端粒、 端粒酶的研究进展

合集下载

关于端粒及端粒酶的调查报告

关于端粒及端粒酶的调查报告

关于端粒及端粒酶的调查报告一:引言2009年10月5日,诺贝尔生理学或医学奖颁发给了美国科学家伊丽莎白·布莱克本、卡罗尔·格雷德和杰克·绍斯塔克,以表彰他们在研究端粒和端粒酶保护染色体的机理方面的贡献。

这篇调查报告将会通过资料查询和逻辑推断等方式论述关于端粒,端粒酶以及它们与肿瘤细胞的相关内容。

二:端粒和端粒酶2.1.1端粒端粒(Telomere)是染色体末端的重复DNA序列,在人细胞中长度约为几千到一两万碱基对,它防止细胞将天然染色体末端识别为染色体断裂,起着保护和稳定染色体的作用。

[1]随着细胞的分裂增殖,端粒会逐渐缩短。

当端粒的长度缩短到一定程度时,细胞的分裂便会停止。

因此,端粒具有调节细胞增殖的作用,是细胞分裂的“时钟”。

端粒的碱基序列具有极高的保守性,但不同物种的端粒仍有差异,例如:四膜虫重复序列为GGGGTT,草履虫为TTGGGG,人类和哺乳动物为TTAGGG.[2]2.1.2端粒的结构端粒通常由富含G的DNA重复序列,以及端粒结合蛋白和端粒相关蛋白组成。

端粒结合蛋白直接保护端粒DNA,端粒相关蛋白通过与端粒结合蛋白的相互作用间接影响端粒的功能。

端粒既可保护染色体不受核酸酶的破坏,又避免了因DNA黏性末端的裸露而发生的染色体融合。

[4][5]2.2.1端粒酶端粒酶(Telomerase),在细胞中负责端粒的延长的一种酶。

在端粒发现之后,人们便开始猜测存在这样一种酶,可以起到延长端粒的作用——因为随着细胞的分裂增殖和染色体的复制,端粒应当越来越短,但是某些细胞(如肿瘤细胞)的端粒长度却能够保持相对不变。

在1997年,Tom Cech实验室的Lingner在Euplotes aediculatus以及酿酒酵母中发现了真正的端粒酶催化亚基。

[3]2.2.2端粒酶的作用机理端粒酶主要依靠两种成分来实现其功能,一种名为端粒酶逆转录酶(TERT)的蛋白酶,另一种是作为模板的一小段RNA序列。

端粒和端粒酶的发现及其生物学意义

端粒和端粒酶的发现及其生物学意义

端粒和端粒酶的发现及其生物学意义端粒和端粒酶是细胞生物学中一个重要的发现,它们的存在对于细胞的生命活动和分裂有着至关重要的作用。

本文将介绍端粒和端粒酶的发现过程,以及它们在细胞生物学中的重要作用。

一、端粒的发现1940年代初期,生物学家Hermann Muller发现了X射线可以导致果蝇基因突变,从而引发了对DNA的研究。

在此之后,科学家们开始研究DNA的结构和功能,他们发现DNA是由四种碱基组成的,即腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)。

然而,随着研究的深入,科学家们发现,在DNA的两端存在着一种特殊的序列,这种序列被称为端粒。

端粒是由一种叫做“重复序列”的DNA组成的,这种DNA序列在不同物种之间有所不同,但它们都具有重复的结构。

在人类中,端粒由TTAGGG序列组成,这个序列在人类基因组中重复了数千次。

二、端粒酶的发现在研究端粒的过程中,科学家们发现,端粒在细胞分裂过程中会逐渐缩短,当端粒缩短到一定程度时,细胞就会停止分裂。

这个现象被称为“Hayflick极限”,它是由于DNA的缩短导致的。

然而,当科学家们研究端粒的缩短机制时,他们发现,端粒缩短的速度并不是恒定的,而是与一种叫做“端粒酶”的酶密切相关。

端粒酶是一种由蛋白质和RNA组成的复合物,它能够将端粒的缩短速度减缓,从而延长细胞的寿命。

端粒酶能够在细胞分裂过程中向DNA的末端添加一些新的端粒序列,从而防止端粒的缩短。

三、端粒和端粒酶的生物学意义端粒和端粒酶的发现对于细胞生物学的研究有着重要的意义。

首先,它们的存在解释了为什么细胞会随着时间的推移而老化。

由于端粒的缩短和端粒酶的缺失,细胞分裂的次数受到了限制,从而导致细胞的寿命变短。

其次,端粒和端粒酶的研究还有助于理解癌症的发生。

癌症细胞具有无限制的增殖能力,这是由于它们能够通过某些机制维持端粒的长度,从而避免了端粒缩短所导致的细胞停止分裂的现象。

此外,端粒和端粒酶的研究还有助于开发抗衰老和抗癌的药物。

端粒和端粒酶与消化道恶性肿瘤的研究进展

端粒和端粒酶与消化道恶性肿瘤的研究进展

近 年来 , 随着端粒 和端粒 酶结 构 、 能及调 控 的 功 深入研 究 .人 们对端 粒酶在 细胞永 生化 以及肿 瘤癌 变进程 中的作 用有 了新 的认 识 。 端粒 酶的激 活 、 粒 端 长度 的调节 与肿瘤 的发生 密切相 关 .在 恶性 肿瘤 的 诊断 与治疗 中有高度 的灵 敏性和 特异性 现 就端 粒 和端粒 酶与 消化道 恶性 肿瘤 的研 究进展 综述 如下
并 不表达 端粒 酶活性 .仅在 特殊 的细胞 中能检 测到 端 粒 酶 的活性 , 括造 血 细胞 、 巴细胞 、 肤 细胞 包 淋 皮
及生殖 细胞等 具有增 殖潜 能 的细胞 l 它 的主要功能 5 _
是在染 色体末 端添加 端粒 序列 .使 端粒 维持 一定长 度 。由于末端 复制 .细胞 每分裂 1 ,端粒 就缩短 次
机制 . 法 补偿 渐进 性 的端粒 D A 的丢失 . 无 N 当端粒 缩短 到临界 长度时 .端粒 结构发 生改 变 .触 发某些
D A损 害信号 。 N 使细胞 进入第 一致 死期 f , M 期1 当抑
癌 基 因fb发 生 了 突变 或 结 合 了病 毒 癌 蛋 白时 . R) 端 粒继 续缩 短 , 入第 二致 死期 f 期1造成端 粒功 能 进 M, , 丧失 和染 色体失稳 .使 细胞永 久性丧 失分类 增殖 能 力 .细胞 就会 出现 衰老 以致死 亡 而和正 常细胞 相 反. 某些肿 瘤细胞 的端粒 缩短 至临界 长度 时 . 粒酶 端 被激 活 .端粒不再 缩短 .通过 老化 期和危 机期 的限 制, 获得在 体外无 限生 长的 能力 . 即为“ 永生 化 ” 大 多数 正常 细胞端粒 较长 , 端粒 酶阴性 : 而大 多数永 生 化 细胞端 粒较短 . 端粒 酶 阳性 . 因此 端粒长 度 与端粒 酶 活性可 能呈负相 关 端粒 酶具有 很高 的肿瘤 特异 性 .迄今 发现 8 %~9 %的人肿 瘤 细胞 中可 以检测 5 0

神奇的端粒和端粒酶

神奇的端粒和端粒酶

人体有许多奥秘,端粒和端粒酶就是其中之一。

2009年度诺贝尔生理学或医学奖授予给了美国加利福尼亚旧金山大学的伊丽莎白·布莱克本(E l i z a b e t h Blackburn)、美国巴尔的摩约翰·霍普金医学院的卡罗尔·格雷德(Carol Greider)、美国哈佛医学院的杰克·绍斯塔克(Jack Szostak)以及霍华德休斯医学研究所,因他们发现了端粒和端粒酶保护染色体的机理。

这3位科学家的发现解决了一个生物学重要课题,即染色体在细胞分裂过程中是怎样实现完全复制,同时还能受到保护且不发生降解。

人的生老病死,这或许是生命最为简洁的概括,3位科学家的发现可能由此揭开了人类衰老和罹患肿瘤等严重疾病的奥秘。

一、端粒和端粒酶的基本概念端粒是在细胞染色体末端部分像帽子一样的特殊结构,像一根鞋带两端的塑料帽,端粒就是染色体两端的“帽”。

染色体是细胞核中的一种线状物质。

正常人的体细胞有23对染色体,染色体携有遗传信息,对人类生命具有重要意义,其中的X和Y染色体是决定男女性别的性染色体。

端粒是细胞内染色体末端的‘保护帽’,它能够保持染色体的稳定性,就像一个忠诚的“生命卫士”,不但保护染色体DNA免受外界不良因素的侵蚀,而且它把基因组序列包裹在内部,在复制过程中以牺牲自身而避免染色体结构基因被破坏,从而防止了遗传信息的丢失,维护了染色体结构和功能的完整。

诺贝尔生理学或医学奖获奖者之一的伊丽莎白·布莱克本说:“伴随着人的成长,端粒逐渐受到磨损。

”端粒不仅与染色体的个性特质和稳定性密切相关,还涉及细胞的寿命、衰老与死亡。

简单讲,端粒变短,细胞就老化。

端粒DNA可决定细胞的寿命,细胞每分裂一次,染色体的端粒重复序列就要丢失大约50-100个碱基,端粒便会慢慢缩短。

当端粒长度缩短到一定程度,会使细胞停止分裂,导致衰老与死亡。

也就是说端粒的长度决定了人类的健康状态和寿命,当端粒变短时,人便老去,各种疾病缠身;端粒消失,人的寿命也到了尽头。

端粒与端粒酶的研究进展

端粒与端粒酶的研究进展

体 外培养的 细胞衰老与体 内衰老 的一个 共 同特征 是染
色体 端 粒 的逐 渐 缩 短 。H r y al 等 率 先证 明 了 正常 细胞 衰 老 e
时的端粒丢失 。 J发现 体外培养的人成纤维细胞端粒平均 他 f ] 长度 以一种复制倚赖性方式缩短 。 这种缩短也与体 内衰老相 关, 老年供体成纤维细胞和外周血 细胞中端粒平均长度 比年 轻 人短 ,lg o m等 研 究 了三个年 龄组发现 , Sa b o 人类有 丝分 裂 细胞 中端粒 长度 与供体年 龄呈高度负相关 , 并报道 外周血 细胞端粒缩短的速率是 3 b / 1p 年 端粒酶是影响端粒长度的 最主要的目索 , 端粒缩短后 可在端牡酶 的作用下得 以合成 而 使端粒延长 , 正常 的体细胞 并无端粒酶活性 为 探讨端 粒 但
至死亡 将这种正确 人体细胞在体外分裂潜能受限制 的现象 称为细胞衰老 , 并认为其是“ 衰老在细胞水平的表现 ” 。现 已 发现 许多其 他娄 型的 人娄 细胞 也存 在着这 种现象 . : 如 表皮 角质细胞 、 平滑肌 细胞 、 晶状 体细胞 、 神经胶质 细胞、 内皮细
胞 、 巴细 胞 以 及 肾上 腺皮 质 细 胞 淋
真 核生物 中都检 测到了端粒酶 的活性 。
端粒酶 属于逆转 录酶 , 是棱 糖核蛋 白复台体 , 主要 成丹 是 RN 和 蛋 白质 . 有 引物 特 异 识别 位 点 , 以 自身 的 A 含 能
端垃和端粒酶是近年来生命科学研 究的热. 端粒随细 氨。 胞的分裂进行性缩 短 , 胞的衰老过 程也就 开始启动了。端 细 粒酶活性和端粒长度 应正相 关 , 间接地 影响了细胞的衰老过 程 。而端粒酶 的活化使一些细胞 获得 无限增殖 的能力 . 在永

端粒和端粒酶的发现历程

端粒和端粒酶的发现历程

端粒和端粒酶的发现历程廖新化引言2009年诺贝尔生理学或医学奖授予了UCSF(加州大学旧金山分校)的Elizabeth Blackburn (简称Liz),Johns Hopkins University(约翰霍普金斯大学)的Carol Greider(简称Carol),以及Howard Medical School(哈佛医学院)的Jack Szostak。

诺贝尔奖主页上介绍她/他们获奖的原因是揭示了“how chromosomes are protected by telomeres and the enzyme telomerase”(染色体是如何被端粒和端粒酶保护的)。

端粒和端粒酶的研究进程中贯穿着“发现现象/问题”-“提出概念/模型”-“实验验证”的思路,整个过程就像相继解开一个个puzzle(智力谜团)一样有趣,充满了思想的光辉。

重现这个思路对科学工作者是有启发意义的。

本文也提供了一个很好的科学问题推演的教学案例。

染色体末端的两个难题以及端粒的概念20世纪70年代初,对DNA聚合酶特性的深入了解引申出了一个染色体的复制问题。

DNA 聚合酶在复制DNA的时候必须要有引物来起始,而且它的酶活性具有方向性,只能沿着DNA5’到3’的方向合成。

染色体复制之初可以由小RNA作为引物起始合成,之后细胞的修复机器启动,DNA聚合酶能够以反链DNA为模板,以之前合成的DNA为引物,合成新的DNA取代染色体中间的RNA引物。

但是线性染色体最末端的RNA引物因为没有另外的引物起始,没有办法被DNA取代。

所以线性染色体DNA每复制一轮,RNA引物降解后末端都将缩短一个RNA引物的长度(图1,简化的示意图,实际上染色体的DNA双链末端不会是平的)。

尽管这个引物不长,但是细胞千千万万代地不断复制,如果不进行补偿,染色体不断缩短,最终就会消失。

James Watson(因为发现DNA双螺旋结构获得诺奖)最早就明确指出了这个“末端隐缩问题”,并猜想染色体也许可以通过在复制前联体(染色体末端跟末端连起来)的方式来解决末端复制的问题[1]。

端粒端粒酶研究进展

端粒端粒酶研究进展

端粒端粒酶研究进展端粒是染色体末端的一段DNA序列,它起到保护染色体稳定性和完整性的作用。

然而,由于染色体在每次细胞分裂时会缩短一段,当端粒长度过短时,染色体会发生异常,并最终导致细胞老化和死亡。

端粒酶则是一种重要的酶,它能够补充并保持端粒的长度稳定。

近年来,对于端粒和端粒酶的研究取得了许多重要的进展。

首先,科学家们对于端粒和端粒酶的结构和功能进行了深入的研究。

端粒由重复的TTAGGG序列组成,这些序列会通过端粒酶的作用被补充。

端粒酶主要由两个亚基组成:一个叫做端粒酶反转录酶TERT,另外一个则是端粒酶RNA(TERC)。

TERT具有酶的活性,而TERC则是TERT的模板,用于合成新的端粒DNA。

端粒酶通过不断循环地合成新的端粒DNA来补充端粒的长度,从而延长染色体的寿命。

其次,研究表明端粒和端粒酶在癌症中具有重要的作用。

在正常细胞中,端粒的长度会随着细胞的分裂而缩短,从而限制了细胞的生命周期。

然而,在肿瘤细胞中,端粒酶的活性会显著增加,导致细胞端粒的长度不断维持,并且细胞可以无限制地分裂。

这种增强的端粒酶活性对于肿瘤细胞的免疫逃逸、增殖和转移等方面起着重要的作用。

因此,端粒酶已成为癌症治疗的一个重要靶点,研究人员已经开始开发端粒酶抑制剂,以抑制肿瘤的生长和扩散。

此外,最近的研究发现,端粒和端粒酶在衰老过程中也发挥了重要的作用。

随着年龄的增长,端粒长度会逐渐缩短,从而引发细胞衰老和组织功能下降。

研究人员尝试通过增强端粒酶的活性来抑制细胞衰老,以延长寿命和改善老年病的发生率。

实验证据显示,通过增加端粒酶的表达或给予端粒酶活性的药物可以有效地抑制细胞衰老。

这些发现为老年病的治疗和延长寿命提供了新的研究方向。

总之,端粒和端粒酶在细胞衰老、癌症等疾病方面的研究进展迅速。

研究人员们对于端粒和端粒酶的结构和功能有了更深入的了解,并且逐渐揭示了它们在疾病中的重要作用。

未来的研究将继续深入探究端粒和端粒酶的调控机制,并开发出更具针对性的治疗手段,为人类健康的维护做出更大的贡献。

端粒酶作为肿瘤标志物的研究进展

端粒酶作为肿瘤标志物的研究进展
端粒酶的作用机制
端粒酶通过延长端粒序列来增加染色体稳定性,从而维持细胞寿命。在正常细胞中,随着细胞分裂次数的增加 ,端粒序列逐渐缩短,当端粒缩短至一定程度时,细胞进入复制停滞期或凋亡。而在肿瘤细胞中,端粒酶的表 达水平较高,能够维持端粒序列的长度,使肿瘤细胞逃避正常的细胞衰老和死亡过程。
端粒酶与肿瘤的关系
端粒酶活性可以预测肿瘤的预后,为患者和医生提供参 考。
04
端粒酶作为肿瘤标志物的 前景和挑战
提高检测灵敏度和特异性
总结词
提高端粒酶作为肿瘤标志物的检测灵敏度和特异性是 关键的挑战之一。这需要深入研究端粒酶的生物学机 制和肿瘤细胞中端粒酶的表达调控机制,以发现更特 异和敏感的检测方法。
详细描述
目前,已经有一些基于端粒酶的肿瘤标志物检测方法 ,如端粒酶活性检测、端粒酶RNA检测等。但是,这 些方法的灵敏度和特异性还需要进一步提高。例如, 一些非肿瘤疾病或良性疾病中也可能出现端粒酶活性 升高的情况,这会给诊断带来一定的干扰。因此,开 发出更特异和敏感的检测方法是非常重要的。
感谢您的观看
THANKS
《端粒酶作为肿瘤标志物的 研究进展》
2023-10-29
目 录
• 端粒酶概述 • 端粒酶的检测方法 • 端粒酶作为肿瘤标志物的应用 • 端粒酶作为肿瘤标志物的前景和挑战
01
端粒酶概述
端粒酶的生物学作用
端粒酶的组成
端粒酶是由RNA和蛋白质组成的复合体,其中RNA为模板,提供端粒重复序列,蛋白质为催化酶,促进端粒 DNA合成。
端粒酶研究的历史与现状
端粒酶的发现
20世纪80年代,科学家们发现了端粒酶,并认识到其在维持染色体稳定性和细胞寿命中的重要作用。
端粒酶作为肿瘤标志物的研究
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
保护染色体不被降解,又避免了端粒对端融合 (end-end fusion)以及染色体的丧失,同时端粒能 帮助细胞识别完整染色体和受损染色体。在生理情
况下,端粒作为细胞“分裂时钟”能缩短,最终导 致细胞脱离细胞周期。
端粒酶(telomerase)催化端粒合成,是一种逆转 录酶,能以自身的RNA为模板,反向合成— TTAGGG—,不断地加在DNA未端,肿瘤细胞能够不 断地分裂增生,“端粒酶—RNA”结构的存在是先决条 件。
随着每次细胞分裂,染色体末端逐渐缩短,细
胞进入不可逆的抑制状态,直至细胞衰老,此过程 即称为复制性衰老。人类体细胞遵循这个规则从细 胞出生到衰老,单细胞生物遵循这个规则分裂后定 有其它机制保持单细胞生物传代存活,生殖细胞亦 如此,这些细胞怎样保持细胞具有继续分裂或长期 分裂的能力呢?科学家们发现端粒确实随着每次分 裂而缩短,但也会被新合成的端粒片断再延长。科 学家们怀疑,可能尚有末被发现的酶,该酶具有标 准的DNA多聚酶所不具备的功能,能使已缩短的端 粒延长,使科学家们兴奋的是到1985年首先在四膜 虫中证实了这种能使端粒延长的酶—端粒酶的存在。
体细胞的端粒有限长度(telomere restriction fragments TRFS)大多数明显短于生殖细胞,青年 人的TRFs又显著长于年长者,提示TRFs随着细胞 分裂或衰老,在不断变短,主要是由于DNA聚合酶 不能完成复制成线性DNA末端所致。缺少端粒的染 色体不能稳定存在,这是因为端粒DNA与结构蛋白 形成的复合物如同染色体的一顶“帽子”,它既可
端粒、 端粒酶的研究进展
早在30年代,两名遗传学家Muller和Mcclintock
分别在不同的实验室用不同的生物做实验发现染色 体末端结构对保持染色体的稳定十分重要,Muller 将这一结构命名为端粒(telomere)。直到1985年 Greider等从四膜虫中真正证实了端粒的结构为极 简单的6个核苷酸TTAGGG序列的多次重复后发现 了端粒酶(telomerase TRAP-eze) 。
为什么在绝大多数永生细胞系可以表达端粒 酶活性,而在非永生细胞则不能?
为什么人类大多数体细胞中不能检测到端粒 酶,而在一些肿瘤细胞中则能检测到端粒酶?
近年来围绕这一问题展开了大量的研究,积累了丰 富的资料,至今仍是一个值得探讨的领域。自从1994年 Kim等创立TRAP法检测端粒酶活性以来,越来越多的文 献证明端粒酶活性在大多数人类原发性肿瘤标本及肿瘤 衍生细胞系中可被检测到,如前列腺癌、乳癌、口腔癌、 肺癌、肝癌、胃肠基质瘤、膀胱上皮细胞癌及AML急性 髓性白血病。
Hale Waihona Puke 端粒酶由RNA和蛋白质两部分组成。以自身 RNA为模板合成端粒酶重复序列,具有逆转录酶活 性,它的活性不依赖于DNA聚合酶,对RNA酶、蛋 白酶和高温均敏感。端粒酶活性表达能稳定端粒的
长度,抑制细胞的衰老,在生殖细胞和干细胞中可 检测到高水平的端粒酶活性。
二、死亡期细胞假说与细胞永生化
细胞获得永生必须克服两个危机期,M1(mortality stage 1)和M2(mortality stage 2)在M1期细胞对生长因 子等失去反应,产生DNA合成蛋白抑制因子,细胞周 期检查点(cell cycle checkpoints)发送细胞周期停止信 号,DNA合成即告停止。细胞端粒开始缩短,并启动 终止细胞分裂信号,正常人的双倍体细胞不能进一步分 裂,开始衰老、死亡。一些癌基因SV40T抗原、抑癌基 因P53,和Rb突变均能使M1期的机制被抑制,使细胞逃 逸M1期,继续生长获得额外的增殖能力,此时端粒酶 仍为阴性,端粒继续缩短,经过20-30次分裂后,最终 到达M2期。此时因端粒太短而致染色体极不稳定,于 是大多数细胞退化死亡,极少数细胞由于激活了端粒酶, 端粒功能得以恢复,染色体形态稳定,可以超越M2期 使细胞永生化。
现认为,人的端粒酶RNA可分为两个区与引物作用: 一个是模板区,含有与引物互补的11个核苷酸模板区序 列为11nt(5`CUAACCCUAAC-3’);另一个锚定区, 与引物的5’端相配,为DNA链向3’ 端正核酶外延伸 提供路径,而端粒酶中的蛋白质则起催化反应合成的作 用。
人类端粒酶RNA(human telomenese RNA hTR) 是细胞端粒合成不可缺少的模板,若模板区突变,缺 失或反义RNA可导致端粒的相应改变或丢失。经转染 的细胞端粒序列发生改变,细胞即出现凋亡或分化。 hTR非模板区序列或空间构象的变化也可使端粒酶失 去活性。在胃癌及神经肿瘤的研究中已发现,hTR表 达与细胞增殖密切相关。端粒酶是在染色体末端不断 合成端粒序列的酶,它可以维持端粒的长度,维持细 胞增殖潜能。
附图:端粒酶在人体细胞永生性转化中
端粒酶被抑制 正常人体细胞
端粒丢失
M1期阻滞 细胞分裂停止
↓ M1—M2期间隔 双着丝粒形成
↓ M2期退化 染色体失稳
SV40T抗原 Rb、P53与病毒蛋白结合、突变
永生化
端粒酶被激活
细胞凋亡
三、端粒酶与肿瘤发生
端粒酶是最近肿瘤研究的热门话题。端粒酶具 有使肿瘤细胞系继续复制生存的特点,成为近期生 命科学界关心与研究的一个热点。端粒缺陷的染色 体不稳定性通过促进半合子化(hemizygosing)、 转位(tranlocation)、扩增及重组装而加速肿瘤进 程。端粒磨耗(attrition)的最终结果是端粒酶的 活化,以弥补端粒的丢失而使细胞无限增殖,成为 永生细胞。因此端粒酶活化是肿瘤进入晚期,而且 是细胞永生的关键一步。
端粒(telomere)是真核细胞线性染色体未端的 一种特殊结构,由简单重复富含G碱基的DNA序列及 端粒结合蛋白共同构成。人类染色体端粒序列已分离 克隆,主要由5-15个kb的5`TTAGGG3`上千次的重复 序列构成,它就像二顶帽子盖在染色体两端,能保持 遗传信息的完整性,保护染色体免受重组和未端降解 酶的作用,并提供一种可消耗的非编码序列以暂时缓 解或取消复制问题所带来的染色体DNA的进行性缩 短。大多数体细胞的端粒随周期性复制而逐渐缩短, 最终达到一个临界点,细胞增殖停止、死亡,这可能 是生命有限的重要原因之一。
相关文档
最新文档