高中数理化生公式定理大全
数理化公式

数理化公式
以下是一些常见的数理化公式:
数学公式:
1. 直线的斜率公式:y = mx + c, 其中m是斜率,c是常数。
2. 平方根:√x
3. 三角函数:sin(x), cos(x), tan(x)
4. e的指数函数:exp(x)
5. 对数函数:log(x)
6. 微积分:导数和积分的公式(如牛顿-莱布尼茨公式)物理公式:
1. 牛顿第二定律:F = ma,其中F是力,m是物体的质量,a是加速度。
2. 万有引力定律:F = G * (m1 * m2) / r^2,其中F是引力,m1和m2是两个物体的质量,r是它们之间的距离,
G是万有引力常数。
3. 动能公式:K = 1/2 * m * v^2,其中K是动能,m是物体的质量,v是物体的速度。
4. 速度公式:v = s/t,其中v是速度,s是位移,t是时间。
化学公式:
1. 摩尔质量:M = m/n,其中M是摩尔质量,m是物质
的质量,n是物质的摩尔数。
2. 摩尔浓度:M = n/V,其中M是摩尔浓度,n是溶质的摩尔数,V是溶液的体积。
3. 阿伏伽德罗常数:N = 6.02 * 10^23 mol^-1,表示1
摩尔物质中的粒子数。
4. 化学反应速率:rate = k[A]^\\alpha[B]^\\beta,其中rate是反应速率,k是速率常数,[A]和[B]是反应物的浓度,\\alpha和\\beta是反应物的反应级数。
这只是一小部分数理化公式,还有很多其他的公式,具体
取决于你关注的领域和具体的问题。
高中数理化生:公式定理定律概念大全

高中数理化生:公式定理定律概念大全
一、定律:
1、对称定律:任何的形状如果关于某一特定的线条对称,那么该形状就是对称的。
2、位置定律:两个平行或非平行的直线,任何一点以某一点为中心,做同样方向和角度的旋转都不会改变相对位置。
3、轴对称定律:物体如果沿着某一垂线(轴线)进行翻转,对称的部分的形状不会改变,则称为轴对称。
4、动作定律:如果人正确使用物体,那么物体状态改变的中心点都以使用人手来位置为中心,而且变化角度也恒定。
二、定理:
1、三角形外角和定理:任何一个三角形的三个外角之和等于π(即180度)。
2、勾股定理:在一个直角三角形中,两条直角边长的平方之和等于斜边长的平方,也就是a²+b²=c².
3、梯形面积定理:梯形的面积等于两条小边之和乘以高除以2,也就是s=(a+b)*h/2.
4、勾股纳矩形定理:若在等腰直角三角形中选定两个对角线,则这两个对角线的乘积正好等于对角线对应的直角边乘积,也就是a×b=c×d.
三、公式:
1、直角三角形面积公式:Sh = 1/2*a*h.
2、梯形面积公式:S = 1/2(a + b) * h
3、圆面积公式:S = πr².
4、椭圆面积公式:S = π ab,其中a、b分别是椭圆的长短轴的长度。
5、球的表面积公式:S=4πr²。
(完整版)中学数理化公式归纳汇总

初中数学公式大全
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理三角形两边的和大于第三边
16 推论三角形两边的差小于第三边
17 三角形内角和定理三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等。
高中数理化生公式大全

高中数理化公式大全+总复习目录数学公式:P1-20页物理公式:P21-27页化学公式:P28-35页生物公式:P36-40页数学总复习:P41-54页物理总复习:P61-98页化学总复习:P99-132页生物总复习:133-224页高中的数学公式定理大全三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”)诱导公式(口诀:奇变偶不变,符号看象限。
)sin(-α)=-sinαcos(-α)=cosα t an(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=co sαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+s inαsinβtanα+tanβtan(α+β)=————————1-tanα ·tanβtanα-tanβtan(α-β)=————————1+tanα ·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+ta n2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+β α-βsinα+sinβ=2sin———·cos———2 2α+β α-βsinα-sinβ=2cos———·sin———2 2α+β α-βcosα+cosβ=2cos———·cos———2 2α+β α-βcosα-cosβ=-2sin———·sin———2 21sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=— -[cos(α+β)-cos(α-β)]2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式集合、函数集合简单逻辑任一x∈A x∈B,记作A BA B,B A A=BA B={x|x∈A,且x∈B}A B={x|x∈A,或x∈B}card(A B)=card(A)+card(B)-card(A B)(1)命题原命题若p则q逆命题若q则p否命题若 p则 q逆否命题若 q,则 p(2)四种命题的关系(3)A B,A是B成立的充分条件B A,A是B成立的必要条件A B,A是B成立的充要条件函数的性质指数和对数(1)定义域、值域、对应法则(2)单调性对于任意x1,x2∈D若x1<x2 f(x1)<f(x2),称f(x)在D上是增函数若x1<x2 f(x1)>f(x2),称f(x)在D上是减函数(3)奇偶性对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数若f(-x)=-f(x),称f(x)是奇函数(4)周期性对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数(1)分数指数幂正分数指数幂的意义是负分数指数幂的意义是(2)对数的性质和运算法则loga(MN)=logaM+logaNlogaMn=nlogaM(n∈R)指数函数对数函数(1)y=ax(a>0,a≠1)叫指数函数(2)x∈R,y>0图象经过(0,1)a>1时,x>0,y>1;x<0,0<y<10<a<1时,x>0,0<y<1;x<0,y>1a> 1时,y=ax是增函数0<a<1时,y=ax是减函数(1)y=logax(a>0,a≠1)叫对数函数(2)x>0,y∈R图象经过(1,0)a>1时,x>1,y>0;0<x<1,y<00<a<1时,x>1,y<0;0<x<1,y>0a>1时,y=logax是增函数0<a<1时,y=logax是减函数指数方程和对数方程基本型logaf(x)=b f(x)=ab(a>0,a≠1)同底型logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1)换元型 f(ax)=0或f (logax)=0数列数列的基本概念等差数列(1)数列的通项公式an=f(n)(2)数列的递推公式(3)数列的通项公式与前n项和的关系an+1-an=dan=a1+(n-1)da,A,b成等差 2A=a+bm+n=k+l am+an=ak+al等比数列常用求和公式an=a1qn_1a,G,b成等比 G2=abm+n=k+l aman=akal不等式不等式的基本性质重要不等式a>b b<aa>b,b>c a>ca>b a+c>b+ca+b>c a>c-ba>b,c>d a+c>b+da>b,c>0 ac>bca>b,c<0 ac<bca>b>0,c>d>0 ac<bda>b>0 dn>bn(n∈Z,n>1)a>b>0 >(n∈Z,n>1)(a-b)2≥0a,b∈R a2+b2≥2ab|a|-|b|≤|a±b|≤|a|+|b|证明不等式的基本方法比较法(1)要证明不等式a>b(或a<b),只需证明a-b>0(或a-b<0=即可(2)若b>0,要证a>b,只需证明,要证a<b,只需证明综合法综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。
超级高中数理化公式定理

超级高中数理化公式定理数学1.集合、简易逻辑2.函数3.不等式4.平面向量5.三角函数6.数列7.直线和圆的方程8.圆锥曲线方程9.直线、平面、简单几何体10.排列、组合、二项式定理11.概率12.概率与统计13.极限14.导数与微分15.积分16.复数物理一.力学(一)力物体的平衡1.力2.重力万有引力3.弹力胡克定律4.摩擦力5.力的合成6.力的分解7.力矩力偶矩8.物体的平衡9.物体的受力(二)直线运动10.质点11.机械运动12.位置、位移和路程13.速度和速率14.加速度15.匀速直线运动规律16.匀变速直线运动规律(三)抛体曲线运动规17.平抛运动规律18.斜抛运动规律19.运动的独立性和叠加性原理(四)牛顿运动定律20.惯性21.牛顿运动定理22.牛顿运动定理的应用23.力学中的国际单位制(SI)单位(五)匀速率圆周运动和人造地球卫星24.匀速率圆周运动25.万有引力26.宇宙速度、人造地球卫星(六)机械能27.功28.功率29.机械能30.功和能31.动能定理32.重力功与重力势能33.机械能守恒定律34.功能原理35.功能关系规律的应用(七)动量36.动量、冲量37.动量定理38.动量守恒律(八)机械振动和机械波39.机械振动40.简谐振动41.单摆振动42.受迫振动、共振=、阻尼振动43.机械波44.波长、频率和波速45.波的图像46.波的衍射与干涉47.声波48.乐音一.热学(九)分子运动论1.分子动理论2.测分子大小的方法3.布朗运动4.分子间的相互作用力(十)热和功5.物体的内能6.改变内能的两种方法7.热量8.热功当量9.能的转化和守恒定律(十一)气体的性质10.气体的状态状态参量11.气体的等温变化玻意耳定律12.气体的等容变化查里定律13.气体的等压变化盖.吕萨克定律14.理想气体的状态方程15.克拉泊龙方程16.理想气体的内能(十二)固体和液体的性质17. 晶体和非晶体18. 空间点阵19. 液体的微观结构20. 液体的表面现象21. 浸润和不浸润22. 毛细现象二.电磁学(十三)电场1.电荷原电荷2.电荷守恒定律3.库仑定律总电荷4.电场5.电场强度电场力匀强电场6.电场的叠加7.电场线8.电势能电势电势差9.等势面10.电场中的导体11.带电粒子在电场中的运动12.电容器电容(十四)恒定电流13.电流、电流强度14.电压15.电阻欧姆定理电阻定律16.电功电功率焦耳定律17.串联电路和并联电路18.电动势19.闭合电路欧姆定律20.电源总功率输出功率电流电压电源效率与外电阻的关系21.闭合电路中的能量22.滑动变阻器限流分压作用23.直流电路中的电容器24.电路结构得分析25.电阻的测量26.电源电动势和内电阻的测量(十五)磁场电磁感应27.磁场28.磁场的描述和有关物理量29.磁场对电流的作用30.磁场对运动电荷的作用31.带电粒子在匀强磁场中的运动32.电磁感应33.法拉第电磁感应定律34.楞次定律35.自感36.电磁感应中的能量变化(十六)交流电电磁振荡电磁波37.交流电38.变压器39.电能的输送40.电磁振荡41.电磁场三.光学(十七)光的传播1.光速2.反射定律漫反射3.折射定律4.折射率5.全反射6.光的色散7.透镜8.透镜成像作图法成规律9.透镜成像公式10.眼睛(十八)光的本性11.光的干涉12.杨氏双缝干涉13.光的衍射14.光的偏振15.电磁波谱16.光谱17.光电效应18.光的本性四.原子和原子核物理学(十九)原子和原子核1.原子的结构模型2.玻尔的原子理论3.天然放射现象4.原子核的组成5.原子的结合能6.重核的裂变7.轻核的聚合8.基本粒子附录1.重要的物理常数2.常用的物理量及单位3.常用物理概念、规律的公式表4.常用物理数据表5.国际单位制(SI)基本单位表化学一.化学基本概念1.概念定律物质的组成物质的分类物质的变化物质的量2.综合应用二.化学基本理论1.概念定律物质结构元素周期律化学反应速率与化学平衡电解质溶液2.综合应用三.元素及其化合物1.知识规律非金属的特征卤族氧族氮族碳族金属的活动性顺序与金属的化学性常见金属氧化物及氢氧化合物钠、镁、铝、铁及它们的重要化合物之间的转化关系2.综合应用四.有机化学基础1.知识规律有机物组成和结构的一些重要概念几种烃的结构、性质和制几种烃的衍生物的结构、性质和生成方法油脂、糖类和蛋白质有机反应的主要类型有机物的检验与鉴别2.综合应用五.化学实验1.知识能力常见仪器常见的组装仪器常见物质的检验定量实验2.综合应用六.化学计算1.技能能力有关原子量、分子量及确定分子式的计算有关物质的量的计算有关气体摩尔体积的计算有关物质溶解度的计算有关溶液浓度的计算有关溶液PH与氢离子浓度、氢痒根离子浓度的简单计算利用化学反应方程式的计算以上各种化学计算的综合应用2.解题方法关系式法差量法守恒法公式法最小公倍数法中间值法比较法等量代换法灵活性、综合性、新颖性和技巧性都很强的化学计算大题。
高中数理化生公式定理大全(绝对精品)2010.11.38

高中数理化生公式定理大全(绝对精品)2010.11.38高中数理化生公式定理大全数学物理化学生物,门门功课就有底!祝考试顺利!--编者20XX年11.1物理化学数学生物只是个人编排水平有限,他山之石可以攻玉!高中数理化生公式定理大全物理解题大技巧高中物理备考与解题策略一、构建物理模型等效类比解题随着高考改革的深入,新高考更加突出对考生应用能力及创新能力的考查,大量实践应用型、信息给予型、估算型命题频繁出现于卷面,由此,如何于实际情景中构建物理模型借助物理规律解决实际问题则成了一个重要环节。
1.案例探究例1:如图1所示,在光滑的水平面上静止着两小车A和B,在A车上固定着强磁铁,总质量为5 kg,B车上固定着一个闭合的螺线管.B车的总质量为10 kg.现给B车一个水平向左的100 Ns瞬间冲量,若两车在运动过程中不发生直接碰撞,则相互作用过程中产生的热能是多少?图1命题意图:以动量守恒定律、能的转化守恒定律、楞次定律等知识点为依托,考查分析、推理能力,等效类比模型转换的知识迁移能力.错解分析:通过类比等效的思维方法将该碰撞等效为子弹击木块(未穿出)的物理模型,是切入的关键,也是考生思路受阻的障碍点.解题方法与技巧:由于感应电流产生的磁场总是阻碍导体和磁场间相对运动,A、B两车之间就产生排斥力,以A、B两车为研究对象,它们所受合外力为零.动量守恒,当A、B车速度相等时,两车相互作用结束,据以上分析可得:I=mBvB=(mA+mB)v,vB=I100= m/s=10 m/s, mB10 v=100=6.7 m/s (mA mB)从B车运动到两车相对静止过程,系统减少的机械能转化成电能,电能通过电阻发热,转化为焦耳热.根据能量转化与守恒:高中数理化生公式定理大全11mBv2- (mA+mB)v2 22***** =×10×102-×15×()J=166.7 J 2215Q=2.解题策略与思路理想化模型就是为便于对实际物理问题进行研究而建立的高度抽象的理想客体.高考命题以能力立意,而能力立意又常以问题立意为切入点,千变万化的物理命题都是根据一定的物理模型,结合某些物理关系,给出一定的条件,提出需要求的物理量的.而我们解题的过程,就是将题目隐含的物理模型还原,求结果的过程.运用物理模型解题的基本程序:(1)通过审题,摄取题目信息.如:物理现象、物理事实、物理情景、物理状态、物理过程等.(2)弄清题给信息的诸因素中什么是起主要因素.(3)在寻找与已有信息(某种知识、方法、模型)的相似、相近或联系,通过类比联想或抽象概括,或逻辑推理,或原型启发,建立起新的物理模型,将新情景问题“难题”转化为常规命题.(4)选择相关的物理规律求解.二、实际应用型命题求解策略实际应用型命题,常以日常生活与现代科技应用为背景,要求学生对试题所展示的实际情景进行分析,判断,弄清物理情景,抽象出物理模型.然后运用相应的物理知识得出正确的结论.其特点为选材灵活、形态复杂、立意新颖.对考生的理解能力,推理能力,综合分析应用能力,尤其是从背景材料中抽象、概括构建物理模型的能力要求较高,是应考的难点.锦囊妙计1.案例探究例2:侦察卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面高度为h,要使卫星在一天的时间内将地面上赤道各处在日照条件下的情况全都拍摄下来,卫星在通过赤道上空时,卫星上的摄像机至少应拍摄地面上赤道圆周的弧长是多少?设地球的半径为R,地面处的重力加速度为g,地球自转的周期为T.命题意图:考查考生综合分析能力、空间想象能力及实际应用能力.高中数理化生公式定理大全错解分析:考生没能对整个物理情景深入分析,不能从极地卫星绕地球运行与地球自转的关联关系中找出θ=2πT1,从而使解题受阻.T解题方法与技巧:将极地侦察卫星看作质点(模型),其运动看作匀速圆周运动(模型),设其周期为T1,GMm4 2r则有:=m2 ① 2rT1地面处重力加速度为g,有GMm0R2=m0g ②2 由①②得到卫星的周期:T1=Rr3 其中:r=h+R g地球自转周期为T,则卫星绕行一周的过程中,地球自转转过的角度为:θ=2πT1 T卫星每经赤道上空时,摄像机应至少拍摄赤道圆周的弧长为T14 2s=θR=2πR=TT2.高考走势(h R)3 g实际应用型命题不仅能考查考生分析问题和解决实际问题的能力,而且能检验考生的潜能和素质,有较好的区分度,有利于选拔人才.近几年高考题加大了对理论联系实际的考查,突出“学以致用”,充分体现了由知识立意向能力立意转变的高考命题方向.3.解题策略与思路解决实际应用型题目的过程,实质是对复杂的实际问题的本质因素(如运动的实际物体,问题的条件,物体的运动过程等)加以抽象、概括,通过纯化简化,构建相关物理模型,依相应物理规律求解并还原为实际问题终结答案的过程.其解题思路为:首先,摄取背景信息,构建物理模型.实际题目中,错综的信息材料包含着复杂的物理因素,要求考生在获取信息的感性认识基础上,对题目信息加工提炼,通过抽象、概括、类比联想、启发迁移等创造性的思维活动,构建出相关的模型(如对象模型、条件模型和过程高中数理化生公式定理大全模型等).其次,要弄清实际问题所蕴含的物理情景,挖掘实际问题中隐含的物理条件,化解物理过程层次,探明物理过程的中间状态,理顺物理过程中诸因素的相互依存,制约的关系,寻求物理过程所遵循的物理规律,据规律得出条件与结果间的关系方程,进而依常规步骤求解结果.三、物理解题中的数学应用数学作为工具学科,其思想、方法和知识始终渗透贯穿于整个物理学习和研究的过程中,为物理概念、定律的表述提供简洁、精确的数学语言,为学生进行抽象思维和逻辑推理提供有效方法.为物理学的数量分析和计算提供有力工具.中学物理教学大纲对学生应用数学工具解决物理问题的能力作出了明确要求.1.案例探究例3:一弹性小球自h0=5m高处自由下落,当它与水平地面每碰撞一次后,速度减小到碰前的7/9,不计每次碰撞时间,计算小球从开始下落到停止运动所经过的路程和时间.命题意图:考查综合分析、归纳推理能力.错解分析:考生不能通过对开始的几个重复的物理过程的分析,归纳出位移和时间变化的通项公式致使无法对数列求和得出答案.解题方法与技巧:(数列法)设小球第一次落地时速度为v0,则:v0=2gh0=10m/s那么第二,第三,,第n+1次落地速度分别为:v1=7727v0,v2=()v0,,vn=()nv0999小球开始下落到第一次与地相碰经过的路程为h0=5m,小球第一次与地相碰到第二次与地相碰经过的路程是:7()2vv02=10×(7)2L1=2×1=2×92g2g2小球第二次与地相碰到第三次与地相碰经过的路程为L2,v74L2=2×2=10×()92g2高中数理化生公式定理大全由数学归纳法可知,小球第n次到第n+1次与地相碰经过的路程为Ln:Ln=10×(72n)9故整个过程总路程s为:s=h+(L1+L2++Ln)=5+10[(727472)+()++()n]999可以看出括号内的和为无穷等比数列的和.由等比无穷递减数列公式Sn=a1得:1 q7()2s=5+10×9 m=20.3 m 721 ()9小球从开始下落到第一次与地面相碰经过时间:t0=2h0=1sg0小球第一次与地相碰到第二次与地相碰经过的时间为:t1=2×v17=2×s9g7n)s9同理可得:tn=2×(t=t0+t1+t2++tn=1+2×[(7727)+()++()n]s9997=[1+2×9]s=(1+7)s=8s.71 92.解题策略与思路(1).高考命题特点高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题.可以说任何物理试题的求解过程实质上是一个将物理问题转化为数学问题经过求解再次还原为物理结论的过程.(2).数学知识与方法物理解题运用的数学方法通常包括方程(组)法、比例法、数列法、函数法、几何(图形辅高中数理化生公式定理大全助)法、图象法、微元法等.1.方程法物理习题中,方程组是由描述物理情景中的物理概念,物理基本规律,各种物理量间数值关系,时间关系,空间关系的各种数学关系方程组成的.列方程组解题的步骤①弄清研究对象,理清物理过程和状态,建立物理模型.②按照物理情境中物理现象发生的先后顺序,建立物理概念方程,形成方程组骨架.③据具体题目的要求以及各种条件,分析各物理概念方程之间、物理量之间的关系,建立条件方程,使方程组成完整的整体.④对方程求解,并据物理意义对结果作出表述或检验.2.比例法比例计算法可以避开与解题无关的量,直接列出已知和未知的比例式进行计算,使解题过程大为简化.应用比例法解物理题,要讨论物理公式中变量之间的比例关系,清楚公式的物理意义,每个量在公式中的作用,所要讨论的比例关系是否成立.同时要注意以下几点:①比例条件是否满足:物理过程中的变量往往有多个.讨论某两个量比例关系时要注意只有其他量为常量时才能成比例.②比例是否符合物理意义:不能仅从数学关系来看物理公式中各量的比例关系,要注意每个物理量的意义(例:不能据R=U认定为电阻与电压成正比).I③比例是否存在:讨论某公式中两个量的比例关系时,要注意其他量是否能认为是不U2变量,如果该条件不成立,比例也不能成立.(例在串联电路中,不能认为P=中,RP与R成反比,因为R变化的同时,U随之变化而并非常量)3.数列法凡涉及数列求解的物理问题具有多过程、重复性的共同特点,但每一个重复过程均不是原来的完全重复,是一种变化了的重复,随着物理过程的重复,某些物理量逐步发生着“前后有联系的变化”.该类问题求解的基本思路为:①逐个分析开始的几个物理过程。
高中数理化生公式、概念大全 高中物理公式-高中物理

高中数理化生公式、规律概念大全二、高中物理公式一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s="3.6km/h。
"注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a="(Vt-Vo)/t只是量度式,不是决定式;"(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动1.初速度Vo=02.末速度Vt=gt3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动1.位移s=Vot-gt2/22.末速度Vt=Vo-gt (g="9.8m/s2≈10m/s2)"3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g (从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。
高中理科数学公式大全完整版

高中理科数学公式大全完整版高中理科数学公式大全完整版一、数学公式1、圆的面积 S=πR²2、圆周长 C=2πR3、圆柱体 V=πR²h4、圆锥体 V=πR²h/35、圆周角 a=∠C×π6、勾股定理 c²=a²+b²7、正弦定理 a/sinA=b/sinB=c/sinC=2R8、余弦定理 b²=a²+c²-2accosB9、弧长公式 l=n/180×π×r²10、扇形面积 s=n/360×π×r²11、弓形面积 s=[(b-a)×h]/212、三角形面积 s=√[p(p-a)(p-b)(p-c)] 其中 p=(a+b+c)/213、重心定理三条中线的交点叫重心,重心分中线为2:1(顶点到重心)14、平行四边形性质:平行四边形对边相等;平行四边形对角相等;平行四边形对角线互相平分;平行四边形内角和外角和都为360度。
15、平行四边形判定:一组对边平行且相等的四边形为平行四边形;两组对边分别相等的四边形为平行四边形;对角线互相平分的四边形为平行四边形;两组对角分别相等的四边形为平行四边形。
16、菱形性质:菱形四边都相等;菱形对角线互相垂直;菱形内角和都为360度;菱形是轴对称图形,有四条对称轴。
17、菱形判定:一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边都相等的四边形是菱形;两条对角线分别平分各自对角的四边形为菱形。
18、正方形性质:正方形的四边都相等;正方形的四个角都是直角;正方形的对角线相等并互相垂直平分;正方形的邻边互相垂直;正方形的内角和外角和都为360度。
19、正方形判定:邻边相等的矩形是正方形;有一个角是直角的菱形是正方形;对角线互相垂直的矩形是正方形。
20、等腰梯形性质:等腰梯形两腰相等;等腰梯形两底角相等;等腰梯形的两条对角线相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学物理化学生物,门门功课就有底!祝考试顺利!--编者2011 11.1物理化学数学生物只是个人编排水平有限,他山之石可以攻玉!物理解题大技巧高中物理备考与解题策略一、构建物理模型等效类比解题随着高考改革的深入,新高考更加突出对考生应用能力及创新能力的考查,大量实践应用型、信息给予型、估算型命题频繁出现于卷面,由此,如何于实际情景中构建物理模型借助物理规律解决实际问题则成了一个重要环节。
1.案例探究例1:如图1所示,在光滑的水平面上静止着两小车A和B,在A车上固定着强磁铁,总质量为5 kg,B车上固定着一个闭合的螺线管.B车的总质量为10 kg.现给B车一个水平向左的100 N·s瞬间冲量,若两车在运动过程中不发生直接碰撞,则相互作用过程中产生的热能是多少?图1命题意图:以动量守恒定律、能的转化守恒定律、楞次定律等知识点为依托,考查分析、推理能力,等效类比模型转换的知识迁移能力.错解分析:通过类比等效的思维方法将该碰撞等效为子弹击木块(未穿出)的物理模型,是切入的关键,也是考生思路受阻的障碍点.解题方法与技巧:由于感应电流产生的磁场总是阻碍导体和磁场间相对运动,A、B两车之间就产生排斥力,以A、B两车为研究对象,它们所受合外力为零.动量守恒,当A、B车速度相等时,两车相互作用结束,据以上分析可得:I=mBvB=(mA+mB)v,vB=I100= m/s=10 m/s, mB10v=100=6.从B车运动到两车相对静止过程,系统减少的机械能转化成电能,电能通过电阻发热,转化为焦耳热.根据能量转化与守恒:11mBv2- (mA+mB)v2 22111002 =×10×102-×15×()J=166.7 J 2215Q=2.解题策略与思路理想化模型就是为便于对实际物理问题进行研究而建立的高度抽象的理想客体.高考命题以能力立意,而能力立意又常以问题立意为切入点,千变万化的物理命题都是根据一定的物理模型,结合某些物理关系,给出一定的条件,提出需要求的物理量的.而我们解题的过程,就是将题目隐含的物理模型还原,求结果的过程.运用物理模型解题的基本程序:(1)通过审题,摄取题目信息.如:物理现象、物理事实、物理情景、物理状态、物理过程等.(2)弄清题给信息的诸因素中什么是起主要因素.(3)在寻找与已有信息(某种知识、方法、模型)的相似、相近或联系,通过类比联想或抽象概括,或逻辑推理,或原型启发,建立起新的物理模型,将新情景问题“难题”转化为常规命题.(4)选择相关的物理规律求解.二、实际应用型命题求解策略实际应用型命题,常以日常生活与现代科技应用为背景,要求学生对试题所展示的实际情景进行分析,判断,弄清物理情景,抽象出物理模型.然后运用相应的物理知识得出正确的结论.其特点为选材灵活、形态复杂、立意新颖.对考生的理解能力,推理能力,综合分析应用能力,尤其是从背景材料中抽象、概括构建物理模型的能力要求较高,是应考的难点.锦囊妙计1.案例探究例2:侦察卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面高度为h,要使卫星在一天的时间内将地面上赤道各处在日照条件下的情况全都拍摄下来,卫星在通过赤道上空时,卫星上的摄像机至少应拍摄地面上赤道圆周的弧长是多少?设地球的半径为R,地面处的重力加速度为g,地球自转的周期为T.命题意图:考查考生综合分析能力、空间想象能力及实际应用能力.错解分析:考生没能对整个物理情景深入分析,不能从极地卫星绕地球运行与地球自转的关联关系中找出θ=2πT1,从而使解题受阻.T解题方法与技巧:将极地侦察卫星看作质点(模型),其运动看作匀速圆周运动(模型),设其周期为T1,则有:=m2 ①2rT1地面处重力加速度为g,有GMm0R2=m0g ②由①②得到卫星的周期:T1=Rr3 其中:r=h+R g地球自转周期为T,则卫星绕行一周的过程中,地球自转转过的角度为:θ=2πT1 T卫星每经赤道上空时,摄像机应至少拍摄赤道圆周的弧长为s=θR=2πR=TT2.高考走势实际应用型命题不仅能考查考生分析问题和解决实际问题的能力,而且能检验考生的潜能和素质,有较好的区分度,有利于选拔人才.近几年高考题加大了对理论联系实际的考查,突出“学以致用”,充分体现了由知识立意向能力立意转变的高考命题方向.3.解题策略与思路解决实际应用型题目的过程,实质是对复杂的实际问题的本质因素(如运动的实际物体,问题的条件,物体的运动过程等)加以抽象、概括,通过纯化简化,构建相关物理模型,依相应物理规律求解并还原为实际问题终结答案的过程.其解题思路为:首先,摄取背景信息,构建物理模型.实际题目中,错综的信息材料包含着复杂的物理因素,要求考生在获取信息的感性认识基础上,对题目信息加工提炼,通过抽象、概括、类比联想、启发迁移等创造性的思维活动,构建出相关的模型(如对象模型、条件模型和过程模型等).其次,要弄清实际问题所蕴含的物理情景,挖掘实际问题中隐含的物理条件,化解物理过程层次,探明物理过程的中间状态,理顺物理过程中诸因素的相互依存,制约的关系,寻求物理过程所遵循的物理规律,据规律得出条件与结果间的关系方程,进而依常规步骤求解结果.三、物理解题中的数学应用数学作为工具学科,其思想、方法和知识始终渗透贯穿于整个物理学习和研究的过程中,为物理概念、定律的表述提供简洁、精确的数学语言,为学生进行抽象思维和逻辑推理提供有效方法.为物理学的数量分析和计算提供有力工具.中学物理教学大纲对学生应用数学工具解决物理问题的能力作出了明确要求.1.案例探究例3:一弹性小球自h0=5m高处自由下落,当它与水平地面每碰撞一次后,速度减小到碰前的7/9,不计每次碰撞时间,计算小球从开始下落到停止运动所经过的路程和时间.命题意图:考查综合分析、归纳推理能力.错解分析:考生不能通过对开始的几个重复的物理过程的分析,归纳出位移和时间变化的通项公式致使无法对数列求和得出答案.解题方法与技巧:(数列法)设小球第一次落地时速度为v0,则:v0=2gh0=10m/s那么第二,第三,……,第n+1次落地速度分别为:v1=7727v0,v2=()v0,…,vn=()nv0999小球开始下落到第一次与地相碰经过的路程为h0=5m,小球第一次与地相碰到第二次与地相碰经过的路程是:7()2vv02=10×(7)2L1=2×1=2×92g2g2小球第二次与地相碰到第三次与地相碰经过的路程为L2,v74L2=2×2=10×()92g2由数学归纳法可知,小球第n次到第n+1次与地相碰经过的路程为Ln:Ln=10×(72n)9故整个过程总路程s为:s=h+(L1+L2+…+Ln)=5+10[(727472)+()+…+()n]999可以看出括号内的和为无穷等比数列的和.由等比无穷递减数列公式Sn=a1得:7()2s=5+10×9 m=20.小球从开始下落到第一次与地面相碰经过时间:t0=2h0=1sg0小球第一次与地相碰到第二次与地相碰经过的时间为:t1=2×v17=2×s9g7n)s9同理可得:tn=2×(t=t0+t1+t2+…+tn=1+2×[(7727)+()+…+()n]s9997=[1+2×9]s=(1+7)s=8s.2.解题策略与思路(1).高考命题特点高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题.可以说任何物理试题的求解过程实质上是一个将物理问题转化为数学问题经过求解再次还原为物理结论的过程.(2).数学知识与方法物理解题运用的数学方法通常包括方程(组)法、比例法、数列法、函数法、几何(图形辅助)法、图象法、微元法等.<1>.方程法物理习题中,方程组是由描述物理情景中的物理概念,物理基本规律,各种物理量间数值关系,时间关系,空间关系的各种数学关系方程组成的.列方程组解题的步骤①弄清研究对象,理清物理过程和状态,建立物理模型.②按照物理情境中物理现象发生的先后顺序,建立物理概念方程,形成方程组骨架.③据具体题目的要求以及各种条件,分析各物理概念方程之间、物理量之间的关系,建立条件方程,使方程组成完整的整体.④对方程求解,并据物理意义对结果作出表述或检验.<2>.比例法比例计算法可以避开与解题无关的量,直接列出已知和未知的比例式进行计算,使解题过程大为简化.应用比例法解物理题,要讨论物理公式中变量之间的比例关系,清楚公式的物理意义,每个量在公式中的作用,所要讨论的比例关系是否成立.同时要注意以下几点:①比例条件是否满足:物理过程中的变量往往有多个.讨论某两个量比例关系时要注意只有其他量为常量时才能成比例.②比例是否符合物理意义:不能仅从数学关系来看物理公式中各量的比例关系,要注意每个物理量的意义(例:不能据R=U认定为电阻与电压成正比).I③比例是否存在:讨论某公式中两个量的比例关系时,要注意其他量是否能认为是不U2变量,如果该条件不成立,比例也不能成立.(例在串联电路中,不能认为P=中,RP与R成反比,因为R变化的同时,U随之变化而并非常量)<3>.数列法凡涉及数列求解的物理问题具有多过程、重复性的共同特点,但每一个重复过程均不是原来的完全重复,是一种变化了的重复,随着物理过程的重复,某些物理量逐步发生着“前后有联系的变化”.该类问题求解的基本思路为:①逐个分析开始的几个物理过程。
②利用归纳法从中找出物理量的变化通项公式(是解题的关键),最后分析整个物理过程,应用数列特点和规律解决物理问题。
③无穷数列的求和,一般是无穷递减等比数列,有相应的公式可用。
<4>.圆的知识应用与圆有关的几何知识在物理解题中力学部分和电学部分均有应用,尤其带电粒子在匀强磁场中做圆周运动应用最多,其难点往往在圆心与半径的确定上,其方法有以下几种:①依切线的性质定理确定:从已给的圆弧上找两条不平行的切线和对应的切点,过切点做切线的垂线,两条垂线的交点为圆心,圆心与切点的连线为半径.②依垂径定理(垂直于弦的直径平分该弦,并平分弦所对的弧)和相交弦定理(如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项)来确定半径:如图2.由BE=CE×ED=CE×(2R-CE)2CEEB2得R=+22CE也可用勾股定理得到:OB2=(OC-CE)2+EB2,R2=(R-CE)2+EB2此两种求半径的方法,常用于带电粒子在匀强磁场中运动的习题中.四、物理多解问题分析策略图2多解问题是高考卷面常见的题型之一,部分考生往往对试题中题设条件的可能性、物理过程的多样性及物体运动的周期性等因素分析不全,认识不透,往往出现漏解的失误.多解问题的求解是高考的难点之一.1.案例探究例4:一列正弦横波在x轴上传播,a、b是x轴上相距sab=6m的两质点,t=0,b点正好振动到最高点而a点恰好经过平衡位置向上运动,已知这列波的频率为25 Hz.(1)设a、b在x轴上的距离小于一个波长,试求出该波的波速.(2)设a、b在x轴上的距离大于一个波长,试求出该波的波速,若波速为40 m/s 时,求波的传播方向.命题意图:考查理解能力、推理及分析综合能力,尤其空间想象能力.错解分析:思维发散能力差,无法依据波的空间周期性与时间周期性,结合波动方向与质点振动方向间的关系,寻找所有可能解,而出现漏解情况.2.解题方法与思路:(1) 若波向右传播,a和b两质点应于如图3所示的a1和b1的两位置.sab=3 4λ1=6m.λ1=8m向右传播的波速v1=λ1f=200 m/s 图3若波向左传播,a和b两质点应分别位于图中a2和b1两位置.sab==24 m,向左传播的波速v2=λ21λ2=6 m,λ42F=600 m/s.(2)因a,b在x轴上的距离大于一个波长,若波向右传播,a质点若位于图中a1的位置,则b质点可位于b1,b2,…等位置,此时,sab=m,向右传播的波速v右=λ右324λ右+nλ右=6 m(n=1,2,3,…),λ右=.若波向左传播,a质点若位于图中的a2的位置,则b质点可位于b1,b2,…等位置,此时,sab=124λ左+nλ左=6m λ左=m .向左传播的波速v左=左f=m/s(n=1,2,3,…)当波速为40 m/s时,该波向左传播,应有:能向左.设波向右传播,有:传播的方向是由左向右.1.高考走势某一物理问题通过不同的思路、方法求得符合题设条件的同一结论;或某一物理问题通过同一思路、方法求得符合题设条件的多个不同答案,统称物理问题的多解.预计今后高考试卷仍将有该类命题呈现.2.审题指要物理多解问题,主要考查考生审题解题的思维的发散能力,具体表现为对题设条件、情景、设问、结论及研究对象特性、物理过程、物体运动形式等各自隐含的可能性进行推测判断的能力.多解问题的求解关键在于审题的细致深入及多解存在的预测.审题过程中应注意以下几点:(1).仔细推敲题设条件,判断多解的可能性.一般来说,对于题设条件不明确(模糊因素较多),需要讨论可能性的题目(俗称讨论题),往往会出现多解(一般为不定解).要求考生对题目条件全面细致地推敲,列举分析条件的多60014 =40,n=,无整数解,故不可=40,n=3,故可以判定当波速为40 m/s时,波种可能,选取相关的规律,求解各种不同的答案.如:弹性碰撞问题中物体质量交待不明、追及问题中力和运动方向交待不明、波的传播问题中传播方向交待不清、透镜成像问题中透镜性质、成像虚实不明、带电粒子在场中运动问题电荷性质不明等都可形成题目的多解,应引起重视.(2).深入分析题目背景下的研究对象、运动形式及物理过程的特点,判断多解的可能性.有些问题中的研究对象具有自身特性,也可使问题出现多解.如:电阻的串联或并联,电池的串联或并联,弹簧的伸与缩,带电的正与负等,都可使问题出现多解.有些物理问题中,研究对象的运动具有周期性特点,可造成问题的多解.如:圆周运动问题,弹簧振子的振动问题,波的传播问题,单摆的摆动问题等都需全面分析出现多解的可能性,以免漏解.(3).巧妙透析设问隐语,判断多解的可能性.有些题目的设问本身就隐含着多解的可能.例题设问中常含有“至多”“至少”“求……的范围”“满足……的条件”等隐语,则该题目有产生多解的可能.要求考生务必深入分析物理过程,推理寻找临界条件或临界状态,选取相应规律求得该类题目的多解(一般为范围解).五、物理动态问题分析描述物理现象的各物理量之间常存在着相互依赖、相互制约的关系,当其中某个物理量变化时,其他物理量也将按照物理规律发生变化,许多命题以此设计情景要求对这种变化进行分析、讨论,即物理动态问题.该类问题集中考查考生慎密的逻辑推理能力和综合分析能力,是历届高考的热点问题和难点问题.1.案例探究例5:如图4所示,在电场强度E=5 N/C的匀强电场和磁感应强度B=2 T的匀强磁场中,沿平行于电场、垂直于磁场方向放一长图4绝缘杆,杆上套一个质量为m=10-4 kg,带电量q=2×10-4 C的小球,小球与杆间的动摩擦因数μ=0.2,小球从静止开始沿杆运动的加速度和速度各怎样变化?命题意图:考查综合分析及推理能力,B级要求.错解分析:考生往往不能沿各物理量先后的变化顺序理顺各量制约关系,或者找不到物理过程中的突变点(即临界状态)无法将过程分段逐段分析推理,列出方程.解题方法与技巧:带电小球在竖直方向上受力平衡,开始沿水平方向运动的瞬间加速度:小球开始运动后加速度:a2=[qE-μ(mg-qvB)]/m,由于小球做加速运动,洛伦兹力F磁增大,摩擦力Ff 逐渐减小,当mg=F磁时,Ff =0,加速度最大,其最大值为:a3=qE=10 m/s2.m 随着速度v的增大,F磁>mg,杆对球的弹力N改变方向,又有摩擦力作用,其加速度:a4=[qE-μ(q vB-mg)]/m.可见Ff随v的增大而增大,a4逐渐减小.当Ff=F电时,加速度a5=0,此时速度最大,此后做匀速运动.由qE=μ(qvB-mg)解得v=15 m/s.结论:小球沿杆运动的加速度由8 m/s2逐渐增大到10 m/s2,接着又逐渐减小到零,最后以15 m/s的速度做匀速运动.2.解题策略与思路物理动态命题能够突出考查考生综合分析、严密推理、灵活运用所学知识解决实际问题的综合能力,充分暴露考生思维的深刻性、全面性等品质,是高考突出能力考查的命题设计方向之一.突破该类命题的关键在于首先区分出变量和不变量,挖掘变量间的相互依赖相互制约关系;其次通过统筹分析,依据物理规律判断预测变量的变化趋势,进而找出解题思路.一般来讲,(1)对于静力学动态问题(例1),宜采用“矢量图解法”,将某一力据其作用效果分解,构建示意图,将各力之间的依赖、制约关系直观形象地体现出来,达到简洁迅速的判断目的.(2)对于直流电路动态问题(例2),宜采用“结构分析法”,沿“局部→整体→局部”的思维路径,先分析局部电阻变化,根据全电路欧姆定律判断整体总电流及路端电压的变化,再根据串并联电路特点推理判定某局部电压、电流的变化情况,进而得出结论.(3)对于动力学类动态问题(例3)及成像类动态问题宜采用“逐段分析法”及“临界分析法”.其基本思路为:①深入分析物理过程;②挖掘物理过程中的临界状态及临界条件,将过程分为不同阶段;③明确不同阶段的变化量与不变量;④结合物理规律依物理量的变化先后进行逻辑推理或计算,得出结论.六、数形结合思想与图象法解题数形结合是一种重要的数学思想方法,在物理解题中有着广泛的应用,图象法解题便是一例.在高考命题中屡次渗透考查.1.案例探究例6:用伏安法测一节干电池的电动势和内电阻,伏安图象如图5所示,根据图线回答:(1)干电池的电动势和内电阻各多大?(2)图线上a点对应的外电路电阻是多大?电源此时内部热耗功率是多少?(3)图线上a、b两点对应的外电路电阻之比是多大?对应的输出功率之比是多大?(4)在此实验中,电源最大输出功率是多大?命题意图:考查考生认识、理解并运用物理图象的能力.B级要求.错解分析:考生对该图象物理意义理解不深刻.无法据特殊点、斜率等找出E、r、R,无法结合直流电路的相关知识求解.解题方法与技巧:利用题目给予图象回答问题,首先应识图(从对应值、斜率、截面、面积、横纵坐标代表的物理量等),理解图象的物理意义及描述的物理过程:由U-I图象知E=1.5 V,斜率表内阻,外阻为图线上某点纵坐标与横坐标比值;当电源内外电阻相等时,电源输出功率最大.(1)开路时(I=0)的路端电压即电源电动势,因此E=1.5 V,内电阻r=图5 E1.5= Ω7.5I短=0.2 Ω也可由图线斜率的绝对值即内阻,有.2 Ω 2.5(2)a点对应外电阻Ra=Ua1.0= Ω=0.4 Ω Ia2.5此时电源内部的热耗功率Pr=Ia2r=2.52×0.2=1.25 W,也可以由面积差求得Pr=IaE-IaUa=2.5×(1.5-1.0) W=1.25 W(3)电阻之比:Ra1.0/2.54== Rb0.5/5.01输出功率之比:(4)电源最大输出功率出现在内、外电阻相等时,此时路端电压U=E/2,干路电流I=I短/2,因而最大输出功率P出m=1.57.5× W=2.81 W 22当然直接用P出m=E2/4r计算或由对称性找乘积IU(对应于图线上的面积)的最大值,也可以求出此值.2.解题策略与思路数形结合是一种重要的数学方法,其应用大致可分为两种情况:或借助于数的精确性来阐明形的某些属性,或借助于形的几何直观性来阐明数之间某种关系.图象法解题便是一例。