保险精算习题及答案
中国精算师考试考试题目

选择题:在保险精算中,确定保费时需要考虑的主要因素不包括:A. 被保险人的年龄B. 被保险人的性别C. 被保险人的职业D. 被保险人的婚姻状况(正确答案)下列哪项不是精算师在保险公司中的主要职责?A. 产品设计与定价(正确答案)B. 市场营销策略制定C. 准备金评估D. 风险管理在进行寿险精算时,下列哪个公式用于计算纯保费?A. 纯保费= 保险金额× 发生率B. 纯保费= 保险金额/ 发生率C. 纯保费= 保险金额× (1 -发生率)D. 纯保费= 保险金额+ 发生率(正确答案)下列哪项不是影响保险公司偿付能力的主要因素?A. 资本金数额B. 准备金数额C. 保险业务规模D. 公司员工数量(正确答案)在进行非寿险精算时,下列哪个概念用于描述单位时间内发生赔案的频率?A. 赔案发生率(正确答案)B. 平均赔款额C. 纯保费D. 附加保费下列哪项不是精算师在进行财务分析时常用的工具?A. 财务报表B. 敏感性分析C. 场景分析D. 市场调研问卷(正确答案)在进行保险产品设计时,精算师需要考虑的法律法规不包括:A. 《保险法》B. 《公司法》C. 《税收法》D. 《消费者权益保护法》(正确答案)下列哪项不是精算师在风险管理中的主要任务?A. 识别风险B. 量化风险C. 控制风险D. 承担风险(正确答案)在进行保险产品定价时,下列哪个因素通常不会被考虑?A. 预期赔付成本B. 运营成本C. 预期利润D. 市场竞争对手的股价(正确答案)。
寿险精算习题及答案

习题第一章人寿保险一、n 年定期寿险【例4.1】设有100个40岁的人投保了1000元5年期定期寿险,死亡赔付在死亡年年末,利率为3%。
I 、如果各年预计死亡人数分别为1、2、3、4、5人,计算赔付支出; II 、根据93男女混合表,计算赔付支出。
解:I表4–1 死亡赔付现值计算表根据上表可知100张保单未来赔付支出现值为:48.13468)03.1503.1403.1303.1203.11(100054321=⨯+⨯+⨯+⨯+⨯⨯-----(元)则每张保单未来赔付的精算现值为134.68元,同时也是投保人应缴的趸缴纯保费。
解:II表4–2 死亡赔付现值计算表根据上表可知100张保单未来赔付支出现值为:86.9124)03.103.103.103.103.1(1000540|4440|3340|2240|11402=⨯+⨯+⨯+⨯+⨯⨯-----q q q q q (元)则每张保单未来赔付的精算现值为91.25元,同时也是投保人应缴的趸缴纯保费。
【例4.2】某人在40岁时投保了10000元3年期定期寿险,死亡赔付在死亡年年末,利率为5%。
根据93男女混合表计算:I 、单位趸缴纯保费;II 、单位赔付现值期望的方差;III 、(总)趸缴纯保费; 解:I 、单位趸缴纯保费为,)()(424023414024040|2340|1240240|11|3:40q p v q p v vq q v q v vq q v Ak k k ++=++=⨯=∑=+]05.1001993.0)001812.01()00165.01(05.1001812.0)00165.01(05.100165.0[32⨯-⨯-+⨯-+=00492793.0=(元)。
II 、单位赔付现值期望的方差为,00444265.0)()()()(21|3:4040|2640|1440221|3:40240|)1(221|3:401|3:402=-++=-⨯=-∑=+A q v q v q v A q v AAk k k III 、趸缴纯保费为,28.49100001|3:40=⨯A (元) 【例4.3】某人在50岁时投保了100000元30年期定期寿险,利率为8%。
保险精算第二版习题及答案

保险精算(第二版)第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。
123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。
保险精算第二版习题及问题详解

保险精算(第二版)第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。
123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。
保险精算课后习题答案

保险精算课后习题答案【篇一:保险精算李秀芳1-5章习题答案】给出生存函数s?x??ex22500,求:(1)人在50岁~60岁之间死亡的概率。
(2)50岁的人在60岁以前死亡的概率。
(3)人能活到70岁的概率。
(4)50岁的人能活到70岁的概率。
p(50?x?60)?s?50??s(60)10q50?s?50??s(60)s(50)p(x?70)?s(70)s?70?s(50)3/220p50?2.已知生存函数s(x)=1000-x,0≤x≤100,求(1)f(x)(2)f(x)(3)ft(t)(4)ft(f)(5)e(x)3. 已知pr[5<t(60)≤6]=0.1895,pr[t(60)>5]=0.92094,求q65。
5|q60?s?65??s(66)s?65?0.1895,5p600.92094s(60)s(60)s?65??s(66)q650.2058s(65)=0.70740/0.86786=0.815115.给出45岁人的取整余命分布如下表:求:1)45岁的人在5年内死亡的概率;2)48岁的人在3年内死亡的概率;3)50岁的人在52岁至55岁之间死亡的概率。
(1)5q45=(0.0050+0.0060+0.0075+0.0095+0.120)=0.046.这题so easy就自己算吧7.设一个人数为1000的现年36岁的群体,根据本章中的生命表计算(取整)q80?d80l80?l810.07l80l80d80l80?l810.07 l80l80q80?9. q60?0.015,q61?0.017,q62?0.020,计算概率2p61,2|q60.2p61=(1-q61)(1-q62)=0.963342|q60=2p61.q62=0.0193710. 设某群体的初始人数为3 000人,20年内的预期死亡人数为240人,第21年和第22年的死亡人数分别为15人和18人。
求生存函数s(x)在20岁、21岁和22岁的值。
保险精算试题与答案

保险精算试题与答案[注意:本文按照试题格式进行回答]试题一:保险精算的定义和作用是什么?保险精算是指运用数学、统计学和金融学等方法,对保险业务进行量化分析和评估的过程。
其作用主要体现在以下几个方面:1. 风险评估:通过对历史数据和概率模型的分析,保险精算师可以评估保险产品的风险水平,确定保费率和赔付准备金水平,为保险公司提供决策依据。
2. 产品开发与定价:保险精算师可以根据市场需求和风险情况,设计和开发新的保险产品,并确定合理的保费定价策略,以提高保险公司的竞争力和盈利能力。
3. 保险风险管理:保险精算师可以利用精算模型和方法,对保险风险进行全面的管理和控制,降低保险公司的不确定性和风险敞口。
4. 偿付能力评估:通过运用精算方法,保险精算师可以对保险公司的偿付能力进行评估和监测,保证公司能够按时履行合同中对被保险人的赔偿责任。
5. 盈余分配决策:精算师根据保险公司的盈利能力和风险状况,制定合理的盈余分配策略,确保公司的可持续经营和股东利益最大化。
试题二:简述保险精算的核心内容和方法保险精算的核心内容主要包括风险评估、损失模型、资本管理和盈余分配等方面。
1. 风险评估:通过风险测度和量化方法,评估保险产品的风险水平,并制定相应的风险管理策略,保证公司的偿付能力。
2. 损失模型:利用数理统计的方法,分析历史数据和风险模型,构建损失模型,预测未来潜在的赔偿风险,并根据模型结果进行资本分配和准备金计提。
3. 资本管理:通过资本分配和配置,保险精算师可以根据公司的风险状况和盈利能力,确定合理的资本水平和使用策略,提高公司的偿付能力和综合运营效益。
4. 盈余分配:保险精算师基于公司的盈利水平、资本状况和风险状况,制定合理的盈余分配政策,确保公司能够平衡盈利和风险、实现可持续发展。
保险精算的核心方法包括:1. 预测模型:利用历史数据和概率理论,建立预测模型,对未来保险损失进行预测和量化评估。
2. 风险度量方法:通过运用不同的风险测度方法,比如价值-at-Risk、条件VaR等,对保险风险进行度量和分析。
保险精算习题及答案

第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。
123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。
保险精算考试题及答案

保险精算考试题及答案1. 保险精算中,用于计算未来现金流的现值的公式是:A. 未来值 = 现值× (1 + 利率)^期数B. 现值 = 未来值÷ (1 + 利率)^期数C. 未来值 = 现值× (1 - 利率)^期数D. 现值 = 未来值× (1 - 利率)^期数答案:B2. 在非寿险精算中,用于计算纯保费的公式是:A. 纯保费 = 预期损失 + 预期费用B. 纯保费 = 预期损失 - 预期费用C. 纯保费 = 预期损失× 预期费用D. 纯保费 = 预期损失÷ 预期费用答案:A3. 以下哪项是寿险精算中的生命表的主要组成部分?A. 死亡率表B. 疾病率表C. 残疾率表D. 以上都是答案:A4. 寿险精算中,计算年金现值的公式是:A. 年金现值 = 年金支付额× 利率× (1 - 1/(1 + 利率)^期数)B. 年金现值 = 年金支付额÷ 利率× (1 - 1/(1 + 利率)^期数)C. 年金现值 = 年金支付额× 利率÷ (1 - 1/(1 + 利率)^期数)D. 年金现值 = 年金支付额÷ 利率÷ (1 - 1/(1 + 利率)^期数) 答案:A5. 保险精算中,用于评估保险公司财务稳定性的指标是:A. 偿付能力比率B. 资产负债比率C. 投资回报率D. 以上都是答案:A6. 在精算评估中,用于计算保单持有人未来利益的现值的贴现率是:A. 预定利率B. 市场利率C. 法定利率D. 以上都不是答案:A7. 以下哪项是精算师在评估寿险保单的死亡率风险时常用的方法?A. 蒙特卡洛模拟B. 敏感性分析C. 精算表分析D. 以上都是答案:C8. 保险精算中,用于计算保单持有人未来利益的现值的公式是:A. 未来利益现值 = 未来利益× 利率× (1 - 1/(1 + 利率)^期数)B. 未来利益现值 = 未来利益÷ 利率× (1 - 1/(1 + 利率)^期数)C. 未来利益现值 = 未来利益× 利率÷ (1 - 1/(1 + 利率)^期数)D. 未来利益现值 = 未来利益÷ 利率÷ (1 - 1/(1 + 利率)^期数) 答案:B9. 在保险精算中,用于计算保单的准备金的公式是:A. 准备金 = 未来利益现值 - 已收保费B. 准备金 = 未来利益现值 + 已收保费C. 准备金 = 未来利益现值× 已收保费D. 准备金 = 未来利益现值÷ 已收保费答案:A10. 以下哪项是保险精算中用于评估保单持有人未来利益的不确定性的方法?A. 精算评估B. 风险评估C. 敏感性分析D. 以上都是答案:C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
225213C.7136987
第二章:年金
练习题
1.证明 。
2.某人购买一处住宅,价值16万元,首期付款额为A,余下的部分自下月起每月月初付1000元,共付10年。年计息12次的年名义利率为%。计算购房首期付款额A。
解:
其中
查生命表或者相应的换算表带入计算即可。
习题5将参考课本P87例5.4.1现年35岁的人购买如下生存年金,且均于每月初给付,每次给付1000元,设年利率i=6%,求下列年金的精算现值。
(1)终身生存年金。
其中
若查90-93年生命表换算表则
5.某人现年55岁,在人寿保险公司购有终身生存年金,每月末给付年金额250元,试在UDD假设和利率6%下,计算其精算现值。
若现有1700元储蓄寿险,无保费返还且死亡时无双倍保障,死亡给付均发生在死亡年末,求这个保险的趸缴纯保费。
解:保单1)精算式为
保单2)精算式为
求解得 ,即
14.设年龄为30岁者购买一死亡年末给付的终身寿险保单,依保单规定:被保险人在第一个保单年度内死亡,则给付10000元;在第二个保单年度内死亡,则给付9700元;在第三个保单年度内死亡,则给付9400元;每年递减300元,直至减到4000元为止,以后即维持此定额。试求其趸缴纯保费。
4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 ,第2年的利率为 ,第3年的利率为 ,求该笔投资的原始金额。
5.确定10000元在第3年年末的积累值:
(1)名义利率为每季度计息一次的年名义利义贴现率6%。
6.设m>1,按从大到小的次序排列 。
6.化简 ,并解释该式意义。
7.某人计划在第5年年末从银行取出17000元,这5年中他每半年末在银行存入一笔款项,前5次存款每次为1000元,后5次存款每次为2000元,计算每年计息2次的年名义利率。
8.某期初付年金每次付款额为1元,共付20次,第k年的实际利率为 ,计算V(2)。
9.某人寿保险的死亡给付受益人为三个子女,给付形式为永续年金,前两个孩子第1到n年每年末平分所领取的年金,n年后所有的年金只支付给第三个孩子,若三个孩子所领取的年金现值相等,那么v=( )
7.已知 ,其中 为保险人对1单位终身寿险按年收取的营业保费。求保险人至少应发行多少份这种保单才能使这些保单的总亏损为正的概率小于等于。[这里假设各保单相互独立,且总亏损近似服从正态分布,Pr(Z≤)=,Z为标准正态随机变量。]
8. 。
9. 。
10.已知 。
11.已知x岁的人购买保额1000元的完全离散型终身寿险的年保费为50元, ,L是在保单签发时保险人的亏损随机变量。
3.已知 。
4.已知 。
5.已知L为(x)购买的保额为1元、年保费为 的完全离散型两全保险,在保单签发时的保险人亏损随机变量, ,计算Var(L)。
6.已知x 岁的人服从如下生存分布: (0≤x≤105),年利率为6%。对(50)购买的保额1000元的完全离散型终身寿险,设L为此保单签发时的保险人亏损随机变量,且P(L≥0)=。求此保单的年缴均衡纯保费的取值范围。
2.设年龄为35岁的人,购买一张保险金额为1000元的5年定期寿险保单,保险金于被保险人死亡的保单年度末给付,年利率i=,试计算:
(1)该保单的趸缴纯保费。
(2)该保单自35岁~39岁各年龄的自然保费之总额。
(3)(1)与(2)的结果为何不同为什么
(1)法一:
查生命表 代入计算:
法二:
查换算表
(2)
解:
其中
6.在UDD假设下,试证:
(1) 。
(2) 。
(3) 。
7.试求现年30岁每年领取年金额1200元的期末付终身生存年金的精算现值,且给付方法为:(1)按年;(2)按半年;(3)按季;(4)按月。
(1)解:
(2)
其中
(3)
其中
(4)
其中
8.试证:
(1)
(2) 。
(3) 。
(4) 。
9.很多年龄为23岁的人共同筹集基金,并约定在每年的年初生存者缴纳R元于此项基金,缴付到64岁为止。 到65岁时,生存者将基金均分,使所得金额可购买期初付终身生存年金,每年领取的金额为3600元。试求数额R。
(1)求该保险的趸缴纯保费 。
(2)设每一年龄内的死亡服从均匀分布,证明 。
9.现年35岁的人购买了一份终身寿险保单,保单规定:被保险人在10年内死亡,给付金额为15000元;10年后死亡,给付金额为20000元。试求趸缴纯保费。
趸交纯保费为
其中
所以趸交纯保费为
10.年龄为40岁的人,以现金10000元购买一份寿险保单。保单规定:被保险人在5年内死亡,则在其死亡的年末给付金额3000元;如在5年后死亡,则在其死亡的年末给付数额R元。试求R值。
15.某人在40岁投保的终身死亡险,在死亡后立即给付1元保险金。其中,给定 ,0≤x≤110。利息力δ=。Z表示保险人给付额的现值,则密度 等于( )
A.0.24B.0.27 C.D.
16.已知在每一年龄年UDD假设成立,表示式 ( )
A. B.
C. D.
解:
17.在x岁投保的一年期两全保险,在个体(x)死亡的保单年度末给付b元,生存保险金为e元。保险人给付额现值记为Z,则Var(Z)=( )
A. B. C. D.
11.延期5年连续变化的年金共付款6年,在时刻t时的年付款率为 ,t时刻的利息强度为1/(1+t),该年金的现值为( )
.54C
第三章:生命表基础
练习题
1.给出生存函数 ,求:
(1)人在50岁~60岁之间死亡的概率。
(2)50岁的人在60岁以前死亡的概率。
(3)人能活到70岁的概率。
10.Y是x岁签单的每期期末支付1的生存年金的给付现值随机变量,已知 ,
, ,求Y的方差。
11.某人将期末延期终身生存年金1万元遗留给其子,约定延期10年,其子现年30岁,求此年金的精算现值。
12.某人现年35岁,购买一份即付定期年金,连续给付的年金分别为10元、8元、6元、4元、2元、4元、6元、8元、10元,试求其精算现值。
第一章:利息的基本概念
练 习 题
1.已知 ,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
2.(1)假设A(t)=100+10t, 试确定 。
(2)假设 ,试确定 。
3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
(4)50岁的人能活到70岁的概率。
2.已知Pr[5<T(60)≤6]=,Pr[T(60)>5]=,求 。
3.已知 , ,求 。
4.设某群体的初始人数为3000人,20年内的预期死亡人数为240人,第21年和第22年的死亡人数分别为15人和18人。求生存函数s(x)在20岁、21岁和22岁的值。
5.如果 ,0≤x≤100,求 =10000时,在该生命表中1岁到4岁之间的死亡人数为( )。
3.已知 , , , 计算 。
4.某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。年利率为10%,计算其每年生活费用。
5.年金A的给付情况是:1~10年,每年年末给付1000元;11~20年,每年年末给付2000元;21~30年,每年年末给付1000元。年金B在1~10年,每年给付额为K元;11~20年给付额为0;21~30年,每年年末给付K元,若A与B的现值相等,已知 ,计算K。
7.如果 ,求10000元在第12年年末的积累值。、
8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。
9.基金A以每月计息一次的年名义利率12%积累,基金B以利息强度 积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。
13.给定 , 。已知在每一年龄年UDD假设成立, 则 是( )
A.15.48 B.15.51 C.D.
14.给定 , , 利息强度 ,则 =( )
A.0.005B.0.010C.D.
15.对于个体(x)的延期5年的期初生存年金,年金每年给付一次,每次1元,给定: ,年金给付总额为S元(不计利息),则
解:
其中
查(2000-2003)男性或者女性非养老金业务生命表中数据 带入计算即可,或者i=以及(2000-2003)男性或者女性非养老金业务生命表换算表 带入计算即可。
例查(2000-2003)男性非养老金业务生命表中数据
8.考虑在被保险人死亡时的那个 年时段末给付1个单位的终身寿险,设k是自保单生效起存活的完整年数,j是死亡那年存活的完整 年的时段数。
(3)
3.设 , , , 试计算:
(1) 。
(2) 。改为求
4.试证在UDD假设条件下:
(1) 。
(2) 。
5.(x)购买了一份2年定期寿险保险单,据保单规定,若(x)在保险期限内发生保险责任范围内的死亡,则在死亡年末可得保险金1元, ,试求 。
6.已知, 。
7.现年30岁的人,付趸缴纯保费5000元,购买一张20年定期寿险保单,保险金于被保险人死亡时所处保单年度末支付,试求该保单的保险金额。
6.已知20岁的生存人数为1000人,21岁的生存人数为998人,22岁的生存人数为992人,则 为( )。
A.0.008B.
C.D.
第四章:人寿保险的精算现值
练 习 题