舵机测试报告

合集下载

舵机系泊实验

舵机系泊实验

舵机系泊实验
一.试验要求
1.舵角指示器校对.以舵角机械舵角指示器的示角为基准。

校对电动舵角指示器,误差不大于±1º,但是舵角处在零度位置时各舵角指示器应无误差。

舵角电气限位应在左35º
±1º或右35º±1º时停止转动。

机械限位角度一般应大于电气限位1º-1.5º舵角最大不得超过37º左(右)舵到右(左)舵35º-30º所需时间不大于28秒。

二.试验方法
1.舵角指示器校对,以舵机上的机械舵角指示器的示角为基准。

校对驾驶室,舵机舱的电
动指示器的正确性,校验时自0º分别向两舷操舵,每转5º校对一次舵角指示器,根据舵机上机械舵角指示器的角度,检验驾驶室和舵机房的电动舵角指示器的角度指示值误差是否在规定范围内,校对时应来回各校对一次,并做好记录。

2.检验电气限位开关动作的正确性,操舵至规定限位舵角时。

舵机应停止转动,检验时,
左.右限位舵角应各试验1-2次
3.报警试验低油位将油箱内的油位放至低油时应能发出声光报警,另一种方法是将浮子
开关拆下(或短接触点)失电报警其方法是断开配电板电源开关或控制箱电源开关,此时应发出声光报警, 电机过载其方法是通过控制箱内的有关触点.用模拟办法进行,应发出声光报警.。

舵机转速转向控制实验报告

舵机转速转向控制实验报告

舵机转速转向控制实验报告一、实验目的本实验旨在通过掌握舵机的转速、转向控制,加深对舵机工作原理的理解,掌握相关控制技术的应用。

二、实验器材舵机、快速电子开关、直流电源、万用表、工具箱。

三、实验原理舵机是一种常用的控制元件,广泛应用于无人机、航空、机器人等领域。

它通过输入电信号,控制电机的速度和方向来实现转动。

舵机可以分为定速舵机和变速舵机两种,而其中变速舵机更能满足各种场合的需要。

本实验所用的舵机为变速舵机。

它可以按照输入的电信号的占空比来控制舵机的速度和方向,一般的电调模块会利用江苏快3现场开奖的PWM信号控制舵机。

PWM信号由一个矩形波脉冲序列组成,其占空比代表高电平出现的百分比,当占空比较大时,矩形波的高电平时间就较长,此时舵机就会运动速度较快,反之当占空比较小时,矩形波的高电平出现时间就较短,此时舵机就会运动速度较缓慢。

四、实验步骤1. 收集舵机转速和转向控制的相关知识并阅读相关文献。

2. 准备实验器材,将变速舵机按照说明书接好。

3. 打开直流电源,将它设为合适的电压值。

4. 使用万用表检测电源的正负极,连接快速电子开关,并将舵机的三个引脚分别连接到电源、地和电调信号端口。

5. 打开快速电子开关,连接到江苏快3现场开奖的PWM信号源。

6. 按照实验说明书的要求,将闪烁次数的总数改变为不同的数值,比较不同闪烁次数对舵机的速度、转向控制的影响,并记录下相关数据。

7. 将记录下来的数据加以整理,并得到结论。

五、实验结果及分析本实验分别测试了舵机不同的闪烁次数对其速度和转向控制的影响。

从实验结果和所得到的数据可以看出,随着闪烁次数的增加,舵机的速度越来越快,但同时其转向控制更加困难,需要更加准确的控制方法来调整。

根据结果可以得出结论,舵机的运行速度和转向控制均由其输入电信号的占空比控制,但随着输入信号占空比的变化,两者之间的关系会发生变化。

当进行舵机的控制操作时,需要根据具体情况来出发占空比大小,才能得到满意的控制效果。

舵机研究报告

舵机研究报告

舵机研究报告
舵机是一种将电信号转为机械运动的设备,常用于控制机器人的运动或调节物体的位置。

舵机通常由电机、传感器和控制电路构成。

舵机的工作原理是,通过控制电路将电信号转为PWM信号,
然后传给电机驱动电路,电机驱动电路再根据PWM信号的高
低电平控制电机的转动角度。

舵机内部还装有位置传感器,可以感知电机的位置并与控制电路进行反馈,从而实现精确的角度控制。

舵机的特点是具有很高的精度和稳定性,可以实现准确的位置控制。

它们通常有固定的工作角度范围,例如180度或360度。

舵机的工作电压和电流也有一定的范围,需要根据具体的应用场景进行选择。

舵机在机器人领域有广泛的应用,可以用于控制机器人的关节运动,使机器人能够准确地完成各种动作。

舵机也常用于航模、车模和船模等遥控玩具中,可以控制模型的转向、舵机或其他运动。

在舵机的研究中,常常涉及到舵机的控制算法和控制系统设计。

例如,通过PID控制算法可以实现舵机的准确跟随和稳定控制。

此外,还有一些研究关注舵机的结构和材料,以提高其性能和寿命。

总的来说,舵机是一种重要的电机设备,具有广泛的应用领域。

在舵机的研究中,控制算法和系统设计是重要的研究方向,也有一些研究关注舵机的结构和材料。

随着机器人技术和遥控玩具的发展,舵机的应用前景将更加广阔。

液压舵机的操作实验

液压舵机的操作实验
实验前确保液压舵机设备完好 ,无破损或泄漏现象。
实验操作人员需经过专业培训 ,熟悉设备操作规程。
实验过程中,操作人员应佩戴 防护眼镜、手套等个人防护装 备。
实验场地应保持整洁,无杂物 ,确保安全通道畅通。
实验步骤详解
实验前准备
检查液压舵机设备及 实验所需工具,确保 完好无损。
启动液压舵机
按照操作规程启动液 压舵机,检查设备运 行是否正常。
03
确认液压舵机的速度是否稳定,无异常波动或超速现象。
液压舵机停止操作
停止操作前准备
确认液压舵机的停止操作是否符合安全规定,了解紧急停止按钮 的位置。
停止操作
按下停止按钮或拉动紧急停止杆,观察液压舵机是否立即停止运行。
停止后检查
确认液压舵机完全停止,无残余动作或异常声音。
03 实验操作过程
安全注意事项
实验结论总结
实验总结
通过本次实验,我们了解 了液压舵机的性能表现, 验证了其在实际应用中的 可行性。
优缺点分析
对液压舵机的优缺点进行 分析,为其后续的应用和 改进提供参考。
展望
根据实验结果和优缺点分 析,提出对液压舵机未来 研究和应用的展望。
05 实验问题与改进
实验中遇到的问题及解决方案
问题1
对实验的改进建议
1 2
建议1
增加实验样本量,以提高实验的可靠性和准确性。
建议2
引入更多的控制变量,以更全面地研究液压舵机 的性能。
3
建议3
采用先进的测试设备和技术,以提高实验数据的 测量精度和可靠性。
பைடு நூலகம்
对未来实验的展望
展望1
研究液压舵机在不同工况下的性能表现,如不同 压力、不同转速下的性能表现。

电动舵机结构原理及检测项目分析

  电动舵机结构原理及检测项目分析

电动舵机结构原理及检测项目分析摘要:电动舵机是集自动控制、电力电子技术、精密制造等多种专业于一体的综合性机电产品。

各种类型的舵机根据各自舵回路放大器输出的信号,分别操纵被控舵面工作,从而达到飞行角运动或轨迹运动的自动稳定和控制。

作为无人机航空电子系统的重要组成部分,某型电动舵机可接收来自机载飞行控制计算机的输出控制信号,带动无人机左、右副翼舵面、升降舵面、方向舵面按控制要求进行偏转工作,实现对无人机的飞行控制。

关键词:电动舵机、结构、工作原理、性能测试一、电动舵机系统的结构组成电动伺服舵机系统本身是一个闭环角位置随动系统,它操纵舵面偏转的执行机构是电动机。

一般由控制器、驱动器、伺服电机、减速传动机构和反馈电位器等五大部分组成。

通常情况下,电动舵机系统的组成如图所示。

它是一个典型的位置反馈系统。

电动舵机系统组成框图二、电动舵机系统的工作原理一架无人机共有三个相同的电动舵机,分别为升降、副翼、方向舵机,它们根据飞控系统各回路输出的信号分别去控制无人机的三个舵面,从而达到自动控制无人机的目的。

电动舵机是根据飞行控制计算机的指令产生一个输出,这个输出控制舵面的操纵量,用来操纵控制舵面的偏转。

电动舵机系统的工作原理是,根据飞控系统控制电路的输出大小和极性的舵控制信号,操纵无人机的舵面转动。

当实际舵偏角δ与要求的角度存在误差时,在控制器的作用下产生误差电压信号,该误差经过驱动器进行功率放大后,驱动伺服电机转动。

伺服电机的力矩通过减速传动机构放大,带动舵面,使舵面向要求的角度偏转。

误差为正时,加在伺服电机上的直流平均电压为正,舵面向正方向转动;误差为负时,加在伺服电机上的直流平均电压为负,舵面向负方向转动。

当舵面偏转到要求的角度时,误差信号为零,加在伺服电机上的直流平均电压为零,舵面失去驱动力矩停止转动。

舵面转动的角度δ,通过反馈电位器形成舵反馈信号,提供给控制器,形成系统的闭环控制。

直流伺服电机通常具有较高的额定转速和较小的额定转矩,要达到电动舵机要求的角速度和输出力矩,就必须配备较大减速比的传动装置。

舵机测试实验报告

舵机测试实验报告

舵机测试实验报告舵机测试实验报告张冲一、实验目的为了较好的设计旋翼无人机的舵机控制系统,必须首先确定舵机的旋转精度,舵机精度的高低直接影响控制的精度。

如果舵机的精度达到1°,那么我们现有的控制方式将能很好的实现舵机的控制,从而保证旋翼无人机控制系统的精度。

如果达不到1°,那么我们需要根据舵机的实际精度来改进控制方式,使其尽可能的满足旋翼无人机的控制要求。

所以我们设计了这个舵机测试实验来验证S3156型舵机精度能否达到1°。

二、实验原理如图1,舵机的控制信号是脉冲宽度调制(Pulse Wide Modulator,PWM)信号,利用占空比的变化改变舵机的位置。

图1 PWM控制信号(左图) 实测得PWM信号(右图) 受到舵机测试仪给出的PWM控制信号之后,与舵机相连的指针将发生偏转,偏转变化量将通过转台刻度读出。

如果舵机输出位置精度达到1 ,则满足设计要求。

图2舵机精度测试平台1、把舵机固定在转台中央,使得舵机的转子与转台的圆心重合。

2、把舵机输入端连接到舵机测试仪的输出端,把舵机测试仪接上电源3、把测试仪的输出端连上示波器,系统连接完成如下图3。

4、打开示波器电源,手动微调一下舵机测试仪,使其偏转角度尽可能的小,用游标转盘精确的量出偏转的角度并记录下来;从示波器上读出PWM 波的周期以及高电平部分持续时间,并记录下来。

先从0°一直测到30°,然后再从0°测到-30°。

图3 系统连线实拍图四、实验器材示波器,S3156高精度舵机,舵机测试仪,转台,电源,导线。

舵机具体的选择标准如下:1、质量在10g 以内的微型数字舵机,尽量减少RUA V 总重2、速度0.160s (即舵机偏转60需要0.1s )左右 3、输出力矩0.23Servo M kg cm >?其中,PWM 波周期是恒值ms .516T =,电源输出电压V 5U =。

升降舵时域响应辨识实验实验报告

升降舵时域响应辨识实验实验报告

升降舵时域响应辨识实验实验报告2015年5月9日星期六升降舵时域响应辨识实验实验报告一、一、实验目的实验目的1) 熟悉舵机的指标与要求;2) 熟悉舵系统响应测试原理;3) 掌握舵系统响应测试原理及方法。

二、二、实验任务实验任务1) 利用阶跃响应方法进行传递函数模型的辨识;2) 将实验数据与模型数据的阶跃响应数据对比分析。

三、三、实验设备器材实验设备器材1) 弹载控制器;2) 舵系统;3) 测试计算机。

四、四、实验原理实验原理通过测试计算机和弹载控制器给舵系统(如升降舵)施加一阶跃信号,采集升降舵的反馈信号,得到阶跃响应曲线。

对数据进行归一化处理后,重新绘制单位阶跃响应曲线,从图中可以读取出峰值时间t p 和最大超调量M p 。

升降舵系统为二阶欠阻尼系统,根据如下方程可以求出二阶模型参数,即 1−=1− =−ln (2−1) 由此可以求取升降舵的传递函数。

五、五、实验内容及数据处理实验内容及数据处理i. 获取实验数据1) 检查测试计算机、弹载控制器和舵系统的连接状态;2) 在测试计算机上启动测试实验软件包,选择舵系统时域响应选项卡;3) 置弹载控制器为舵系统实验模式,上电,待系统工作稳定;4) 在测试计算机上,选择舵为升降舵,并发送舵机归零信号;5)设置阶跃指令信号幅值为+10V,并启动舵机,10s后停止舵机;6)保持实验数据,绘制阶跃响应曲线。

ii. 模型辨识对阶跃响应数据进行归一化处理,其方法为:求取阶跃响应数据的稳态值与阶跃信号幅值之比K,将每个时间点上的阶跃响应数据均除以阶跃信号幅值后重新绘制阶跃响应曲线。

在MATLAB 中,输入如下命令:clear;clcA=xlsread('SJD');figure(1)plot(A(:,1)-203.75,A(:,4)) %绘制原始曲线grid ontitle('图1 原始响应曲线')t=A(:,1)-203.75; %将时间初值置零y=A(:,4)/15.3581; %响应数据归一化figure(2)plot(t,y) %绘制单位阶跃响应曲线grid ontitle('图2 单位阶跃响应曲线')[Mp,n]=max(y);tp=t(n); %找出y的最大值及其对应时间hold onplot(tp,Mp,'*') %峰值点显示及其坐标标注text(tp,Mp,'(0.16,1.08)')text(t(570),y(570)+0.05,'1.0018')保存并运行,其运行结果如图1和图2。

舵机测试报告

舵机测试报告

舵机测试报告经过这段时间对舵机的测试,我现在将测试舵机的一些成果和心得记录下来。

以下未必是舵机可能出现的所有问题,但已经可以对实验室现有的舵机进行充分利用。

一、舵机的原理控制信号由接受通道进入调制芯片,获得直流偏置电压。

它内部含有一个基准电路,产生周期为20ms,宽度为1.5ms的基准电压,将获得的直流偏置电压与电位器的电压比较,获得电压输出。

最后电压差的正负输出到电机驱动芯片,决定电机的正反转。

当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压为0,电机停止转动。

以180°角度舵机为例,舵机的控制需要制作20ms周期的时基脉冲,用以和舵机内部基准电压作比较,该脉冲的高电平部分一般为0.5ms到2.5ms范围内的角度控制脉冲部分。

以1.5ms为0°标定,即0.5ms为-90°,1.0ms为-45°,1.5ms为0°,2ms为45°,2.5ms 为90°。

但实际舵机大部分并非180°范围,这里使用180°范围是为了方便举例,建议实际使用时角度控制为0°范围正负60°内,即120°范围内使用舵机。

很多舵机的位置等级有1024个,如果舵机的有效角度范围为180°,其控制的角度精度可以达到180°/1024约为0.18°,即要求的脉宽控制精度为2000/1024us约2us。

由于单片机采用定时器中断模拟PWM信号输出,单片机无法达到2us的控制精度,本报告采用两种单片机,控制角度精度为别达到9°和0.9°,稍后会有介绍二、舵机控制PWM脉宽调制值的设定设所选单片机的晶振频率为fosc,AT89S52单片机机的T=12/fosc,定时器中断采用方式2,8位自动重装定时器,定位100us 中断一次,初值等于100/T。

在定时器中断服务程序中使用两个全局变量,一个变量控制高电平时间,一个变量控制低电平时间,两个变量的和为20*1000/100=200,控制PWM脉宽即控制这两个变量的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

舵机测试报告
经过这段时间对舵机的测试,我现在将测试舵机的一些成果和心得记录下来。

以下未必是舵机可能出现的所有问题,但已经可以对实验室现有的舵机进行充分利用。

一、舵机的原理
控制信号由接受通道进入调制芯片,获得直流偏置电压。

它内部含有一个基准电路,产生周期为20ms,宽度为1.5ms的基准电压,将获得的直流偏置电压与电位器的电压比较,获得电压输出。

最后电压差的正负输出到电机驱动芯片,决定电机的正反转。

当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压为0,电机停止转动。

以180°角度舵机为例,舵机的控制需要制作20ms周期的时基脉冲,用以和舵机内部基准电压作比较,该脉冲的高电平部分一般为0.5ms到2.5ms范围内的角度控制脉冲部分。

以1.5ms为0°标定,即0.5ms为-90°,1.0ms为-45°,1.5ms为0°,2ms为45°,2.5ms 为90°。

但实际舵机大部分并非180°范围,这里使用180°范围是为了方便举例,建议实际使用时角度控制为0°范围正负60°内,即120°范围内使用舵机。

很多舵机的位置等级有1024个,如果舵机的有效角度范围为180°,其控制的角度精度可以达到180°/1024约为0.18°,即要求的脉宽控制精度为2000/1024us约2us。

由于单片机采用定时器中断模拟PWM信号输出,单片机无法达到2us的控制精度,本报告采用
两种单片机,控制角度精度为别达到9°和0.9°,稍后会有介绍二、舵机控制PWM脉宽调制值的设定
设所选单片机的晶振频率为fosc,AT89S52单片机机的T=12/fosc,定时器中断采用方式2,8位自动重装定时器,定位100us 中断一次,初值等于100/T。

在定时器中断服务程序中使用两个全局变量,一个变量控制高电平时间,一个变量控制低电平时间,两个变量的和为20*1000/100=200,控制PWM脉宽即控制这两个变量的值。

三、使用单片机控制舵机
选用AT89S52单片机,因为此款单片机应用较为广泛。

当接好电路后,舵机可以正常工作,但是转动时存在一定的抖动问题,转动后舵机的旋叶总是产生轻微的晃动。

预想可能是由于舵机控制的角度精度仅为9°,对于舵机内部参数的计算有很大影响。

而且舵机也达不到预想的程度,转动控制范围很不理想。

所以弃用此款单片机,改用工作频率更高的STC12C5A56S2单片机。

STC12C5A56S2单片机时钟周期=机器周期,比传统8051系列单片机快12倍,可以满足要求。

但需要注意的是,STC12C5A56S2单片机由于全面兼容传统8051系列单片机,要使之工作在时钟周期=机器周期的工作状态下,需设置其中的特殊功能寄存器AUXR,其字节地址为8EH,详细说明参见此款单片机的使用手册。

根据此款单片机调整程序后,舵机控制的角度精度达到了0.9°,满足了使用要求,并留有一定裕度,根据具体需要,可使精度达到0.45°以内。

四、关于舵机抖动问题的分析及解决方法
①控制信号的驱动电流太小
分析:舵机空载时,其电流需求为20mA左右,带负载转动时,电流需求可达到上百mA,所以尽量不要使用单片机的IO口线直接驱动。

解决方法:使用时,将IO口线接上拉电阻驱动,或采用三极管驱动,具体电路不在此做详细介绍。

②电源电压或容量不够
分析:当独立电源带多个舵机或电机时,容易使舵机产生抖动,工作状态不正常。

解决方法:尽量选用大容量电源,或使用多个电源分别对不同负载供电,这种问题发生时时常伴有第一种情况,所以采用三极管放大电流信号也是可取的,但需要注意,如采用多电源分别供电时,电源与单片机之间要共地。

③舵机脉宽变化太大太快,导致舵机跟不上脉宽变化
分析:一般舵机的速度大约在60°每200ms左右,所以要注意脉宽不要变化太快。

解决方法:在程序中,应使角度逐步变化,最好在启动后和停止前加入加减速程序,这样可以时舵机转动更加平稳,同时要在脉宽变化后采用必要且合理的延时。

五、做舵机测试后的一些心得
做整个舵机的测试做的很长时间,其中也发现了我自己身上的很多问题。

主要是表现在两个方面,一是在执行力上有所欠缺,任务布
置下来很长时间才完成,即是在做东西时缺乏一步到底的精神,也是由于第一次独立完成问题,很多事情不是想想就可以做到,需要一步一步的去做,有的时候自己认为剩下的东西已经很简单很轻松了,三下两下就可以完成却没有继续将之完成,当过后在做的时候不但要重新理头绪接上前面的问题,还要在后面的任务中耽误很多时间,这样产生了接到任务却花费了很长时间才完成情况。

二是以前学习的C 语言基础还需要继续深化,很多时候程序的整体逻辑明明没有问题,可是实际效果却完全没有显示出来。

问题就是出在对于C语言的基本功掌握的还不扎实。

对于这些问题,在今后的学习实践中我会认真改正,任务绝对不能拖拉,而且做东西不可以盲目,但一定要坚持,今天多做一点代表着会有更多的时间做下面的任务,代表着可以早点将整个任务完成。

同时还要继续深化所学到的知识,所谓学无止境,永远不要以为得到点皮毛就是真正掌握了其中的精髓,无论在写程序还是在平时的生活中要时刻保持着严谨的态度,达到我所会我使用时就不会有问题的自信。

对于以后进入实验室的同学,我留下一些我对实验室测试与设计时出现问题的理解,问题分为硬件和软件两个方面。

硬件方面要保证硬件连接的准确无误,在连接硬件时要小心谨慎,连接好电路后要详细检查后方可通电。

软件方面要深化基本功,保证语句语法没有毛病,有时一些没注意到的小细节可能影响全局,可能要找很长时间才能找到问题所在,不必要的浪费了很多时间,对于C语言的基本定义必须做到万无一失。

以上这些就是我在做舵机测试时所得到的东西,希望对实验室的同学们能够有所帮助。

徐白璐
2011.3.23。

相关文档
最新文档