大学物理答案第17章

合集下载

《大学物理》第17章 温度热膨胀和理想气体定律

《大学物理》第17章 温度热膨胀和理想气体定律
(a) 1.33 atm; (b) 0.75 atm; (c) 4.7 atm; (d) 0.21 atm; (e) 1.00 atm。
§17- 8 利用理想气体定律解决问题
我们会经常提到“标准状况”或标准温度和压强(STP),这意
味着: T 273K (0 0C)和P 1.00 atm 1.013105 N / m2 101.3 kPa
§17- 6 气体定律与绝对温度
玻 意 耳定律 [ 罗伯 特 · 玻意 耳 ( 1627 - 1691)]首次在自己实验的基础上提出— —在温度不变的条件下
1 V
[ 常数 T ]
雅克·查尔斯(P法国人1746-1823年)发
现——当压强保持恒定,且不太高的情况
下,体积几乎随温度呈线性的变化。
V T
解:α=12×10-6(℃)-1,当温度在40℃时,其长度增加为 l αl0T (12 106 / C0 )(200m)(40 0C 20 0C) 4.8 102 m
当温度下降到-30℃ 时,Δ T = -30℃, 则有
Δl αl0ΔTC0 ) 12.0 102 m 伸缩缝总范围容许量为12cm + 4.8cm ≈ 17cm
对于摄氏温标,两个标记之间的距离被划分为100等份,在0℃ 和100℃ 之间,相邻等份之间相差1℃ (因此得名“摄氏温标”意思是“百份”)。
对于华氏温标,这两个点被标记为32℉和212℉,它们之间的距离被分 成180个相等的间隔。
请注意,当我们提到一个特定的温度时,例如我们说 200C,“0在前,C 在后”;但是,当我们提到一个变 化的温度或温度间隔时,例如我们说 2 C0 ,“C在前, 0在后”。两个温标之间的转换可以写成:
ΔV (3α)V0ΔT

大学物理第十七章波动光学(二)双缝干涉

大学物理第十七章波动光学(二)双缝干涉
1.000276 205893108 / 20 1.000335
3. 菲涅耳双棱镜干涉实验
pM
E
s1
ds

s2
N E`
B
C
4. 菲涅耳双面镜干涉实验
点光源 s

平面镜
M1
A
C

M2
B
4. 菲涅耳双面镜干涉实验
点光源 s

平面镜
s1
M1
A
虚光源
s2
C
M2
B
4. 菲涅耳双面镜干涉实验
xk红

k
D d

x(k 1)紫

(k
1)
D d

干涉明暗条纹的位置
由 xk红 = x(k+1)紫 的临界情况可得
k红 (k 1)紫
将 红 = 7600Å, 紫 = 4000Å代入得 k=1.1
因为 k只能取整数,所以应取 k=2
这一结果表明:在中央白色明纹两侧, 只有第一级彩色光谱是清晰可辨的。
当容器未充气时,
测量装置实际上是杨氏
l
·P`
双缝干涉实验装置。其
s1
零级亮纹出现在屏上与 s
p0
S1 、S2 对称的P0点.从
s2
S1 、S2射出的光在此处
相遇时光程差为零。
容器充气后,S1射出的光线经容器时光程要增加, 零级亮纹应在 P0的上方某处P出现,因而整个条纹要向 上移动。
干涉明暗条纹的位置
高等教育大学教学课件 大学物理-波动光学
§17-2 双缝干涉 1. 杨氏双缝实验
托马斯• 杨
杨氏双缝实验
相干光的获得:分波阵面法

大学物理习题详解—近代物理部分.doc

大学物理习题详解—近代物理部分.doc

狭义相对论基本假设、洛伦兹变换、狭义相对论时空观 17. 2两火箭A 、B 沿同一直线相向运动,测得两者相对地球的速度大小分别是 =0.9c, v B = 0.8c.则两者互测的相对运动速度大小为:(A) 1.7c ; (B) 0.988c ; (C) 0.95c ;(D) 0.975c.答:B .分析:以 A 为 S ,系,则 w=0.9c, V v =-0.8c,由相对论速度变换关系可知:SAS'爪VB-0.8c-0.9c•0&・・。

.9疽一第十七章相对论17. 1在狭义相对论中,下列说法哪些正确?(1) 一切运动物体相对于观察者的速度都不能大于真空中的光速,(2) 质量、长度、时间的测量结果都是随物体与观察者的运动状态而改变的, (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其它一切惯性系中 也是同时发生的,(4) 惯性系中观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比 与他相对静止的相同时钟走得慢些.(A) (1) (3) (4) ; (B) (1) (2) (4); (C)(2) (3) (4) ;(D) (1)(2)(3).[]答:B. 分析:(1) 根据洛仑兹变换和速度变换关系,光速是速度的极限,所以(1)正确; (2) 由长度收缩和时间碰撞(钟慢尺缩)公式,长度、时间的测量结果都是随 物体与观察者的运动状态而改变的;同时在相对论情况下,质量不再是守恒量,也 会随速度大小而变化,所以(2)是正确的;(3) 由同时的相对性,在S'系中同时但不同地发生的两个事件,在S 系中观察不是同时的。

只有同时、同地发生的事件,在另一惯性系中才会是同时发生的,故排 除⑶;(4) 由于相对论效应使得动钟变慢,故(4)也是正确的。

所以该题答案选(B)所以选(B)17. 3 —宇航员要到离地球5光年的星球去旅行,如果宇航员希望把这路程缩短为3光年,则他乘的火箭相对于地球的速度为:(A)c/2;(B) 3c/5;(C)4c/5;(D) 9c/10. [ ] 答:C.分析:从地球上看,地球与星球的距离为固有长度L。

大学物理下第17章习题详解

大学物理下第17章习题详解

第17章习题解答【17-1】解 首先写出S 点的振动方程若选向上为正方向,则有:-=0 21cos 0-=ϕ 0=-A sin 0>0, sin 0<0即 πϕ320-= 初始位相 πϕ320-= 则 m t y s )32cos(02.0πω-= 再建立如图题17-1(a )所示坐标系,坐标原点选在S 点,沿x 轴正向取任一P 点,该点振动位相将落后于S 点,滞后时间为:ux t =∆ 则该波的波动方程为:m u x t y ⎥⎦⎤⎢⎣⎡--=πω32)(cos 02.0 若坐标原点不选在S 点,如图题17-1(b )所示,P 点仍选在S 点右方,则P 点振动落后于S 点的时间为:uL x t -=∆ 则该波的波动方程为:m u L x t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0 若P 点选在S 点左侧,如图题17-1(c )所示,则m u L x t y ⎥⎦⎤⎢⎣⎡--+=πω32)(cos 02.0 【17-2】解(1)由图题17-2可知,波长 =0.8m振幅 A=0.5m频率 Hz Hz u v 1258.0100===λ 周期 s vT 31081-⨯== (2)平面简谐波标准动方程为:⎥⎦⎤⎢⎣⎡+-=ϕω)(cos u x t A y 由图可知,当t=0,x=0时,y=A=,故=0。

将A 、(v)、u 、代入波动方程,得: m x t y ⎥⎦⎤⎢⎣⎡-=)100(250cos 5.0π 【17-3】解 (1)由图题17-3可知,对于O 点,t=0时,y=0,故2πϕ±= 再由该列波的传播方向可知,0<0取 2πϕ= 由图题17-3可知,m OP 40.0==λ,且u=0.08m/s ,则s rrad s rad uv /52/40.008.0222ππλππω==== 可得O 点振动表达式为:m t y )252cos(04.00ππ+= (2)已知该波沿x 轴正方向传播,u=0.08m/s ,以及O 点振动表达式,波动方程为: m x t y ⎥⎦⎤⎢⎣⎡+-=2)08.0(52cos 04.0ππ (3)将x==代入上式,即为P 点振动方程:m t y p ⎥⎦⎤⎢⎣⎡-=ππ3252cos 04.0 (4)图题17-3中虚线为下一时刻波形,由图可知,a 点向下运动,b 点向上运动。

大学物理下17章习题参考答案中国石油大学

大学物理下17章习题参考答案中国石油大学

17章习题参考答案17-3 如图所示,通过回路的磁场与线圈平面垂直且指出纸里,磁通量按如下规律变化()Wb 1017632-⨯++=Φt t式中t 的单位为s 。

问s 0.2=t 时,回路中感应电动势的大小是多少? R 上的电流方向如何?[解] ()310712d d -⨯+=Φ-=t tε ()23101.3107212--⨯=⨯+⨯=V根据楞次定律,R 上的电流从左向右。

17-4如图所示,两个半径分别为R 和r 的同轴圆形线圈,相距x ,且,R >>r ,x >>R 。

若大线圈有电流I 而小线圈沿x 轴方向以速度v 运动。

试求x =NR 时(N >0),小线圈中产生的感应电动势的大小。

[解] 因R>>r 可将通过小线圈的B 视为相等,等于在轴线上的B()2322202xR IR B +=μ由于x >>R ,有 3202x IR B μ=所以 t xxIS R t d d 32d d 420μ=Φ-=ε 而v t x=d d 因此 x =NR 时, 242023R N v r I πμ=ε17-5 如图所示,半径为R 的导体圆盘,它的轴线与外磁场平行,并以角速度ω转动(称为法拉第发电机)。

求盘边缘与中心之间的电势差,何处电势高?当R =0.15m ,B =0.60T ,rad 30=ω时,U 等于多大?[解] 圆盘可看成无数由中心向外的导线构成的,每个导线切割磁力线运动且并联,因此有2021d d )(BR r rB R L ωω==⋅⨯=⎰⎰l B v 感ε因电动势大于零,且积分方向由圆心至边缘,所以边缘处电位高(或由右手定则判断)代入数据得201506030212...=⨯⨯⨯==εU V 17-6 一长直导线载有电流强度I =5.0A 的直流电,在近旁有一与它共面的矩形线圈,线圈长l =20cm ,宽a =10cm ,共1000匝,如图所示。

大学物理第十七章波动光学(二)双缝干涉

大学物理第十七章波动光学(二)双缝干涉

的极限宽度:
b B
d
d B
b
光场的空间相干性:
*描述光源线宽度对干涉条纹的影响。 *反映扩展光源不同部分发光的独立性。
光源沿y轴方向扩展时,各点光源的各套干涉纹 发生非相干性叠加,条纹更加明亮,所以用狭 缝线光源
(c)光的非单色性对条纹可见度的影响
实际光源都发出非严格单色波,
I
条纹的移动 x D
d
(1)d,D一定时,若λ变化,则Δx将怎样变化?
(2) λ,D一定时,条纹间距Δx与d的关系如何?
(3)白光照射双缝: 零级明纹:白色 其余明纹:彩色光谱
高级次重叠。 S*
零级
一级
二级 三级
(4)光源S的移动对条纹的影响
S沿x轴平移,条纹整体沿相反方向上下移动, 其余不变
I0
I0/2
L
P
可度以证有明关波系L列:长度2L与波长波宽列通过谱PO线点宽持度续时间 t


L c
干涉条纹可见度 V 1 Δ L
定义相干长度为能产生干涉条纹的最大光程差
V 1 Δ L
相干长度和相干时间越长, 光源的相干性越好,条纹 可见度越高。
相干长度: L 2
高等教育大学教学课件 大学物理
同学们好!
§17-2 双缝干涉
一、杨氏双缝实验
Thomas Young 1773--1829
英国医生、科学家托马斯.杨1801年 用双缝干涉实验证明了光的波动性, 并首先测出太阳光的平均波长:
杨氏 570 nm
现代 555 nm
该实验对光的波动说的复苏起到关键 作用,在物理学史上占重要地位。
S沿y轴平移,条纹不动
思考: (1)条纹的定域

大学物理习题答案第十七章

大学物理习题答案第十七章

[习题解答]17-5 将20g的氦气分别按照下面的过程,从17℃升至27℃,试分别求出在这些过程中气体系统内能的变化、吸收的热量和外界对系统作的功:(1)保持体积不变;(2)保持压强不变;(3)不与外界交换热量。

设氦气可看作理想气体,且。

解(1)保持体积不变:外界对系统不作功,系统内能的变化为,吸收的热量为.这表示,在系统体积不变的情况下,外界对系统不作功,系统从外界获得的热量全部用于内能的增加。

(2)保持压强不变:,系统内能的变化,外界对系统作功.这表示,在系统保持压强不变的情况下,系统从外界获得的热量,一部分用于增加系统的内能,另一部分用于系统对外界作功。

(3)不与外界交换热量,即绝热过程:吸收的热量,系统内能的变化,外界对系统作功.这表示,在绝热条件下,系统与外界无热量交换,外界对系统所作的功全部用于内能的增加。

17-6 把标准状态下的14 g氮气压缩至原来体积的一半,试分别求出在下列过程中气体内能的变化、传递的热量和外界对系统作的功:(2)绝热过程;(3)等压过程。

设氮气可看作为理想气体,且。

解(1)等温压缩过程:外界对系统所作的功;在等温过程中系统内能不变;传递的热量:根据热力学第一定律,有.这表示,在等温过程中,系统内能不变,外界对系统所作的功全部以热量的形式释放到外界。

(2)绝热压缩过程:;,根据绝热方程,,其中,所以;外界对系统所作的功.这表示,在绝热压缩过程中,外界对系统所作的功,全部用于系统内能的增加。

(3)等压过程:根据物态方程,在初态和末态分别有,,两式相除,得或 ,所以.内能的增加为;系统获得的热量为;外界对系统所作的功为.这表示,在等压过程中,系统向外界释放热量,此热量来自于外界对系统所作的功和自身内能的减小。

17-7 在标准状态下的16 g氧气经过一绝热过程对外界作功80 J。

求末态的压强、体积和温度。

设氧气为理想气体,且,。

解系统对外界作功80 J,即,在绝热过程中系统与外界无热量交换,所以,根据热力学第一定律,这表示,在绝热过程中系统降低自身的内能而对外界作功。

大学物理答案第17章

大学物理答案第17章

第十七章 光的衍射17-1 波长为700nm 的红光正入射到一单缝上,缝后置一透镜,焦距为0.70m ,在透镜焦距处放一屏,若屏上呈现的中央明条纹的宽度为2mm ,问该缝的宽度是多少?假定用另一种光照射后,测得中央明条纹的宽度为1.5mm ,求该光的波长。

解:单缝衍射中央明条纹的宽度为afx λ2=∆m xf a 739109.4102107007.022---⨯=⨯⨯⨯⨯=∆=λfx a2∆=λ代入数据得 nm 5257.02105.1109.437=⨯⨯⨯=--λ17-2一单缝用波长为λ1和λ2的光照明,若λ1的第一级衍射极小与λ2的第二级衍射极小重合。

问(1)这两种波长的关系如何?(2)所形成的衍射图样中是否还有其它极小重合? 解:(1)单缝衍射极小条件为λθk a =sin依题意有 212λλ= (2)依题意有11sin λθk a = 22sin λθk a =因为212λλ=,所以得所形成的衍射图样中还有其它极小重合的条件为212k k =17-3 有一单缝,缝宽为0.1mm ,在缝后放一焦距为50cm 的汇聚透镜,用波长为546.1nm 的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。

解:单缝衍射中央明条纹的宽度为af x λ2=∆代入数据得mm x 461.5101.0101.54610502392=⨯⨯⨯⨯=∆---17-4 用波长为632.8nm 的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。

解:单缝衍射极小的条件λθk a =sin依题意有m a μλ26.70872.0108.6325sin 9=⨯==-17-5 波长为20m 的海面波垂直进入宽50m 的港口。

在港内海面上衍射波的中央波束的角宽是多少?解:单缝衍射极小条件为λθk a =sin依题意有 0115.234.0sin52sin20sin 50===→=--θθ中央波束的角宽为0475.2322=⨯=θ17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17-2一单缝用波长为λ1和λ2的光照明,若λ1的第一级衍射极小与λ2的第二级衍射极小重合。

问(1)这两种波长的关系如何?(2)所形成的衍射图样中是否还有其它极小重合? 解:(1)单缝衍射极小条件为λθk a =sin依题意有 212λλ= (2)依题意有11sin λθk a = 22sin λθk a =因为212λλ=,所以得所形成的衍射图样中还有其它极小重合的条件为212k k =17-3 有一单缝,缝宽为0.1mm ,在缝后放一焦距为50cm 的汇聚透镜,用波长为546.1nm 的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。

解:单缝衍射中央明条纹的宽度为afx λ2=∆代入数据得mm x 461.5101.0101.54610502392=⨯⨯⨯⨯=∆--- 17-4 用波长为632.8nm 的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。

解:单缝衍射极小的条件λθk a =sin依题意有m a μλ26.70872.0108.6325sin 90=⨯==-17-5 波长为20m 的海面波垂直进入宽50m 的港口。

在港内海面上衍射波的中央波束的角宽是多少?解:单缝衍射极小条件为λθk a =sin依题意有 0115.234.0sin 52sin20sin 50===→=--θθ 中央波束的角宽为0475.2322=⨯=θ17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。

解:单缝衍射明纹条件为2)12(sin λθ+=k a依题意有2)122(2)132(21λλ+⨯=+⨯代入数据得nm 6.428760057521=⨯==λλ 17-7 用肉眼观察星体时,星光通过瞳孔的衍射在视网膜上形成一个亮斑。

(1)瞳孔最大直径为7.0mm ,入射光波长为550nm 。

星体在视网膜上像的角宽度多大? (2)瞳孔到视网膜的距离为23mm 。

视网膜上星体的像的直径多大?(3)视网膜中央小凹(直径0.25mm )中的柱状感光细胞每平方毫米约1.5×105个。

星体的像照亮了几个这样的细胞?解:(1)据爱里斑角宽公式,星体在视网膜上像的角宽度为rad d 439109.1100.71055044.244.22---⨯=⨯⨯==λθ (2)视网膜上星体的像的直径为mm l d 34104.423109.1 2--⨯=⨯⨯==θ(3)细胞数目应为3.2105.14)104.4(523=⨯⨯⨯⨯=-πn 个17-8 在迎面驶来的汽车上,两盏前灯相距120cm 。

试问汽车离人多远的地方,眼睛恰能分辨这两盏前灯?设夜间人眼瞳孔直径为5.0mm ,入射光波长为550nm.。

解:38.9101.22l L lLl D L mλδθλ∆∆∆⋅==⨯设两灯距为,人车距为。

人眼最小分辨角为,=1.22=D17-9 据说间谍卫星上的照相机能清楚识别地面上汽车的牌照号码。

(1)若被识别的牌照上的字划间的距离为5cm ,在160km 高空的卫星上的照相机的角分辨率应多大?(2)此照相机的孔径需多大?光的波长按500nm 计算。

解:装置的光路如图所示。

S 15cm S 2160kmD(2)sin 1.22, 1.222rad rad D m Dδθλλθδθ⨯=⨯⨯===-2-73(1)角分辨率即最小分辨角为510=3101601017-10 一光栅每厘米刻有4000条线,计算在第二级光谱中,氢原子的α和δ谱线间的角间隔(以度为单位)已知α和δ谱线的波长分别为656nm 和410nm ,假定是正入射。

解:2.5400022656sin 2sin 2.522410sin 0.3282.531.655mmmb b m mb mθλλϕλϕλϕαϕδϕϕ⨯=⨯'⨯⨯'=∴=⨯''⨯⨯''⨯'''∴∆-2-6-9-6-9-6110(1)光栅常数b=10由光栅衍射明纹条件bsin =k 得正入射时10==0.5248,1010===10谱线第二级亮纹张角为=谱线第二级亮纹张角为=19.439两谱线第二级亮纹间的角距离为=12.216ϕϕ'''-=17-11 两束波长分别为450nm 和750nm 的单色光正入射在光栅上,它们的谱线落在焦距为1.50m 的透镜的焦平面上,它们的第一级谱线之间的距离为6×10-2m ,试求光栅常数为多少? 解:750sin sin 450sin sin sin sin sin 61.5(mb b bmb bf f x f f m m b θλλϕλϕλϕϕϕϕϕϕϕ'⨯'=∴=''⨯'''''≈''''''≈''''''∴∆-=⨯∴=-9-9-2(1)由光栅衍射明纹条件bsin =k 得正入射时10=10==750nm 谱线第一级距中心点的距离x =ftg 450nm 谱线第一级距中心点的距离x =ftg 两谱线第一级亮纹间的距离为=x -x =10光栅常数750450)7.56m m m m⨯-⨯=⨯⨯-9-9-6-21010101017-12 以氦放电管发出的光正入射某光栅,若测得波长为668nm 的单色光衍衍射角为200,如在同一衍射角下出现了更高级次的氦谱线,波长为447nm ,问光栅常数最小应为多少? 解:668 3.9sin sin 20447 1.3sin sin 201668 3.906sin 20k m b k umk m k um m mθλλθλθ⨯⨯==≈⨯'''⨯⨯'==≈⨯'⨯⨯=⨯-9-9-9-6由光栅衍射明纹条件bsin =k 得正入射时k 10k 10或b 所以光栅常数随着级数的增大而增大,当k=1和k =3时,b 取最小值10b=1017-13 一束光线正入射到衍射光栅上,当分光计转过ϕ角时,在视场中可看到第三级光谱内波长为440nm 的条纹。

问在同一角ϕ上,可看见波长在可见光范围内的其它条纹吗? 解:33440sin 3sin sin 344075034407501.76 2.93,2sin 34406602mb b b b m kmm mkk k b mnmθλλϕλϕϕλλϕλ'⨯⨯=∴=⨯⨯''==''⨯≤≤⨯⨯⨯⨯≤≤⨯∴≤≤=⨯⨯''==-9-9-9-9-9-9-9-9(1)由光栅衍射明纹条件bsin =k 得正入射时10=10k 由于可见光,所以4501010,即104501010即10该可见光波长为=k17-14 某单色光垂直入射到一每厘米刻有6000条的光栅上,如果第一级谱线的偏角为200,试问入射光的波长如何?它的第二级谱线将在何处?解:1.6676000sin 20 1.667sin 2057043.15439mmb m nmθλλλϕ⨯=⨯==⨯⨯='''==-2-6-6110(1)光栅常数b=10由光栅衍射明纹条件bsin =k 得正入射时102该谱线第二级亮纹张角为=arcsin b17-15 波长600nm 的单色光垂直入射在一光栅上,第二级明条纹分别出现在sin(=0.2处,第四级缺级,试问:(1)此光栅常数多少?(2)光栅上狭缝可能的最小宽度a 多少?(3)按上述选定的d 、a 值,试问在光屏上可能观察到的全部级数是多少? 解:2600 6.0sin 0.2(2)a d (a );4 1.5;(3)m d mkN N k m ϕλλϕϕλϕλϕϕϕ⨯⨯===⨯'''='''⋅⋅⋅=⨯-9-6-6(1)由光栅衍射明纹条件dsin =k 得正入射时k 1010由于光栅明纹位置由dsin =k 决定,单缝衍射极小位置由sin =k 决定,当=时光栅明纹位置和衍射极小位置重合,即缺级,此时=为整数),dk=Nk (k =1,2,3,4,因第级缺级,故a=104由dsin 90104,80,1,2,3,5,6,7,9,k k λλ==∴=±±±±±±±dsin =k 可得所能看到的最大级数k=缺级所能看到的亮纹级数为共15条17-16 波长为500nm 的单色光,垂直入射到光栅上,如果要求第一级谱线的衍射角为300,问光栅每毫米应刻几条线?如果单色光不纯,波长在0.5%范围内变化,则相应的衍射角变化范围∆θ如何?如果光栅上下移动而保持光源不动,衍射角θ有何变化? 解:339sin 500110110,1000sin sin 30250010(2)5000.5497.5nmarcsin 29501000nm 502arcsin b k nm b N b nm ϕλλϕλϕλϕ---=⨯⨯====≈⨯⨯±''≈'(1)由光栅衍射明纹条件得正入射时=1000nm 当波长在(1%)(即497.5nm 502.5nm )范围内波动时,则对于=497.5nm ,衍射角=对于=502.5nm ,衍射角=.5nm30101000nm10θ'≈'∴∆≈∆ϕ=20/(3)如果光栅上下移动而保持光源不动则衍射角不发生变化。

17-17 波长为500nm 的单色光,以300入射角斜入射到光栅上,发现原正入射时的中央明条纹的位置现在改变为第二级光谱的位置。

求此光栅每毫米上共有多少条刻痕?最多能看到几级光谱?解:3936922sin 2sin ,tan sin 231101103210,50025001033(2)b bbx fbb m N bθλλλϕλϕϕϕϕλ-----=∴=≈='==⨯⨯∴=≈⨯==≈⨯⨯(1)由光栅衍射明纹条件bsin =k 得正入射时第二级亮纹距中心点的宽度为x=ftg 当斜入射角和衍射角相等时出现中央极大,此时中央亮纹距中心点的宽度为x =ftg30=由光栅斜入射亮纹条件得sin ),sin )sin 126,k k ϕλϕϕλ±=±-==b(sin30b(sin30当=时,k=或所以最多能看到6级条纹17-18若单色光的波长不变,试画出下列几种情况下衍射的光强度分布曲线I -sin θ示意图,并标出各图横坐标标度值。

相关文档
最新文档