端粒和端粒酶的研究及应用

合集下载

端粒和端粒酶的发现及其生物学意义

端粒和端粒酶的发现及其生物学意义

端粒和端粒酶的发现及其生物学意义随着人类寿命的延长,老龄化社会已成为全球面临的一个共同挑战。

在这个过程中,我们需要更深入地了解细胞老化的机制,以寻找延缓衰老、增强健康寿命的方法。

在这方面,端粒和端粒酶的发现对于我们理解细胞老化和癌症等疾病的发生具有重要的意义。

端粒是存在于染色体末端的一段DNA序列,它们的主要功能是保护染色体免受损伤和降解。

每次细胞分裂时,由于DNA聚合酶的特性,染色体的末端会出现缺失,这就是所谓的“端粒缩短”。

当端粒缩短到一定程度时,细胞就会停止分裂,进入“细胞衰老”状态,最终死亡。

因此,端粒缩短是细胞衰老的一个重要机制。

然而,端粒缩短并非是不可逆的。

在某些细胞中,存在一种叫做“端粒酶”的酶,它能够在细胞分裂时重新构建端粒,从而延缓细胞的衰老。

这种酶最初是在真核生物中被发现的,它由一个RNA分子和一些蛋白质组成。

这个RNA分子是非编码RNA,也就是不编码蛋白质的RNA,它可以作为模板来合成端粒DNA序列。

由于端粒酶的存在,一些细胞可以不断地分裂,甚至可以无限期地生长和繁殖,这些细胞被称为“不死细胞”。

端粒酶的发现对于我们理解细胞衰老和癌症等疾病的发生具有重要的意义。

在正常情况下,细胞衰老是一个自然的过程,它可以帮助我们预防癌症等疾病的发生。

但是,在某些情况下,细胞衰老会被逆转,这就会导致癌症的发生。

癌细胞可以利用端粒酶来不断地分裂和扩散,从而形成肿瘤。

因此,端粒酶已成为癌症治疗的一个重要靶点。

此外,端粒酶还与一些其他疾病的发生有关。

例如,在某些疾病中,端粒酶的活性会降低,导致端粒缩短,从而加速细胞衰老和疾病的发生。

因此,端粒酶已成为一些疾病的治疗靶点,研究人员正在探索如何通过调节端粒酶的活性来治疗这些疾病。

总之,端粒和端粒酶的发现为我们理解细胞老化和癌症等疾病的发生提供了重要的线索。

通过研究端粒和端粒酶的机制,我们可以寻找延缓衰老、增强健康寿命的方法,也可以为癌症等疾病的治疗提供新的思路和方法。

关于端粒及端粒酶的调查报告

关于端粒及端粒酶的调查报告

关于端粒及端粒酶的调查报告一:引言2009年10月5日,诺贝尔生理学或医学奖颁发给了美国科学家伊丽莎白·布莱克本、卡罗尔·格雷德和杰克·绍斯塔克,以表彰他们在研究端粒和端粒酶保护染色体的机理方面的贡献。

这篇调查报告将会通过资料查询和逻辑推断等方式论述关于端粒,端粒酶以及它们与肿瘤细胞的相关内容。

二:端粒和端粒酶2.1.1端粒端粒(Telomere)是染色体末端的重复DNA序列,在人细胞中长度约为几千到一两万碱基对,它防止细胞将天然染色体末端识别为染色体断裂,起着保护和稳定染色体的作用。

[1]随着细胞的分裂增殖,端粒会逐渐缩短。

当端粒的长度缩短到一定程度时,细胞的分裂便会停止。

因此,端粒具有调节细胞增殖的作用,是细胞分裂的“时钟”。

端粒的碱基序列具有极高的保守性,但不同物种的端粒仍有差异,例如:四膜虫重复序列为GGGGTT,草履虫为TTGGGG,人类和哺乳动物为TTAGGG.[2]2.1.2端粒的结构端粒通常由富含G的DNA重复序列,以及端粒结合蛋白和端粒相关蛋白组成。

端粒结合蛋白直接保护端粒DNA,端粒相关蛋白通过与端粒结合蛋白的相互作用间接影响端粒的功能。

端粒既可保护染色体不受核酸酶的破坏,又避免了因DNA黏性末端的裸露而发生的染色体融合。

[4][5]2.2.1端粒酶端粒酶(Telomerase),在细胞中负责端粒的延长的一种酶。

在端粒发现之后,人们便开始猜测存在这样一种酶,可以起到延长端粒的作用——因为随着细胞的分裂增殖和染色体的复制,端粒应当越来越短,但是某些细胞(如肿瘤细胞)的端粒长度却能够保持相对不变。

在1997年,Tom Cech实验室的Lingner在Euplotes aediculatus以及酿酒酵母中发现了真正的端粒酶催化亚基。

[3]2.2.2端粒酶的作用机理端粒酶主要依靠两种成分来实现其功能,一种名为端粒酶逆转录酶(TERT)的蛋白酶,另一种是作为模板的一小段RNA序列。

端粒和端粒酶的发现及其生物学意义

端粒和端粒酶的发现及其生物学意义

端粒和端粒酶的发现及其生物学意义端粒和端粒酶是细胞生物学中一个重要的发现,它们的存在对于细胞的生命活动和分裂有着至关重要的作用。

本文将介绍端粒和端粒酶的发现过程,以及它们在细胞生物学中的重要作用。

一、端粒的发现1940年代初期,生物学家Hermann Muller发现了X射线可以导致果蝇基因突变,从而引发了对DNA的研究。

在此之后,科学家们开始研究DNA的结构和功能,他们发现DNA是由四种碱基组成的,即腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)。

然而,随着研究的深入,科学家们发现,在DNA的两端存在着一种特殊的序列,这种序列被称为端粒。

端粒是由一种叫做“重复序列”的DNA组成的,这种DNA序列在不同物种之间有所不同,但它们都具有重复的结构。

在人类中,端粒由TTAGGG序列组成,这个序列在人类基因组中重复了数千次。

二、端粒酶的发现在研究端粒的过程中,科学家们发现,端粒在细胞分裂过程中会逐渐缩短,当端粒缩短到一定程度时,细胞就会停止分裂。

这个现象被称为“Hayflick极限”,它是由于DNA的缩短导致的。

然而,当科学家们研究端粒的缩短机制时,他们发现,端粒缩短的速度并不是恒定的,而是与一种叫做“端粒酶”的酶密切相关。

端粒酶是一种由蛋白质和RNA组成的复合物,它能够将端粒的缩短速度减缓,从而延长细胞的寿命。

端粒酶能够在细胞分裂过程中向DNA的末端添加一些新的端粒序列,从而防止端粒的缩短。

三、端粒和端粒酶的生物学意义端粒和端粒酶的发现对于细胞生物学的研究有着重要的意义。

首先,它们的存在解释了为什么细胞会随着时间的推移而老化。

由于端粒的缩短和端粒酶的缺失,细胞分裂的次数受到了限制,从而导致细胞的寿命变短。

其次,端粒和端粒酶的研究还有助于理解癌症的发生。

癌症细胞具有无限制的增殖能力,这是由于它们能够通过某些机制维持端粒的长度,从而避免了端粒缩短所导致的细胞停止分裂的现象。

此外,端粒和端粒酶的研究还有助于开发抗衰老和抗癌的药物。

端粒、端粒酶研究及应用进展

端粒、端粒酶研究及应用进展
正是本文研究和探讨的目的。本文作者希望通过本次研 究 ,能 够 让 我 国 的 学 者 和 研 究 者 对 国 际 上 端 粒 和 端 粒 酶 研 究 现 状 加 深 认 识 ,获 得 最 新 的 信 息 ,为 我 国 的 相 关 研 究 提 供一些帮助。
关键词:端 粒 ;端 粒 酶 ;研 究 现 状 ;未 来 展 望
疗和延缓衰老。
了 TC除A些B1以蛋外白Y具来有自以于前美未国知斯的坦功福大能学。这医些学新院的的发研现究对人于员以还后确的定
端 粒 酶 成 分 的 确 定 和 端 粒 酶 的 制 造 ,端 粒 酶 活 性 珠 激 活 和 抵 制 药
需要着重研究端粒与肿瘤的关系。了解是什么原因激活了癌细胞
的 端 粒 酶 ,导 致 了 在 正 常 人 体 细 胞 中 产 生 了 端 粒 酶 活 性衰 老 ,抗 癌 的 药 品 。 3.2端粒与肿瘤的关系
端 粒 酶 的 结 构 和 成 份 ,并 了 解 如 何 制 造 和 激 活 它 的 活 性 ,而这将
众 所 周 知 ,恶性肿瘤细胞中具有较高活性的端粒酶,它能维
有助于医学界制造出抑制和激活端粒酶的药物,帮助癌症患者治 持癌细胞端粒的长度,使其无限制扩增。因此下一阶段的研究还
典现卡:端罗粒斯酶卡逆大转学录等酶组T成ER的T国与际端科粒研长小度组及又功发能现有了关新,T成E果RT,在他癌们症发
发 展 中 具 有 关 键 作 用 ,这 一 研 究 虽 然 未 能 查 明 其 具 体 机 制 ,但是
经 过 这 一 步 的 发 现 ,该 研 究 结 果 有 望 成 为 抑 制 癌 细 胞 新 靶 点 。我
科技论文与案例交流
161
端 粒 、端粒酶研究及应用进展
韦伟 (西 华 师 范 大 学 西 南 野 生 动 植 物 资 源 保 护 教 育 部 重 点 实 验 室 西 华 师 范 大 学 生 命 科 学 学 院 四 川 南 充 637009)

新建 什么是端粒和端粒酶以及作用

新建 什么是端粒和端粒酶以及作用

什么是端粒和端粒酶以及他的作用人的生老病死是由细胞决定的,那么细胞的生老病死又由谁决定呢,有的说是染色体,有的说是基因,到底是什么呢,我们一起往下看端粒是染色体末端的一种特殊结构,在正常人体细胞中,可以随着细胞的分裂逐渐缩短,端粒可操纵细胞分化,操纵细胞寿命。

细胞越年轻,端粒越长,细胞越老化,其端粒长度越短;端粒与细胞老化有直接关系。

细胞分裂会使端粒变短,分裂一次,端粒缩短一次,随之细胞就接近衰竭死亡。

端粒酶是增长染色体端粒的催化剂,可以增长端粒长度,延缓老化过程,研究发现端粒的缩短会引起衰竭,如果端粒长度得不到维持,细胞变停滞分裂或接近死亡,有端粒酶的存在,则可以增加端粒的长度,增加端粒的分裂次数,增加染色体的稳定。

若没有端粒酶的存在随着细胞分裂,染色体会逐渐缩短,一旦端粒酶的部分消耗殆尽,就会引起染色体的不稳定,激活端粒酶,可使细胞逃过死亡的命运,从而无限繁殖!端粒酶在细胞衰老过程中,起着关键的作用,所以也是人类长生不老的钥匙,在细胞癌化过程中起着决定性作用。

那么端粒是怎么发现的,在1939年潜心研究玉米遗传性状的BarbaraMcClintock女士(因为发现玉米的转座子获得诺贝尔奖)注意到,在减数分裂后期偶然产生的染色体断裂很容易重新融合起来形成架桥,在接下来的有丝分裂过程中,这种染色体断裂-融合-桥-断裂的循环不断继续,既然染色体的断裂末端这么容易相互融合,那么染色体的自然末端,为什么不容易相互融合呢?合理的猜测是,染色体的自然末端有别于正常的DNA断裂末端,它应该有一个特殊的结构来规避染色体之间的相互融合,早在1938年,Hermann Muller(因为发明用X射线突变基因而获奖)利用X射线照射果蝇长生突变体,注意到染色体的末端跟其他区域染色体不同,它非常稳定,从未观测到断裂缺失或者倒位。

他因此先见性认为染色体的末端比较特殊,它需要被封闭起来,并给它一个专有名称-端粒(telomere,来自希腊词根telos,末端和meros,部分)。

端粒与端粒酶研究于抗衰老的应用

端粒与端粒酶研究于抗衰老的应用

端粒与端粒酶研究于抗衰老的应用陈元懿技术原理端粒:端粒是存在于真核细胞线状染色体末端的一小段DNA-蛋白质复合体,它与端粒结合蛋白一起构成了特殊的结构,能够维持染色体的完整和控制细胞分裂周期。

端粒DNA是由简单的DNA高度重复序列组成的,染色体末端沿着5'到3' 方向的链富含 GT。

在人中,端粒序列为TTAGGG/CCCTAA,并有许多蛋白与端粒DNA 结合。

端粒酶:端粒酶以自身的RNA作为端粒DNA复制的模板,合成出富含脱氧单磷酸鸟苷的DNA序列后添加到染色体的末端并与端粒蛋白质结合,从而稳定了染色体的结构。

但是,在正常人体细胞中,端粒酶的活性受到相当严密的调控,只有在造血细胞、干细胞和生殖细胞,这些必须不断分裂复制的细胞之中,才可以侦测到具有活性的端粒酶。

在保持端粒稳定、基因组完整、细胞长期的活性和潜在的继续增殖能力等方面有重要作用。

由于核DNA是线形DNA,复制时由于模板DNA起始端被RNA引物先占据,新生链随之延伸;引物RNA脱落后,其空缺处的模板DNA无法再度复制成双链。

因此,每复制一次,末端DNA就缩短若干个端粒重复序列。

当端粒不能再缩短时,细胞就无法继续分裂了。

越是年轻的细胞,端粒长度越长;越是年老的细胞,端粒长度越短。

一旦端粒消耗殆尽,细胞将会立即启动凋亡机制。

端粒与细胞老化的关系,阐述了一种新的人体衰老机制。

端粒酶以自身的RNA作为端粒DNA复制的模板,合成出富含脱氧单磷酸鸟苷的DNA序列后添加到染色体的末端并与端粒蛋白质结合,从而稳定了染色体的结构。

DNA复制期间的滞留链尽管如此,正常人体细胞几乎不表达端粒酶,而在干细胞及肿瘤细胞中该酶的表达量较大。

通过对细胞进行基因工程改造,改变细胞中端粒酶的活性,可以影响细胞衰老的进程。

技术应用(实验阶段)1)美国德克萨斯大学西南医学中心的细胞生物学及神经系统科学教授杰里·谢伊和伍德林·赖特做了这样一项试验:在采集的包皮细胞(包皮环切术的附带产物)中导入某种基因,使细胞中产生端粒酶。

端粒端粒酶研究及应用进展

端粒端粒酶研究及应用进展

端粒\端粒酶研究及应用进展作者:朱军丁建强冯云来源:《中国医药科学》2012年第07期[摘要] 端粒、端粒酶在维持生命遗传信息稳定、调控细胞生命周期中具有重要作用,端粒酶通过维持端粒的长度,使细胞永生化,为抗衰老提供了光明前景,同时也为肿瘤治疗提供了新的希望。

研究端粒、端粒酶在肿瘤监测中的作用及研发端粒酶抑制剂作为治疗肿瘤的创新药物已成为近年医学研究的热点。

本研究通过查阅相关文献,对端粒、端粒酶研究及应用进展做一综述。

[关键词] 端粒;端粒酶;肿瘤;衰老[中图分类号] Q75 [文献标识码] A [文章编号] 2095-0616(2012)07-59-03端粒及端粒酶的研究已成为近年医学领域研究的热点。

这不仅因为它们具有维持生物遗传信息稳定、调控细胞生命周期的重要功能,还由于端粒及端粒酶的行为异常与多种人类肿瘤及遗传性疾病密切相关。

在这些疾病中端粒可表现出缺失、融合及序列缩短等异常,而这些异常又可能受端粒酶的调控。

1 端粒、端粒酶的发现上世纪初,著名遗传学家McClintock B[1]与Muller HJ[2]发现:染色体的稳定性和完整性是由染色体的末端来维持的。

基于此发现,Muller HJ将其命名为“telomere”,此定义来源于希腊词根“末端”(telos)及“部分”(meros)的组合。

20世纪60年代,Hayflick研究发现:经过体外培养的正常人成纤细胞的复制过程并非细胞的死亡过程,而只是细胞群中的大部分细胞在经历了数次分裂增殖后停滞在了某个特定状态,仅仅是基因表达方式发生了某些改变,细胞群大部分细胞仍保持其代谢活性,由此,Hayflick在世界上首次提出了细胞衰老的表征:即细胞在一定条件下的“有限复制力”。

同时Hayflick还提出了一个大胆的猜测,即细胞内存在某种控制细胞分裂次数的控制器,类似于我们使用的“时钟”。

为验证自己的猜想,Hayflick做了大量的细胞核移植实验验证了自己的猜想,并发现这种“钟”位于细胞核染色体的末端,于是将其命名为端粒[3]。

端粒和端粒酶的关系

端粒和端粒酶的关系

端粒和端粒酶的关系人类的细胞在不断地分裂和繁殖过程中,端粒和端粒酶起着至关重要的作用。

它们在维持正常细胞功能和生存周期中发挥着关键的调控作用。

本文将详细探讨端粒和端粒酶的关系,以及它们在细胞老化和癌症发展中的重要性。

我们来了解一下端粒的概念。

端粒是位于染色体末端的一段DNA序列,它们的主要功能是保护染色体免受异常结构和损伤的影响。

端粒的存在可以防止染色体的末端被误解为DNA断裂,从而避免了细胞的DNA修复系统对染色体末端的损害。

此外,端粒还起到了稳定染色体结构和维持基因组稳定性的作用。

然而,由于每次细胞分裂时,端粒都会缩短一小段,导致染色体末端的丢失,这会在细胞老化过程中起到重要的作用。

当端粒缩短到一定程度时,细胞进入衰老状态,停止分裂和繁殖,并最终死亡。

这种现象被称为端粒缩短理论,也是细胞老化的一个重要原因。

然而,端粒酶的存在却可以延缓端粒缩短的速度,并维持细胞的生命周期。

端粒酶是一种特殊的酶,它能够在端粒末端添加额外的DNA序列,从而阻止端粒缩短。

端粒酶通过补充缩短的端粒,使细胞能够继续进行正常的分裂和繁殖,延缓细胞的老化过程。

端粒酶的活性受到多种因素的调控,其中最重要的是端粒酶逆转录酶活性亚基(TERT)的表达。

TERT是端粒酶的关键组成部分,它决定了端粒酶的活性和功能。

研究表明,TERT的表达水平在不同组织和细胞中存在差异,这也解释了为什么一些细胞具有更长的生命周期和更高的分裂能力。

科学家还发现,端粒酶在癌症的发展中也起着重要的作用。

癌细胞通常具有异常高的分裂能力和不受限制的生命周期,这与它们的端粒酶活性存在密切关系。

癌细胞中的端粒酶活性往往比正常细胞更高,这使得癌细胞能够不断地分裂和繁殖,从而形成肿瘤。

因此,端粒酶成为癌症治疗的重要靶点,研究人员正在探索针对端粒酶的抑制剂,以抑制癌细胞的生长和扩散。

总结起来,端粒和端粒酶是细胞功能和生存周期中至关重要的调控因子。

端粒的保护作用可以防止染色体末端的损伤和异常结构,而端粒酶则能够延缓端粒缩短的速度,维持细胞的生命周期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

端粒和端粒酶的研究及应用2005-4-11来源:丁香园10:56:00摘要:古往今来,“长生不老”成为人们一直追求的梦想,曾经有多少人用各种方法来延缓衰老,但终未取得显著效果。

近年来研究证实,端粒缩短导致衰老。

本文就端粒、端粒酶与衰老的关系做一综述。

关键词:端粒、端粒酶、衰老最早观察染色体末端的科学家始于19世纪末期,Rabl[1]在1885年注意到染色体上所有的末端都处于细胞核的一侧。

20世纪30年代,两个著名的遗传学家McClintock B [2]和Muller HJ [3]发现了染色体的末端可维持染色体的稳定性和完整性。

Muller将它定义为“telomere”,这是由希腊词根“末端”(telos)及“部分”(meros)组成的。

30多年前,Hayflick[4]首次提出将体外培养的正常人成纤维细胞的“有限复制力”作为细胞衰老的表征。

在此过程中,细胞群中的大部分细胞经历了一定次数的分裂后便停止了,但它们并没有死亡,仍保持着代谢活性,只是在基因表达方式上有一定的改变。

于是Hayflick猜测细胞内有一个限制细胞分裂次数的“钟”,后来通过细胞核移植实验发现,这种“钟”在细胞核的染色体末端——端粒。

但端粒究竟是怎样的复杂结构呢?Blackburn和Gall[5] 于1978年首次阐明了四膜虫rDNA分子的末端结构,他们发现这种rDNA每条链的末端均含有大量的重复片段,并且这些大量重复的片段多是由富含G、C的脱氧核苷酸形成的简单序列串联而成。

在1985年,CW•Greider和EH•Blackburn发现将一段单链的末端寡聚核苷酸加至四膜虫的提取物中后,端粒的长度延长了,这就说明了确实有这样的一种酶存在[6],并将它命名为“端粒酶”(telomerase)。

之后,耶鲁大学Morin 于1989年在人宫颈癌细胞中也发现了人端粒酶[7] 。

近年来,随着人体端粒酶的发现和端粒学说的提出,已经知道决定细胞衰老的“生物钟”就是染色体末端的端粒DNA,它可随着年龄的增长而缩短。

一、衰老机理及假说许多人错误的认为,退休是一个人进入生理老年的开端。

而老年则是衰老的标志,其实,这是不科学的。

人体的所有器官和组织都由细胞组成,但组成器官和组织的细胞有两大类,即干细胞和非干细胞。

人体衰老正是由细胞特别是干细胞衰老引起的。

医学家认为,如果人类若能避免一些疾患和意外事故,人类寿命的上限应当是130岁。

在人类基因组计划之前和进行之中,对长寿的分子生物学研究就有了许多显著的成果与发现。

总的归纳起来便是:衰老是一种多基因的复合调控过程,表现为染色体端粒长度的改变、DNA损伤(包括单链和双链的断裂)、DNA的甲基化和细胞的氧化损害等。

这些因素的综合作用,才造成了寿命的长短。

近几十年来,随着现代遗传学、分子生物学、细胞生物学和分子免疫学等边缘学科的飞速发展,人们对衰老的机理有了深层次的认识,有许多学说如遗传程序学说、DNA分子修复能力下降假说、体细胞突变学说、差错灾难学说和交联学说等已经被人们广泛接受,但端粒学说刚进入人们的研究范围。

端粒缩短可引起衰老,而维持端粒长短的重要活性物质便是端粒酶。

生物学家早就发现一件有趣的事实:就是每一种细胞的寿命都有一定限度,在人工培养条件下,接近这个限度时,哪怕用最好的培养方法都拯救不了既定的命运。

像人体的成纤维细胞,据试验,最多只能繁殖50代,到那时必然趋于死亡。

其他像老鼠的成纤维细胞只能分裂18代,龟的成纤维细胞分裂110代,如此等等。

那么人为什么会衰老,以至走向死亡呢?有研究者对导致人体细胞衰老的原因提出了“程序假说”和“错误积累假说”。

人类的细胞并不能无限制地重复分裂,在分裂50~60次后便会停止。

细胞不再继续分裂的机体组织,便呈现出衰老和机能低下的状态。

随着细胞重复分裂使端粒缩短到一定的长度,从而使细胞停止了分裂。

这就是“程序假说”。

细胞分裂的时候,DNA被复制,但是由于X射线、紫外线、活性氧、有害物质的损害,DNA会发生异常变化,于是DNA在复制过程中就会产生错误。

随着错误的积累,生成了异常蛋白质,细胞机能变得低下,于是细胞便不能继续分裂,呈现出了衰老迹象。

这就是所谓“错误积累假说”。

因此,人不像机器那样容易磨损和坏掉,而是能自我成长和修复,但这只能算是衰老的伴生现象。

对衰老机理的研究就是为了有效地指导抗衰老的研究和实践工作。

但是,人类衰老的原因是多方面的,衰老的机理也是极为复杂的。

二、端粒和端粒酶端粒是真核细胞内染色体末端的DNA重复片断,经常被比做鞋带两端防止磨损的塑料套,由富含G的核酸重复序列和许多蛋白质组成,包括Ku70、Ku80、依赖DNA的蛋白激酶和端粒重复序列结合因子2(TRF2)等。

不同个体的端粒初始长度差异很大,在人中大约为15 kb,在大鼠中可长达150 kb,在小鼠中一般在5~80 kb之间变化,而在尖毛虫中却只有20 bp。

在所有的有机体中,端粒DNA的长度总是随着外界环境而波动变化的。

酵母的端粒DNA在200~400 bp间随遗传或营养状态的改变而改变,四膜虫和锥虫等有机体的端粒长度在对数期会持续增加。

相反,在人体中,随着细胞的持续分裂,端粒会缓慢缩短。

细胞培养研究表明,当端粒再也无法保护染色体免受伤害时,细胞就会停止分裂,或者变得不稳定。

其功能是完成染色体末端的复制,防止染色体免遭融合、重组和降解。

染色体复制的上述特点决定了细胞分裂的次数是有限的,端粒的长度决定了细胞的寿命,故而被称为“生命的时钟”。

端粒酶(或端粒体酶)是一种能延长端粒末端的核糖蛋白酶,主要成分是RNA和蛋白质,其含有引物特异识别位点,能以自身RNA为模板,合成端粒DNA并加到染色体末端,使端粒延长,从而延长细胞的寿命甚至使其永生化[8]。

如果细胞被病毒感染,或者某些抑癌基因如p53、pRB等突变,细胞可越过M1期而继续分裂,端粒继续缩短,最终达到一个关键阈值,细胞进入第二致死期M2,这时染色体可能出现形态异常,某些细胞由于端粒太短而失去功能,从而导致细胞死亡。

但极少数细胞能在此阶段进一步激活端粒酶,使端粒功能得以恢复,并维持染色体的稳定性,从而避免死亡。

最近Shay et al[9]在Science上发表了一幅有趣的模式图,简要介绍了端粒、端粒酶介导细胞凋亡或永生化的过程。

大量的证据表明,端粒酶的激活或抑制会导致细胞永生化或进入分裂终止期。

端粒酶在超过80%的永生细胞系及大多数肿瘤组织中呈激活状态。

端粒酶的抑制会使胚胎干细胞、骨髓造血细胞的增生受到抑制,并使肿瘤细胞系增生减弱,以致于凋亡增加。

有必要指出的是:端粒酶对细胞增生、衰老及凋亡的调节是通过不同的途径进行的。

其中端粒延长依赖性机制作用缓慢,需要多代细胞端粒的进行性缩短积累到一定程度,才会诱发细胞静止信号的激活。

最近有一种端粒延长非依赖性机制,其作用较快,可能涉及到端粒三级结构的改变,蛋白相互作用的改变,转位的改变等[10]。

三、端粒及端粒酶与衰老的关系关于端粒丢失同衰老的关系理论是由Olovnikov博士于1973年首次提出的[11]。

他认为,端粒的丢失很可能是因为某种与端粒相关的基因发生了致死性的缺失。

目前认为,人类细胞内端粒酶活性的缺失将导致端粒缩短,每次丢失50~200个碱基,这种缩短使得端粒最终不能被细胞识别。

端粒一旦短于“关键长度”,就很有可能导致染色体双链的断裂,并激活细胞自身的检验系统,从而使细胞进入M1期死亡状态。

随着端粒的进一步丢失,将会发生染色体重排和非整倍体染色体的形成等错误,这将导致进一步的危机产生,即M2期死亡状态。

当几千个碱基的端粒DNA丢失后,细胞就停止分裂而引起衰老。

端粒及端粒酶涉及衰老最有力的证据是Bodnar[12]等证实的。

如果细胞试图要维持其正常分裂,那么就必须阻止端粒的进一步丢失,并且激活端粒酶。

Cooke[13]等认为,由于人体细胞中的端粒酶未被活化,从而导致了端粒DNA缩短。

因此,只有那些重新获得端粒酶活性的细胞才能继续生存下去,对于那些无法激活端粒酶的细胞将只能面临趋向衰老的结果。

研究人员最近还发现,患有一种可加速衰老的遗传病人具有异常短的端粒,这进一步表明端粒在衰老过程中所起的重要作用。

在人类细胞中,研究者还发现,端粒缩短的速率与细胞抗氧化损伤的能力相关。

更容易遭受氧化损害的细胞,其端粒缩短更快,然而那些更能抵抗这种损伤的细胞,端粒缩短得较慢。

如果能减免细胞损伤或激活端粒酶,即可控制人类的衰老进程。

有人曾经对人淋巴细胞的衰老性变化与其端粒长度以及端粒酶活性的关系在各种体内体外环境及处理因素下做了观测,发现端粒酶活性和端粒长度的调节有可能是淋巴细胞增殖的控制因素,这已在人体淋巴细胞的发育、分化、激活和衰老过程中被验证。

曾发现外周血CD+4T细胞的端粒长度在体内随着衰老以及从静息细胞到记忆细胞的分化过程而缩短,在体外则随着细胞的分裂而缩短,这些结果提示端粒长度与淋巴细胞增殖过程以及记忆性增殖潜力相关。

端粒酶的表达已知能够抑制衰老,而Weinberg and colleagues[14]认为端粒酶的作用主要在于延长了端粒悬垂的长度。

细胞的复制期限被认为由最终导致衰老的两个机制决定,一个是累积的DNA损伤,另外一个是端粒的进行性缩短。

Weinberg and colleagues研究了一个端粒的特殊悬垂结构在衰老过程中的作用,悬垂结构只在富含C的末端之外还有一个由几百个核苷酸组成的富含G的结构。

据称Shay实验小组[15]的研究策略是通过抑制端粒酶活性,从而迫使永生化细胞转变为正常细胞,进入正常的衰老和死亡模式。

在衰老异常发展中有一种早衰人群,即从20岁开始皮肤和毛发等便迅速衰老,其原因仍在于制造端粒酶的遗传基因。

细胞在分裂的时候,DNA双螺旋结构以其一根长链为“模子”进行DNA复制。

在DNA修复损伤的时候,“拆解”DNA的双螺旋结构是必要的,制造端粒酶的遗传基因在解开DNA 螺旋结构上起作用。

像制造端粒酶并从事DNA复制和修改错误的一类遗传基因,若与延长细胞寿命的端粒酶良好结合,我们也许能期待向“长生不老”的目标进一步接近。

四、展望和未来总之,人类体细胞在复制衰老过程中产生的端粒丢失现象已在体外得到了证实,而且体内的端粒丢失可作为判断供体年龄的依据。

我们只要设法使已衰老的人体内各种干细胞的端粒长度恢复到年轻时的水平,老人就会返老还童和长生不老。

但在人类端粒及端粒酶的基础研究中,还存在着许多难点,如:人端粒末端的精细结构,端粒的非端粒酶延伸机制;人端粒酶的具体结构及其基因所在的位置;端粒酶的激活机制及其活性调节等,均有待于回答。

尽管如此,我们似乎仍看到了前景的美好。

毕竟人们已找到了同衰老有着紧密相关性的因素——端粒和端粒酶。

人们对于端粒抑制剂的研究已经蓬勃的展开了。

相关文档
最新文档