量子力学2波函数和薛定谔方程
波函数与薛定谔方程

波函数与薛定谔方程引言:在量子力学中,波函数与薛定谔方程是两个核心概念。
波函数描述了粒子的量子态,而薛定谔方程则给出了波函数的时间演化规律。
本文旨在解释波函数与薛定谔方程的概念,并探讨它们在量子力学中的重要性。
一、波函数的定义与性质:波函数用符号Ψ表示,是随时间和空间变化的数学函数。
对于一个单粒子的量子系统,波函数Ψ(x,t)是描述其位置和时间依赖的函数,其中x表示位置,t表示时间。
波函数的模的平方|Ψ(x,t)|²(也称为概率密度)给出了在某个位置找到粒子的概率。
波函数的归一化要求概率密度在整个空间积分为1,即∫|Ψ(x,t)|²dx = 1。
另外,波函数是复数形式的,通过它可以得到粒子的相位和幅度信息。
二、薛定谔方程及其意义:薛定谔方程是由奥地利物理学家薛定谔于1925年提出的,用于描述量子系统的演化。
薛定谔方程的一般形式为:ih∂Ψ/∂t = HΨ其中,i是虚数单位,h是普朗克常数,Ψ是波函数,H是哈密顿算符。
薛定谔方程可以看作是一个时间演化方程,它告诉我们波函数如何随时间变化。
三、薛定谔方程的解与量子态的演化:薛定谔方程的解Ψ(x,t)给出了波函数在时间和空间上的演化规律。
解薛定谔方程有多种方法,其中最常见的是分离变量法、微扰法和数值计算法。
通过求解薛定谔方程,我们可以得到粒子在不同时间、不同位置的波函数。
薛定谔方程解的平方Ψ(x,t)²表示了在经典条件下,在某个位置x找到粒子的概率密度分布。
波函数的演化规律是通过薛定谢方程来描述的,因此它反映了量子态的演化过程。
波函数的演化可以告诉我们粒子的位置、动量和能量等重要信息。
四、波函数的物理意义:波函数不仅仅是一个数学概念,它具有重要的物理意义。
首先,波函数的平方给出了在某个位置找到粒子的概率密度分布。
这一点与经典物理中的粒子位置概念是不同的,因为在量子力学中,粒子的位置是模糊的,只能通过概率来描述。
其次,波函数还包含了粒子的相位信息。
量子力学中的波函数与薛定谔方程

量子力学中的波函数与薛定谔方程量子力学是研究微观粒子行为的物理学分支,它提供了一种描述微观粒子状态和性质的数学框架。
波函数和薛定谔方程是量子力学中最基本的概念和方程,它们对于理解量子世界起着至关重要的作用。
一、波函数的概念与性质在量子力学中,波函数是描述一个粒子状态的数学函数。
波函数通常用希腊字母Ψ表示,它的本质是由Schrödinger方程产生的解。
波函数的平方的绝对值表示了在给定的坐标和时间点上发现粒子的概率密度。
波函数具有以下几个重要的性质:1. 归一化性:波函数的归一化要求其在整个空间范围内的概率积分为1,保证了粒子存在的概率。
2. 连续性:波函数在连续性要求下需要满足薛定谔方程,保证了粒子的连续性。
3. 可复的性:波函数可复性表示波函数可以是复数形式,具有实部和虚部。
二、薛定谔方程薛定谔方程是描述量子体系中波函数随时间演化的基本方程,由奥地利物理学家艾尔温·薛定谔于1926年提出。
薛定谔方程可以用于求解各种量子力学问题,从而得到波函数。
薛定谔方程的一般形式为:HΨ = EΨ其中,H是哈密顿算符,Ψ是波函数,E是能量。
薛定谔方程可以通过对哈密顿算符作用于波函数得到,它描述了波函数随时间的变化规律。
三、波函数与薛定谔方程的应用波函数和薛定谔方程在量子力学的各个领域都有广泛的应用。
下面以几个典型的例子来说明其在实际问题中的应用。
1. 粒子在势场中的行为:通过求解薛定谔方程,可以得到粒子在给定势场中的波函数。
根据波函数的模方,可以得到粒子在势场中的概率分布,进而研究其运动规律。
2. 量子力学中的双缝实验:双缝实验是量子力学的经典实验之一。
通过薛定谔方程可以得到双缝实验中的波函数,从而解释了粒子的波粒二象性。
3. 原子与分子结构:波函数和薛定谔方程在原子与分子结构的研究中发挥了关键作用。
通过求解薛定谔方程,可以得到原子与分子的能级结构和等离子态。
四、波函数与薛定谔方程的发展与挑战自薛定谔方程提出以来,波函数与薛定谔方程的研究不断发展,并面临着一些挑战。
第二章波动方程和薛定谔方程

1 (2πh )3 / 2 1 (2πh )3 / 2
p ⋅r v h C p t e dp x dp y dp z , ( , ) ∫∫∫ ∞
i vv
− p ⋅r v h Ψ r t e dxdydz 。 ( , ) ∫∫∫
i vv
&&dinger 方程给出: 4、波函数随时间变化的规律由 Schro
ih h2 2 ∂Ψ v =− ∇ Ψ + U (r , t )Ψ 。 ∂t 2μ
据此,可以得到几率守恒律的微分形式:
1
v ∂ω +∇⋅J =0 , ∂t
v ih v v v 其中: ω (r , t ) = Ψ * (r , t )Ψ (r , t ) (假设 Ψ 归一化) ,J ≡ ( Ψ ∇Ψ * − Ψ * ∇Ψ ) 。 2μ
任意形状的势垒 U ( x) ,透射系数为:
D = D0 exp[−
四、典型例题
例 1、证明动量算符的属于本征值为 p' 的本征函数在动量表象中的表示是 δ ( p − p ' ) 。 证明:设 Ψ ( x, t ) 所描写的状态是具有动量 p ' 的自由粒子的状态,即
Ψ ( x, t ) = ψ p ' ( x )e
[−
h2 d2 * + U( x )]ψ * n = Enψn 2μ dx 2
,
(2)
即 ψ n 及 ψ* n 皆是与能量 E n 相对应的波函数。 而一维束缚定态不存在简并,于是:
4
ψ n = cψ * , n (c 为复常数)
* 即: ψ * n = c ψn ,
则: ψ n = cc * ψ n = c ψ n , 即: c = 1 , 所以: c = e iδ ,可以取 δ = 0 ,即: ψ n = ψ * n 。 故 ψ n 为实数(无损一般性, ψ n 可取为实函数) 。
量子力学专题二(波函数和薛定谔方程)

量子力学专题二:波函数和薛定谔方程一、波粒二象性假设的物理意义及其主要实验事实(了解)1、波动性:物质波(matter wave )——de Broglie (1923年)p h =λ实验:黑体辐射2、粒子性:光量子(light quantum )——Einstein (1905年)hE =ν 实验:光电效应二、波函数的标准化条件(熟练掌握)1、有限性:A 、在有限空间中,找到粒子的概率是有限值,即有=⎰ψψτ*d 有限值有限空间 B 、在全空间中,找到粒子的概率是有限值,即有=⎰ψψτ*d 有限值 全空间 2、连续性:波函数ψ及其各阶微商连续;3、单值性:2ψ是单值函数(注意:不是说ψ是单值!)三、波函数的统计诠释(深入理解) 1、∝dV 2ψ在dV 中找到粒子的概率;2、ψ和ψC 表示的是同一个波函数(注意:我们关心的只是相对概率);四、态叠加原理以及任何波函数按不同动量的平面波展开的方法及其物理意义(理解)1、态叠加原理:设1ψ,2ψ是描述体系的态,则2211ψψψC C +=也是体系的一个态。
其中,1C 、2C 是任意复常数。
2、两种表象下的平面波的形式:A 、坐标表象中r d e p r r p i 3/2/3)()2(1)( •⎰=ϕπψ B 、动量表象中p d e r p r p i 3/2/3)()2(1)( •-⎰=ψπϕ 注意:2/3)2( π是热力学中,Maxwell速率分布的一个常数,也可以使原子物理中,一个相空间的大小!五、Schrodinger Equation (1926年)1、Schrodinger Equation 的建立过程(熟练掌握)ψψH ti ˆ=∂∂ 其中,V T H ˆˆˆ+=。
2、定态薛定谔方程,定态与非定态波函数的意义及相关联系(深入了解)A 、定态:若某一初始时刻(0=t )体系处于某一能量本征态)()0,(r r E ψψ=,则/)(),(iEt E e r t r -=ψψ说描述的态,叫做定态(stationary state );B 、非定态:由不同能量能量本征态线性叠加而形成的态,叫做非定态(nonstationary state )。
量子力学 第二章 波函数和薛定谔方程

x px
t E J
二.量子力学中的测量过程 1.海森伯观察实验 2.测量过程 被测对象和仪器,测量过程即相互作用过程,其影响 不可控制和预测。
三.一对共轭量不可能同时具有确定的值是微观粒 子具有波动性的必然结果。
并不是测量方法或测量技术的缺陷。而是在本质上 它们就不可能同时具有确定的值
i p
p2 2
对自由粒子:
2 E p
2
∴
2 i 2 t 2
3.力场中运动粒子的波动方程 能量关系:
E p2 U (r , t ) 2
2 i 2 U (r , t ) t 2
4.三个算符
2 H 2 U 2
1。与宏观粒子运动不同。
2。电子位置不确定。
3。几率正比于强度,即 ( r , t )
2
结论:
波函数的统计解释:波函数在空间某一点的 强度(振幅绝对值的平方)和在该点找到粒 子的几率成正比。
2 数学表达: (r , t ) | (r , t ) |
归一化:
2 (r , t )d | (r , t ) | d 1
3 2 i ( pr Et )
e
(r ) p
1 (2)
3 2
e
i pr
(r , t )
( r ) dp dp dp x y z c( p, t ) p
其中:
而:
i Et c( p, t ) c( p) e
而在晶体表面反射后的晶电子状态
状态的迭加。
p
为各种值的
量子力学中的波函数与薛定谔方程

量子力学中的波函数与薛定谔方程量子力学是描述微观粒子行为的一门物理学科,它提出了一种新的描述方式——波函数。
波函数是量子力学的核心概念,它可以用来描述粒子的位置、能量、动量等性质。
而薛定谔方程则是描述波函数随时间演化的数学表达式。
本文将重点讨论波函数与薛定谔方程在量子力学中的重要性和应用。
一、波函数的概念与性质波函数(ψ)是量子力学中对粒子状态的描述。
它是一个复数函数,包含了粒子位置、能量等信息,并且满足归一化条件,即在整个空间内的积分平方和为1。
波函数的模的平方,即|ψ|²表示粒子在某个位置上的出现概率密度。
波函数具有叠加原理,也就是说多个波函数可以叠加形成新的波函数。
这个叠加过程可以用波函数的线性组合来表示,其中各个波函数所对应的系数表示了它们的相对贡献程度。
二、薛定谔方程的形式与意义薛定谔方程是描述波函数随时间演化的方程,它是由薛定谔于1925年提出的。
薛定谔方程的一般形式为:Ĥψ = Eψ其中Ĥ为哈密顿算符,E为能量本征值,ψ为波函数。
这个方程描述了体系中的粒子在不同的势场中的运动规律。
三、波函数与薛定谔方程的应用1. 原子结构与电子行为在原子结构研究中,波函数被用来描述电子在原子核周围的分布情况。
薛定谔方程可以求解出不同原子的能级和电子轨道分布,从而解释和预测原子光谱的性质。
2. 材料物性与波函数分析波函数可以用来研究材料的结构和物性。
通过计算材料中的波函数,可以得到材料的能带结构、电子密度分布等信息,从而揭示其导电性、磁性等特性。
3. 量子力学中的粒子碰撞在粒子碰撞研究中,波函数描述了入射粒子和出射粒子之间的相互作用。
利用薛定谔方程求解波函数,可以计算出散射截面、角分布等碰撞参数。
4. 量子计算和量子通信波函数的叠加性为量子计算和量子通信提供了基础。
量子计算利用波函数的叠加原理,利用量子态的叠加特性进行并行运算,从而加快计算速度;量子通信利用波函数的纠缠性质,实现了安全的信息传输。
2波函数和薛定谔方程

第二章
波函数和薛定谔方程
三、波函数的归一化
由于粒子必定要在空间中的某一点出现,所以粒子 在空间各点出现的概率之和等于1,因而粒子在空间各点 出现的概率只决定于波函数在空间各点的相对强度,而 不决定于强度的绝对大小。换句话说,将波函数乘上一 个常数后,所描写的粒子的状态并不改变。
(r , t ) 与 C (r , t ) 表示同一个态。
2
概率密度
dW ( x, y, z, t ) 2 ( x, y , z , t ) C ( x, y , z , t ) d
§2.1 波函数的统计解释
第二章
2
波函数和薛定谔方程
C ( x, y, z, t ) d 1
归一化
C
1
( x, y, z , t ) d
§2.1 波函数的统计解释
第二章
波函数和薛定谔方程
自由粒子的波函数
Ae
i ( pr Et )
如果粒子受到随时间或位置变化的力场的作用,它的 动量和能量不再是常量,这时粒子就不能用平面波来描写,
而必须用较复杂的波来描写。一般记为:
(r , t )
描写粒子状态的波函数,它 通常是一个复函数。
c1 1 c2 2 cn n
cn n
n
§2.2 态迭加原理
第二章
波函数和薛定谔方程
二、波函数按平面波展开
以一个确定的动量 p 运动的自由粒子的状态用波函数
p (r , t ) Ae
i ( pr Et )
描写。按照态迭加原理,粒子的状态可表示为
波函数为
i (r , t ) A exp ( p r Et )
量子力学2波函数和薛定谔方程

波包说夸大了波动性一面。 (2)大量电子分布于空间形成的疏密波。 电子双
缝衍射表明,单个粒子也有波动性。疏密波说夸大了粒 子性一面。
对波粒二象性的辨正认识:微观粒子既是粒子,也 是波,它是粒子和波动两重性矛盾的统一,这个波不再 是经典概念下的波,粒子也不再是经典概念下的粒子。 在经典概念下,粒子和波很难统一到一个客体上。
也是一个可能的波动过程。
波的干涉、衍射现象可用波的迭加原理解释。 二、量子力学的态迭加原理
如果 1 和 2 是体系的可能状态,那么它们的线性 迭加: c11 c21(c1 ,c2是复数)也是这个体系 的一个可能状态。
三、电子双缝衍射 P
设 1 表示电子穿过上面窄
缝到达屏的状态,设 2 表 示电子穿过下面窄缝到达
二、波函数的(Born)统计解释
1、几率波
1926年玻恩提出了几率波的概念: 在数学
上,用一函数表示描写粒子的波,这个函数叫波函数。波
函数在空间中某一点的强度(振幅绝对值的平方)和在该
点找到粒子的几率成正比。既描写粒子的波叫几率波。
描写粒子波动性的几率波是一种统计结果,即许多电子同 一实验或一个电子在多次相同实验中的统计结果。
dW 应正比于体积 d dxdydz 和强度 2
dW(x, y, z,t) C (x, y, z,t) 2 d
2.1 归一化条件:在整个空间找到粒子的几率为1。
2
dW (x, y, z,t) C (x, y, z,t) d 1
2.2 归一化常数
C
1
2
可由归一化条件确定
(x, y, z,t) d
的线性迭加: c11 c22 cn n cn n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波包说夸大了波动性一面。 (2)大量电子分布于空间形成的疏密波。 电子双
缝衍射表明,单个粒子也有波动性。疏密波说夸大了粒 子性一面。
对波粒二象性的辨正认识:微观粒子既是粒子,也 是波,它是粒子和波动两重性矛盾的统一,这个波不再 是经典概念下的波,粒子也不再是经典概念下的粒子。 在经典概念下,粒子和波很难统一到一个客体上。
几率波的概念将微观粒子的波动性和粒子性统一起来。微 观客体的粒子性反映微观客体具有质量,电荷等属性。而 微观客体的波动性,也只反映了波动性最本质的东西:波 的叠加性(相干性)。
描述经典粒子:坐标、动量,其他力学量随之确定。
描述微观粒子:波函数,各力学的可能值以一定几率出现。
2 波函数的基本性质
设波函数 (x,y,z,t)描写粒子的状态,波的强度 2
(1) 线性方程,迭加原理的要求; (2) 方程系数不含状态参量(动量、能量),各种可 能的状态都要满足方程。
建立过程:自由粒子波函数所的波函数所满足的微分方程
平面波:(r,t)Aei(prE)t 对坐标求二次偏导:
对时间求偏导: t i E
2 x2
px2 2
2 y2
,则在时刻t、在坐标x到x+dx、y到y+dy、z到z+dz的无 穷小区域内找到粒子的几率表示为 dW (x,y,z,t)
dW 应正比于体积 d dxdydz和强度 2
d(W x,y,z,t)C (x,y,z,t)2d
2.1 归一化条件:在整个空间找到粒子的几率为1。
d(W x,y,z,t)C (x,y,z,t)2d1
py2 2
2 z2
pz2 2
将以上三式相加 : 2 x 2 2 y 2 2 z 2 2 p 2 2
利用自由粒子的能量和动量的关系,我们可得到自由粒 子波函数所满足的微分方程:
p2 E
2
i2 2 (2.3-5)
t
2
3、粒子在势场中所满足的方程
粒子在势场U(r)
中,能量和动量的关系是:E
三、量子力学的态迭加原理一般表述
如果 1, 2, n,是体系的可能状态,那么它们
的线性迭加: c 1 1 c 2 2 c n n c n n
n
(c1 ,c2 ,cn 是复数)也是这个体系的一个可能状态。
§2.3 薛定谔方程
一、 薛定谔方程引入
经典力学质点运动: 初始状态(位置、速度) 牛顿方程 任意时刻质点的状态。 量子力学波函数: 初始状态波函数 薛定谔方程 任意时刻波函数的状态。 薛定谔在1926年建立了薛定谔方程 1、对波函数所满足的方程的要求
也是一个可能的波动过程。
波的干涉、衍射现象可用波的迭加原理解释。 二、量子力学的态迭加原理
如果 1 和 2 是体系的可能状态,那么它们的线性 迭加:c1 1c2 1(c1 ,c2是复数)也是这个体系
的一个可能状态。
三、电子双缝衍射 P
设 1 表示电子穿过上面窄
缝到达屏的状态,设 2 表 示电子穿过下面窄缝到达
p2
2
U(r)
波函数所满足的微分方程
i t 2 2 2U(r)
(2.3-10)
§2.7 一维线性谐振子 §2.8 势垒贯穿 第二章 小结
§2.5 定态薛定谔方程
例题:
§2.1 波函数的统计解释
一、波动-粒子二重性矛盾的分析
物质粒子既然是波,为什么长期把它看成经典粒子, 没犯错误?
实物粒子波长很短,一般宏观条件下,波动性不会表 现出来。到了原子世界(原子大小约1A),物质波的波长与 原子尺寸可比,物质微粒的波动性就明显的表现出来。
第二章 波函数和薛定谔方程
【教学目的】 正确了解波粒二象性的本质及波函数的统计解 释,了解薛定谔的建立过程,了解态迭加原理,掌握几种 典型一维定态问题的求解方法(一维无限深势阱、一维线 性谐振子)。
§2.1 波函数的统计解释 §2.6 一维无限深势阱
§2.2 态迭加原理
§2.3 薛定谔方程
§2.4 粒子流密度和粒子 数守恒定律
2
2、只有 d 有限时才能归一化为1。
自由粒子波函数就是一例。
3、经典波和微观粒子几率波的区别 1、 经典波描述某物理量在空间分布的周期变化,而几 率波描述微观粒子某力学量的几率分布;
2、 经典波的波幅增大一倍,相应波动能量为原来四倍, 就变成另一状态了;而微观粒子在空间出现的几率只决定 于波函数在空间各点的相对强度,将几率波的波幅增大一 倍并不影响粒子在空间各点出现的几率,即将波函数乘上 一个常数,所描述的粒子的状态并不改变;
s1 S
屏的状态。
1 表示电子穿过两个窄缝
s2
到达屏的状态,则有
c1 1c2 2
电子在屏上某点出现的 几率可表示为
电子双缝衍射实验
2 c 1 1 c 2 2 2 c 1 1 2 c 2 2 2 c 1 c 2 1 2 c 1 c 2 1 2
正是干涉项的存在,才有了衍射条纹。
二、波函数的(Born)统计解释
1、几率波
1926年玻恩提出了几率波的概念: 在数学
上,用一函数表示描写粒子的波,这个函数叫波函数。波
函数在空间中某一点的强度(振幅绝对值的平方)和在该
点找到粒子的几率成正比。既描写粒子的波叫几率波。
描写粒子波动性的几率波是一种统计结果,即许多电子同 一实验或一个电子在多次相同实验中的统计结果。
3、 对经典波,加一相因子e i ,状态会改变,而对几率 波,加一相因子e i 不会引起状态改变。
§2.2 态迭加原理
波函数的统计解释是波粒二象性的一个表现。微观粒子 的波粒二象性还可以通过量子力学的一个基本原理:态迭 加原理表现。 一、经典的波遵从的迭加原理
两个可能的波动过程 1 与 2 的线性迭加 a1b2
2.2 归一化常数
C
1
2
可由归一化条件确定
(x, y, z,t) d
2.3 归一化的波函数
(x,y,z,t)C (x,y,z,t)
在时刻t、在坐标 (x,y,z)点附近单位体积内找到粒子的几 率称为几率密度 。
w (x ,y ,z,t) d(W x ,y ,z,t) (x ,y ,z,t)2 d 注意: 1、归一化的波函数还有一不确定的相因子e i