会随着每次切削加工的刀具进给不 断地被切除,从而形成新的过渡表面。
上一页 下一页 返回
第一节 切削运动和切削要素
四、切削对加工表面的影响 在金属切削过程中会出现一系列物理现象,它们都是以切屑
3.进给量f 进给量是指刀具或工件在进给运动方向上相对于工件或刀具
移动的距离,常用每转或每行程的位移量来表示。 车削时,进给量f为工件每转一周,车刀沿进给方向移动的距
离。 钻削时,进给量了为钻头每转一转,钻头沿进给方向(轴向)
移动的距离。 铣削时,进给量用每齿进给量、每转进给量、进给速度表示。 进给量又分纵进给量和横进给量两种。 纵进给量是指沿车床身导轨方向的进给量。 横进给量是指垂直于车床床身导轨方向的进给量。
崩碎切屑与刀具前刀面的接触长度较短,切削力、切削热集 中在切削刃附近,容易使刀具磨损和崩刃。
(4)单元切屑 如果挤裂切屑的整个剪切面上的剪应力超过了 材料的破裂强度,那么整个单元被切离,成为梯形的单元切 屑。
上一页 返回
第二节 切削力、切削热及切削液
切削加工时,工件材料抵抗刀具切削所产生的阻力称为切削 力。切削力是设计机床、夹具和刀具的重要依据之一。切削 力增大,切削温度会升高,刀具就会磨损严重。
第一章 金属切削基本知识

刀具角度对加工过程的影响
1. 前角(0) ① 减小切屑的变形;
作用 ② 减小前刀面与切屑之间的摩擦力。
a .减小切削力和切削热; 所以 0 : b .减小刀具的磨损;
c .提高工件的加工精度和表面质量。
0
0选择:
加工塑性材料和精加工—取大前角( 0 ) 加工脆性材料和粗加工—取小前角(0 )
前角(0)可正、可负、也可以为零。
➢ 偏挤压:金属材料一部分受挤压时 ,OB线以下金属由于母体阻碍,不 能沿AB线滑移,而只能沿OM线滑移
F
B
O
a)正挤压
45° M A F
BO
b)偏挤压
➢ 切削:与偏挤压情况类似。弹性变
M
形→剪切应力增大,达到屈服点→产 生塑性变形,沿OM线滑移→剪切应
O F
力与滑移量继续增大,达到断裂强度
c)切削
后角( 0)只能是正的。
精加工: 0= 80~120 粗加工: 0= 40~80 3 . 主偏角(kr)
作用:改善切削条件,提高刀具寿命。
减小kr:当ap、f 不变时,则 aw 、ac — 使切削条件得到改善,提高了刀具寿命。
dw
ap
dm
但减小kr
Fy 、
n
Fx ,加大工件的变形
挠度,使工件精度降
化学惰性
低 惰性大 惰性小 惰性小 惰性大
耐磨性 低 加工质量
低
较高
高 最高
最高
很高
一般精度 Ra≤0.8 Ra≤0.8 IT7-8 IT7-8
高精度 Ra=0.1-0.05
IT5-6
Ra=0.4-0.2
IT5-6 可替代磨削
低速加 加工对象 工一般
金属切削基础

3
法平面参考系 : 基面+法剖面+切削平面
4
背平面参考系 : 基面+进给平面+切深平面
刀 具标注角度参考系
基面
基面Pr: “通过主切削刃上选定点垂直于主运动方向的平面”
切削平面
切削平面Ps: 通过主切削刃上选定点,与切削刃相切并垂直于基面的平面
主剖面
主剖面Po: 通过主切削刃上选定点,并同时垂直于基面和切削平面的平面
切削厚度:hD
“沿着过渡表面度量的切削层尺寸” bD=ap/sinКr (mm)
切削宽度:bD
AD=hD∙bD (mm2)
切削面积:AD
AD=f∙ap (mm2)
对于外圆车削:
01
刀具切削部分承受的载荷大小;
02
决定了切削的尺寸和形状;
切削层的大小和形状影响:
三、残留面积:
刀尖角:
三、刀具的标注角度
在正交平面(主剖面)内测量的角度 后角:αo “后刀面与切削平面的夹角” 前角:γo “前刀面与基面之间的夹角”。
在切削平面内:
刃倾角:λS
“主切削刃与基面之间的夹角”
正交平面参考系车削外圆角度标注
基面: 主偏角、副偏角、刀楔角、刀
尖园弧半径
进给平面(假定工作平面): 侧前角、侧后角
01
正交平面参考系: 基面+主剖面+切削平面
02
法平面参考系 : 基面+法剖面+切削平面
03
背平面参考系 : 基面+进给平面+切深平面
04
刀 具标注角度参考系
明确表示刀具切削过程中的角度
前角、后角
主偏角、付偏角
刃倾角
第5章金属冷加工基础

一、金属切削运动及切削要素 1.切削运动 (2)进给运动
进给运动速度远小于主运动 速度,消耗功率较小。 进给运动可能有一个,也可 能有几个。
一、金属切削运动及切削要素 2.切削要素 切削用量三要素 切削速度vc
进给量f
背吃刀量ap
二、切削刀具的选用 1.切削刀具材料 要求
高硬度和高耐磨性
高热硬性
加工精度 使用范围 自动化程度 尺寸和质量大小
一、金属切削机床的分类及型号 1.金属切削机床的型号
机床类别 主要参数 主要特征代号 用大写汉语拼音字母和阿拉伯数字表示
C M 6 1 3 2
主参数代号(即最大车削直径为320mm) 机床型别代号(即卧式车床) 机床组别代号(即落地或普通车床组) 机床通用特性代号(即精密车床) 车床类别代号(即车床类)
三、车床及其应用
4.车床附件及工件安装
中心架与跟刀架
跟刀架
中心架
三、车床及其应用
4.车床附件及工件安装
中心架与跟刀架
中心架与跟刀架作为辅助支承,增加工件的刚性。
跟刀架安装在床鞍上,随床鞍一起运动。 中心架直接安装在导轨上,不会运动。
三、车床及其应用
4.车床附件及工件安装
心轴
为了保证工件的精度,常将盘套类零件安装 在心轴上加工,以保证工件外圆加工的同轴度和 加工端面与轴心线的垂直度。 常用的心轴有圆锥体心轴、圆柱体心轴和可 胀心轴。
三、车床及其应用
3.车床的传动路线
三、车床及其应用
3.车床附件及工件安装
卡盘
方便 、 夹紧力较____ 小 ,装夹工作_____ 找正,具有______ 较高的自动 迅速,不需_____ 定心精度,特别适合装夹______ 轴类 、 套类 、______ 盘类 等对称性工件,但 ______ 不适合装夹形状_________ 不规则 的工件。 三爪自定心卡盘
金属切削加工的基本知识

第一章金属切削加工的根本学问教学方法导入课:金属切削加工,通常又称为机械加工,是通过刀具与工件之间的相对运动,从毛坯上切除多余的金属,从而获得合格零件的加工方法。
切削加工的根本形式有:车、铣、刨、磨、钻等,包括钳工加工〔錾、锉、锯、刮削、钻孔、铰孔、攻丝、套丝等〕一般状况下,通过铸造、锻造、焊接及轧制的型材毛坯精度低和外表粗糙度大,必需进展切削加工才能成为零件。
本章主要介绍金属切削加工中的根本规律和现象。
讲授课:第一节金属切削加工的根本概念一、切削运动和切削要素1、切削运动切削运动是为了形成工件所必需的刀具和工件之间的相对运动。
切削运动按其作用不同,分为主运动和进给运动。
(1)主运动是切削运动中速度最高、消耗功率最大的运动;一般切削运动中,主运动只有一个。
各种机械加工的主运动:车削:工件的旋转铣削:铣刀的旋转刨削:刨刀〔牛头刨〕或工件〔龙门刨〕的往复直线运动钻削:刀具〔钻床上〕或工件〔车床上〕的旋转。
(2)进给运动是使的切削层金属不断地投入切削,从而切出整个外表的运动;进给运动可以是一个或多个。
各种机械加工的进给运动:车削:刀具的移动铣削:工件的移动钻孔:钻头沿轴向移动内外圆磨削:工件旋转和移动切削加工过程中,为实现机械化和自动化,提高效率,除切削运动外,还需要关心运动。
如切入运动,空程运动,分度转位运动、送夹料运动及机床掌握运动等。
切削过程中形成三个外表:待加工外表、加工外表、已加工外表2、切削要素包括切削用量和切削层横截面要素。
(1)切削用量三要素1)切削速度v是主运动的线速度〔m/s 或m/min 〕a = d w旋转主运动:2) 进给速度 v f 或进给量 fv f :单位时间内刀具对工件沿进给方向的相对位移〔 mm/s或 mm/min 〕进给量 f :工件或刀具每转一周,刀具对工件沿进给方向的相对位移。
〔mm/r 〕切削时间 t = L/v f = L/nf3〕背吃刀量 a p 〔切削深度〕工件已加工外表和待加工外表的垂直距离〔mm 〕 教学方法 外圆车削: - d p 2钻孔: a = d mp 2合成切削运动 :v e = v +v f 〔向量的关系〕(2) 切削层横截面要素切削层是指刀具与工件相对移动一个进给量时,相邻两个加工外表之间的金属层,切削层的轴向剖面称为切削层横截面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金切基础:金属切削运动和切削要素
金属切削加工虽有多种不同的形式,但是,它们在很多方面如切削运动、切削工具以及切削过程的物理实质等,都有着共同的现象和规律。
第一节切削运动及切削要素
一、零件表面的形成及切削运动
机器零件的形状主要由下列几种表面组成:
(1)外圆面
(2)内圆面(孔):外圆面和内圆面(孔)是以某一直线为母线,以圆为轨迹,作旋转运动所形成的表面。
(3)平面:平面是以一直线为母线,以另一直线为轨迹,作平移运动所形成的表面。
(4)成形面:成形面是以曲线为母线,以圆或直线为轨迹,作旋转或平移运动所形成的表面。
1.主运动
主运动使刀具和工件之间产生相对运动,促使刀具前刀面接近工件而实现切削。
它速度最高,消耗功率最大。
2.进给运动
进给运动使刀具与工件之间产生附加的相对运动,与主运动配合,即可连续地切除切削,获得具有所需几何特性的已加工表面。
各种切削加工方法(车削、钻削、刨削、铣削、磨削和齿轮加工等)都是为了加工某种表面而发展起来的,因此,也都有其特定的切削运动。
切削运动有旋转的,也有直行的;有连续的,也有间歇的。
切削时,实际的切削运动是一个合成运动其方向由合成切削速度角η确定的。
二、切削用量
切削用量用来衡量切削运动量的大小。
在一般的切削加工中,切削用量包括切削速度、进给量和背吃刀量三要素。
1.切削速度vc
切削刃上选定点相对于工件主运动的瞬时速度称为切削速度。
单位为m/s或m/min.
若主运动为旋转运动,切削速度一般为其最大的线速度。
可按下式计算:
vc=πdn/1000 m/s或m/min
式中:d—工件或刀具的直径,mm;
n—工件或刀具的转速,r/s或r/min。
若主运动为往复直线运动(如刨削、插削等),则常以其平均速度为切削速度,即
vc=2Lnr/1000 m/s或m/min
式中L —往复行程长度(mm)
nr —主运动每秒或每分钟的往复次数,st/s或str/min
2.进给量
刀具在进给运动方向上相对工件的位移量称为进给量。
用单齿刀具(如车刀、刨刀等)加工时,进给量常用刀具或工件每转或每行程,刀具在进给运动方向上相对工件的位移量来度量,称为每转进给量或每行程进给量,以f表示,单位为mm/r或mm/st (图1-3)。
用多齿刀具(如铣刀、钻头等)加工时,进给运动的瞬时速度称进给速度,以vf表示,单位为mm/s或mm/min。
刀具每转或每行程中每齿相对工件在进给运动方向上的位移量称每齿进给量,以fz表示,单位为mm/z。
每齿进给量、进给量和进给速度之间有如下关系:
vf=fn=fzzn mm/s或mm/min
式中n —刀具或工件转速,r/s或r/min
z —刀具的齿数。
3.背吃刀量ap
在通过切削刃上选定点并垂直于该点主运动方向的切削层尺寸平面中,垂直于进给运动方向测量的切削层尺寸,称为背吃刀量,单位mm。
车削时,可用下式计算:
dp=(dw-dm)/2 mm
式中dw —工件待加工表面直径(mm );
dm —工件已加工表面直径(mm )。
三、切削层参数
切削层是指切削过程中,由刀具切削部分的一个单一动作(如车削时工件转一周,车刀主切削刃移动一段距离)所切除的工件材料层。
切削层决定了切屑的尺寸及刀具切削部分的载荷。
切削层的尺寸和形状,通常是在切削层尺寸平面中测量的。
1.切削层公称横截面积AD
在给定瞬间,切削层在切削层尺寸平面里的实际横截面积,单位为mm2。
2.切削层公称宽度bD
在给定瞬间,作用主切削刃截形上两个极限点间的距离,单位为mm2。
3.切削层公称厚度hD
在同一瞬间的切削层公称横截面积与其公称宽度之比,单位为mm。
由定义知:AD= bDhD mm
因AD不包括残留面积,而且在各种加工方法中AD与进给量和背吃刀量的关系不同,所以AD不等于f和ap的积。
只有在车削加工中,当残留面积很小时才能近似地认为它们相等,即
AD≈fap mm2
切削用量的选择
切削速度、进给量和切削深度三者称为切削用量。
它们是影响工件加工质量和生产效率的重要因素。
车削时,工件加工表面最大直径处的线速度称为切削速度,以v(m/min)表示。
其计算公式:v=πdn/1000(m/min)
式中:d——工件待加工表面的直径(mm)
n——车床主轴每分钟的转速(r/min)
工件每转一周,车刀所移动的距离,称为进给量,以f(mm/r)表示;车刀每一次切去的金属层的厚度,称为切削深度,以ap(mm)表示。
为了保证加工质量和提高生产率,零件加工应分阶段,中等精度的零件,一般按粗车一精车的方案进行。
粗车的目的是尽快地从毛坯上切去大部分的加工余量,使工件接近要求的形状和尺寸。
粗车以提高生产率为主,在生产中加大切削深度,对提高生产率最有利,其次适当加大进给量,而采用中等或中等偏低的切削速度。
使用高速钢车刀进行粗车的切削用量推荐如下:切削深度ap=0.8~1.5mm,进给量f=0.2~0.3mm/r,切削速度v取30~50m/min(切钢)。
粗车铸、锻件毛坯时,因工件表面有硬皮,为保护刀尖,应先车端面或倒角,第一次切深应大于硬皮厚度。
若工件夹持的长度较短或表面凸不平,切削用量则不宜过大。
粗车应留有0.5~1mm作为精车余量。
粗车后的精度为IT14-IT11,表面粗糙度Ra值一般为12.5~6.3μm。
精车的目的是保证零件尺寸精度和表面粗糙度的要求,生产率应在此前提下尽可能提高。
一般精车的精度为IT8~IT7,表面粗糙度值Ra=3.2~0.8μm,所以精车是以提高工件的加工质量为主。
切削用量应选用较小的切削深度ap=0.1~0.3mm和较小的进给量f=0.05~0.2mm /r,切削速度可取大些。
精车的另一个突出的问题是保证加工表面的粗糙度的要求。
减上表面粗糙度Ra值的主要措施有如下几点。
(1)合理选用切削用量。
选用较小的切削深度ap和进给量f,可减小残留面积,使Ra值减小。
(2)适当减小副偏角Kr′,或刀尖磨有小圆弧,以减小残留面积,使Ra值减小。
(3)适当加大前角γ0,将刀刃磨得更为锋利。
(4)用油后加机油打磨车刀的前、后刀面,使其Ra值达到0.2~0.1μm,可有效减小工件表面的Ra值。
(5)合理使用切削液,也有助于减小加工表面粗糙度Ra值。
低速精车使用乳化液或机油;若用低速精车铸铁应使用煤油,高速精车钢件和较高切速精车铸铁件,一般不使用切削液。