第五章一次函数5.2一次函数(2)

合集下载

5.3.1 一次函数的概念 浙教版数学八年级上册课后练习(含解析)

5.3.1 一次函数的概念 浙教版数学八年级上册课后练习(含解析)

浙教版初中数学八年级上册第五章一次函数5.2.1函数的有关概念——课后练习A掌握基本知识落实4基1.下列函数(其中x是自变量)中,一定是正比例函数的是( )A.y=2xB.y=―x3C.y=―3x+2D.y=kx2.下列函数中,是一次函数的是( )A.y=1x B.y=x2―1C.y=x D.y=x+1x3.已知函数y=23x+k―2是正比例函数,则常数k的值为( )A.-2B.0C.2D.±24.下列问题中,变量y与x成一次函数关系的是( )A.路程一定时,时间y(h)和速度x(km/h)的关系B.斜边长为5cm的直角三角形的直角边y(cm)和x(cm)C.圆的面积y(cm2)与它的半径x(cm)D.10m长铁丝折成长为y(m),宽为x(m)的长方形5.下列问题中两个变量成正比例的是( )A.正方形面积和它的边长B.一条边确定的长方形,其周长与另一边长C.圆的面积与它的半径D.半径确定的圆中,弧长与该弧长所对圆心角的度数B提升关键能力练就4能6.已知汽车油箱内有油50L,每行驶100km耗油10L,那么汽车行驶过程中油箱内剩余的油量Q(L)与行驶路程s(km)之间的关系式是 ;7.已知一次函数y=(m-1)x|m|-2,则m= 8.已知y关于x的函数y=(m+2)x+m2―4是正比例函数,则m的值是 .9.小明爸爸开车带小明去杭州游玩。

一路上匀速前行,小明记下如下数据:观察时刻9:009:069:18路牌内容杭州90km杭州80km杭州60km(注:“杭州90km”表示离杭州的距离为90km 从9点开始,记汽车行驶的时间为t(min),汽车离杭州的距离为s(km),则s关于t的函数表达式为 .10.已知y=(m+1)x2﹣|m|+n+4(1)当m、n取何值时,y是x的一次函数?(2)当m、n取何值时,y是x的正比例函数?11.已知一长方体无盖的水池的体积为700m3,其底部是边长为10m的正方形,经测得现有水的高度为2m,现打开进水阀,每小时可注入水40m3.(1)写出水池中水的体积V(m3)与时间t(ℎ)之间的函数关系式(不要求写自变量的取值范围);(2)5小时后,水的体积是多少立方米?(3)多长时间后,水池可以注满水?C发展核心素养培养3会12.下面由火柴棒拼出的一列图形中,第n个图形由n个正方形组成:通过观察可以发现:第4个图形中,火柴棒有 根,第n个图形中,火柴棒有 根,若用y表示火柴棒的根数,x表示正方形的个数,则y与x的函数关系式是 ,y是x的 函数.13.某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2.5元收费.如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费.(1)若该城市A用户6月份用水18吨,该户6月份水费是多少?(2)设B用户某月用水量为x吨(x>20),应缴水费为y元,求出y关于x的函数关系式.(3)若C用户8月份水费为83元,求C用户8月份用水量.14.某化工厂生产某种化肥,每吨化肥的出厂价为1780元,其成本价为900元,但在生产过程中,平均每吨化肥有280立方米有害气体排出,为保护环境,工厂须对有害气体进行处理,现有下列两种处理方案可供选择:①将有害气体通过管道送交废气处理厂统一处理,则每立方米需付费3元;②若自行引进处理设备处理有害气体,则每处理1立方米有害气体需原料费0.5元,且设备每月管理、损耗等费用为28000元.设工厂每月生产化肥x吨,每月利润为y元(注:利润=总收入-总支出)(1)分别求出用方案①、方案②处理有害气体时,y与x的函数关系式;(2)根据工厂每月化肥产量x的值,通过计算分析工厂应如何选择处理方案才能获得最大利润.答案解析部分1.【答案】B【解析】【解答】解:A、y=2x,该函数是反比例函数,故该选项不符合题意;B、y=―x3,该函数是正比例函数,故该选项符合题意;C、y=―3x+2,该函数是一次函数,不是正比例函数,故该选项不符合题意;D、y=kx,当k=0时,该函数不是正比例函数,故该选项不符合题意.故答案为:B.【分析】根据正比例函数的定义逐项判断即可。

5.2 一次函数 课件(苏科版八年级上册) (2)

5.2 一次函数 课件(苏科版八年级上册) (2)

时间是一个常量,但对勤奋者来说,却是一个 “变量”.我们应当在有限的时间内做出伟大 的事业.
你的收获与平时的付出是成正比的.一份耕耘, 一份收获.相信自己,只要付出,你一定会有收 获!

课后作业
1、教材p215 习题1、2
2、探究活动:我们平时所说的鞋子的大小 是以“码”为单位的,而厂商对鞋子大小 的编号则是以“cm”为单位的。向你的父 母或商场鞋帽柜服务员请教,弄清这两个 单位之间的关系,并写出 y (码号)与 x (cm)之间的函数关系式。
探究讨论
水池中有水465m3,每小时排 水15m3,排水x h后,水池中还有水 ym3。试写出y与x之间的函数关系 式,并求出自变量x的取值范围。
请你设计
设计一个问题,写出两变 量之间的函数关系式,并求出自 变量的取值范围。
通过本课的探讨研究,你 有哪些收获,你认为还有哪 些困惑?
老师感悟

y=10x
请你思考
如果将这些函数进行 分类,你认为如何分类比 较合理?
正比例关系
两个变量的比值一定,这两个变量 是正比例关系。 正比例关系可以用式子y∶x=k(一定) 来表示 。
正比例函数
形如y=kx,y是x的正比例函 注意: k≠0 数.
一次函数:
形如y=kx+b (k、b是常数,且k≠0) y是x的一次函数.
• (1)一个长方体盒子高为4cm,底面是正 方形,这个长方体的体积y(cm3)与 底面边长x(cm)之间的函数关系;
y=4x2
• (2)计划花150元购买日记本,所能购买 的本数y(本)与单价x(元)之间的 函数关系
150 y x

(3)一辆汽车以80km/h的速度行驶
①写出在行驶过程中,汽车行驶的路程y (km)与行驶时间x(h)之间的函数关系;

浙教版八年级数学上册课件:5.2 函数 (共19张PPT)

浙教版八年级数学上册课件:5.2  函数 (共19张PPT)

辨一辨
下列各情景分别可以用哪一幅图来近似的刻画 (1)汽车紧急刹车(速度与时间的关系)( (2)人的身高变化(身高与年龄的关系)( ) D ) B
(3)跳高运动员跳跃横杆(高度与时间的关系)(
(4)一面冉冉上升的红旗(高度与时间的关系)(
C) ) A
y是 x 的函数吗? 下列图象关系中,
P( x ,y )
填写下表(精确到0.01):
助跑速度v(米/秒) 跳远的距离s(米)
7.5
8
8.5
4.78
5.44
6.14
如果v取定一个值,那么s相应的可以取几个值?
变量x 的值一经确定,变量y的值也随之唯一确定.
3.按照如图5-2的数值转 换器,请你任意输入一个 x的值,根据y与x的数量 关系求出相应的y的值.
y 0.53 x ,当x=40时,函数值为________ 为_____________ 21.2 ,
用40千瓦时电需付电费21.2元 它的实际意义是________________________________ 。
下表是一年内某城市月份与相应的平均气温。
月份m
1
2
5.1
3
4
5
6
7
8
9
10
11 12
2、跳远运动员按一定的起跳姿势,其跳远的距离s(米) 与助跑的速度v(米/秒)有关。根据经验,跳远的距离 s=0.085v2 (0<v<10.5) s是v的函数, v是自变量。
例:某市民用水费的价格是1.2元/立方米,小红准备收 取她所居住大楼各用户这个月的水费。设用水量为n立 方米,应付水费为m元。 m,n ,其中_____ n 的函数, (1)题中变量有________ m 是_____ n 自变量是_________ m=1.2n (2)m关于n的函数解析式为__________

5.2一次函数(2)

5.2一次函数(2)

5.2 一次函数(2)班级姓名【必做题】1.根据下列条件求出函数关系式:(1)已知y与x-3成正比例,当x=4时,y=3。

试求y与x的函数关系式。

(2)已知y-1与x成正比例,当x=2时,y=-4。

试求y与x的函数关系式。

(3)已知y=y1+y2,其中y1与x成正比例,y2与x-2成正比例,当x=-1时,y=2;当x=2时,y=5,求y与x的函数关系式.2.梯形的上底长为4,下底长为7,一腰长为12.请写出梯形的周长y与另一腰长x之间的函数关系式,并写出自变量x的取值范围.3.某跨江大桥的收费站对过往车辆都要收费,规定大车收费60元,小车收费50元,若某天过往车辆为3000辆,求所收费用y与小车x(辆)之间的函数关系,及x的取值范围.4.将长为38cm,宽为5cm的长方形白纸,按如图所示方法粘合在一起,粘合部分白纸为2cm。

(1)求10张白纸粘合后的长度?(2)设x张白纸粘合后的总长为ycm,写出y与x的函数关系式。

【选做题】5.某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例。

当x=20时,y=1600;当x=30时,y=2000。

(1)求y与x之间的函数关系式;(2)如果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?6.某移动通讯公司开设两种业务“全球通”:先缴50元月租费,然后每通话1分钟,再付0.4元;“神州行”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话都是指的市内通话).若设一个月内通话x次,两种方式的费用分别为y1和y2(不足1分钟的按1分钟计算)(1)请你写出y1、y2与x之间的函数关系式;(2)一个月通话多少分钟时,两种费用相同?(3)某人预计一个月内通话300分钟,请你帮助他选择合适的业务进行消费?。

5.2_一次函数与一元一次不等式(2)新

5.2_一次函数与一元一次不等式(2)新
‹# ›
车厢的节数.共有哪几种安排车厢的方案? (3)在上述方案中,哪个方案运费最省?最少 运费为多少元?
解:(1)因为列车挂A型车厢x节,所以挂B型车厢 (40-x)节. 依题意,y与x之间的函数关系式为
y 0.6 x 0.8(40 x)
0.2 x 32
‹# ›
(2)依题意,得
(3)由函数y 0.2 x 32 可知,y随x的增大 而增大。因此,当x=26时运费最省.这时 y=-0.2×26+32=26.8(万元). 所以,挂26节A型车厢和14节B型车厢运费最省。 最小运费为26.8万元.
‹# ›
练习
某工厂现有甲种原料360kg,乙种原料290kg,计 划利用这两种原料生产A,B两种产品共50件, 已知生 产一件A产品需要甲原料9kg,乙原料3kg,生产一件B 产品需要甲原料4kg,乙原料10kg. (1)设生产X件A种产品,写出X应满足的不等式 (2)有哪几种符合的生产方案? (3)若生产一件A产品可获利700元,生产一件B产品 可获利1200元,那么采用哪种生产方案可使生产A、 B两种产品的总获利最大?最大利润是多少?
‹# ›
• (1)解:设安排生产A种产品x件,B种产品(50-x)件;x件A种产 品需要甲种原料9x千克,乙种原料3x千克,可获利700x元; (50-x)件B种产品需要甲种原料4(50-x)千克,乙种原料10(50-x) 千克,可获利1200(50-x)元;根据题意,可列不等式组: 9x+4(50-x)≤360 (1) 3x+10(50-x)≤290 (2) (2)解: 由不等式(1)得:x≤30 由不等式(2)得:x≥32 不等式组的解集为 30≤x≤32 当x=30时,50-x=20 当x=31时,50-x=19 当x=32时,50-x=18 方案一:安排生产A种产品30件,B种产品20件 方案二:安排生产A种产品31件,B种产品19件 方案三:安排生产A种产品32件,B种产品18件

5.2 一次函数(二)课件

5.2 一次函数(二)课件

(4)已知y1与x成正比例, y2与x+2成正比例,且y=y1+y2.
当x=2时,y=4;当x=-1时,y=7.求y与x之间的函数关系式.
(1)已知正比例函数 y=kx(k≠0),且当x=1时,y=2,你能 求出k的值吗?
(2)已知一次函数 y=kx +b(k≠0,k、b为常数),且当 x=1时,y=2, 此时你能求出k、b的值吗?
再加上条件:当x=-1时,y=4
待定系数法:
一般地,在求一个函数时,如果知道这个函数的 一般形式, 可先把所求函数写为一般形式,其中 系数待定,然后再根据题设条件求出这些待定 系数. 这种通过求待定系数来确定变量之间关系 式的方法叫做 待定系数法
一般步骤:1.根据所求问题确定含有待定系数关系式
2.根据题设条件,列出含有待定系数的 方程(组) 3.解方程(组),求出系数。确定函数关系式
在弹性限度内,弹簧伸长的长度与所挂物 体的质量成正比 (1)已知一根弹簧自身的长度为bcm,且所挂 物体的质量每增加1g,弹簧长度增加kcm, 试写出弹簧长度y(cm)与所挂物体质量x (g)之间的函数关系式。 (2)已知这根弹簧上挂10g物体时弹簧长度为 11cm,挂30g物体时弹簧长度为15cm,试确 定弹簧长度y(cm)与所挂物体质量x(g) 之间的函数关系式。
(1) 已知一次函数 y=kx +b,当x=-3 时,y=0;当x=2时,y=5,求出k、b的值。
(2)如下表,y是x的一次函数
x 6 y -3 4 -2 2
-1
0
0
-2知y与x成正比例,且当x=2时,y=4.①求y与x之间的 函数关系式;②求当x=-1时,y的值;③求当y=1时,x的值。 (2)已知y与x+2成正比例,且当x=2时,y=2,①求y与x之间 的函数关系式;②求当x=-1时,y的值;③求当y=1时,x的值。 (3)已知y+3与x+2成正比,且当x=1时,y=-6,①求y与x之间 的函数关系式;②求当x=-1时,y的值;③求当y=1时,x的值。

5.2 一次函数(含答案)

5.2 一次函数(含答案)

5.2一次函数[趣题导学]你知道人们是怎样研究候鸟的习性的吗?1996年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环,你知道这只不足百余克重的小鸟飞行4个月零1周后能飞多远吗?结果让你吃惊!人们在2.56万千米的澳大利亚发现了它。

你能求出这只小鸟平均每天飞行多少千米(精确到10-千米)以及它的行程y (千米)与飞行时间x (天)之间的函数关系吗? 解答:容易得出这只燕鸥大约平均每天飞行()256003047200÷⨯+≈(km),所以它的行程y (千米)与飞行时间x (天)之间的函数关系可以用200y x =近似刻画.[双基锤炼] 一、选择题1、下列函数①y=x -6;②y=x2;③y=8x ;④y=7-x 中,y 是x 的一次函数的是( )A 、①②③B 、①③④C 、①②③④D 、②③④ 2、下列函数中,既是一次函数,又是正比例函数的是( ) A 、215y x = B 、()25y x x x =-- C 、12y x=D 、51y x =-3、如果()2213my m x-=-+是一次函数,则m 的值是( )A 、1B 、-1C 、±1D 、4、函数23y x =-,当1x =时,y 的值是( )A 、1B 、0C 、-1D 、-5 二、填空题5、在函数:①y=-x ;②y=-3x -6;③y=2(x -3);④y=x 2+3;⑤y=4-x 中,正比例函数有 ,一次函数有 。

6、甲乙两地相距264千米,一辆汽车从甲地开往乙地,每小时行驶24千米,t 小时后,停在途中加水,则所剩路程s 与行驶时间t 之间的关系式是 ,s 是t 的 函数。

7、已知等腰三角形周长为20,则底边长y 与腰长x 之间的函数关系式是 ,自变量x 的取值范围是 。

8、已知y 与x 成正比例,且当x=1时,y=0.5,则函数关系式是 .9、下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);(2)长为8(cm)的平行四边形的周长L(cm)与宽b(cm);(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).10、见下表:根据上表写出y与x之间的关系式是:________________,y是否为x的一次函数?y 是否为x的正比例函数?11、函数y=ax+b,当x=1时,y=1;当x=2时,y=-5。

第五章一次函数专题5.2 一次函数与正比例函数-重难点题型(含解析)

第五章一次函数专题5.2 一次函数与正比例函数-重难点题型(含解析)

一次函数与正比例函数6大题型【题型1 一次函数的概念】【例1】(2021春•娄星区期末)在下列函数中:①y =﹣8x ;②;③;④y =﹣8x 2+5;⑤y =﹣0.5x ﹣1,一次函数有( )A .1个B .2个C .3个D .4个【变式1-1】(2020秋•肥西县校级月考)下列函数:(1)y =3x ;(2)y =2x ﹣1;(3);(4)y =x 2﹣1;(5)中,是一次函数的有( )个A .4B .3C .2D .1【变式1-2】(2021春•汉阴县期末)在①y =﹣8x :②y :③y1;④y =﹣5x 2+1:⑤y=0.5x ﹣3中,一次函数有( )A .1个B .2个C .3个D .4个【变式1-3】下列语句中,y 与x 是一次函数关系的有( )个(1)汽车以60千米/时的速度匀速行驶,行驶路程y (千米)与行驶时间x (时)之间的关系(2)圆的面积y (厘米2)与它的半径x (厘米)之间的关系;(3)一棵树现在高50厘米,每个月长高2厘米,x 月后这个棵树的高度为y 厘米,y 与x 的关系;(4)某种大米的单价是2.2元/千克,当购买大米x 千克大米时,花费y 元,y 与x 的关系.A .1B .4C .3D .2【题型2 利用一次函数的概念求值】【例2】(2021春•昭通期末)若y =(k ﹣2)x |k ﹣1|+1表示一次函数,则k 等于( )A .0B .2C .0或2D .﹣2或0【变式2-1】(2021春•雨花区期中)若函数y =(m +2)x |m |﹣1﹣5是一次函数,则m 的值为( )A .±2B .2C .﹣2D .±1【变式2-2】(2021春•杨浦区期末)如果y =kx +x +k 是一次函数,那么k 的取值范围是 .【变式2-3】已知y =(k ﹣1)x |k |+(k 2﹣4)是一次函数.(1)求k的值;(2)求x=3时,y的值;(3)当y=0时,x的值.【题型3 正比例函数的概念】【例3】(2021春•萝北县期末)若y=(m+2)x+m2﹣4是关于x的正比例函数,则常数m = .【变式3-1】函数y=(k+1)是正比例函数,则常数k的值为 .【变式3-2】已知函数y=mx+25﹣m是正比例函数,则该函数的表达式为 .【变式3-3】已知函数y=2x2a+b+a+2b是正比例函数,则a= .定系数法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主备人:备课组成员签名:
课题:§5.2一次函数(2)
教学目标
1、能根据所给条件写出一次函数的关系式。

2、进一步由函数中的自变量求出相应的函数值。

3、把实际问题抽象为数字问题,也能把所学知识运用于实际,让学生认识数学与人类生活的密切联系及对人类历史发展的作用。

教学重点
根据所给息确定一次函数的表达式。

教学过程
1、新课导入
在上节课中我们学习了一次函数图象的定义,在给定表达式的前提下,我们可以说出它的有关性质,如果给你信息,你能否求出函数的表达式呢?这将是本节课我们要研究的问题。

2、讲授新课
做一做、一盘蚊香长105cm,点然时每小时缩短10cm.
(1)写出蚊香点然后的长度y(cm)与点然时间t(h)之间的函数关系式;
(2)该盘蚊香可以使用多长时间?
3、想一想
(1)确定正比例函数的表达式需要几个条件?
(2)确定一次函数的表达式呢?
4、例题讲解
例1:在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的一次函数、当所挂物体的质量为1千克时,弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米。

写出y与x之间的关系式,并求出所挂物体的质量为4千克时的弹簧的长度。

小结:求一次函数表达式的步骤
(1)设函数表达式y=kx+b
(2)根据已知条件列出关于k,b的方程。

(3)解方程。

(4)把求出的k,b值代回到表达式中即可。

5、课堂练习
(1)P190练习1,2
(2)根据条件确定函数的表达式:y是x的正比例函数,当x=2时,y=6,求y与x的关系式。

(3)函数y=ax+b,当x=1时,y=1;当x=2时,y= -5。

(1)、求a 、b的值。

(2)、当x=0时,求函数值y ;
(3)、当x取何值时,函数值y为0?
本课总结
求函数表达式的一般步骤:
补充作业
1、已知y与4x-1成正比例,且当x=3时,y=6,写出y与x的函数关系式.
2、已知y与x-3成正比例,当x=4时,y=3.
(1)写出y与x之间的函数关系式;
(2)y 与x 之间是什么函数关系;
(3)求x =2.5时,y 的值.
3、已知函数y =(m 2-4)x 4+n +(m -2),当m 且 时,它是一次函数;当m 且n 时它是正比例函数.
4、学校里现有粉笔15000盒,如果每个星期领出60盒子,求仓库内余下的粉笔Q 与星期数t 之间的函数关系式 .
5、有下列函数:①y =x -2;②y =x 2-;③y =-x 2+(x +1)(x -2);④y =2
x -其中是一次函数的有几个? ( )
A .1个
B .2个
C .3个
D .0个
6、梯形的上底长为4,下底长为7,一腰长为12.请写出梯形的周长y 与另一腰长x 之间的函数关系式,并写出自变量x 的取值范围.
7、已知│a +1│+(b -2)2=0,则函数y=(b +3)x -a +b 2-8b +16是什么函
数?当x=- 5
1 时函数值y 是多少?
8、某跨江大桥的收费站对过往车辆都要收费,规定大车收费60元,小车收费50元,若某天过往车辆为3000辆,求所收费用y 与小车x (辆)之间的
函数关系,及x的取值范围.
9、一服装个体户在进一批服装时,进价已按原价打了七五折,他打算对该批服装定一个新价标在价目卡上,并标明按该价降价20%销售,这样依然可获得20%的纯利润.求这个个体户给这批服装定的新价y与原价x之间的函数关系式.
10、某地长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过规定,则需要购买行李票,行李票费用y元是行李质量x(千克)的一次函数,其图象如下图所示:
①写出y与x之间的函数关系式;
②旅客最多可免费携带多少千克行李?。

相关文档
最新文档