赵凯华电磁学第三版磁介质

合集下载

赵凯华陈煕谋《电磁学》第三版思考题及习题答案(完整版)

赵凯华陈煕谋《电磁学》第三版思考题及习题答案(完整版)
ห้องสมุดไป่ตู้
1、 在地球表面上某处电子受到的电场力与它本身的重量相等, 求该处的电场强度 (已知电 子质量 m=9.1×10-31kg,电荷为-e=-1.610-19C). 解: 2、 电子所带的电荷量(基本电荷-e)最先是由密立根通过油滴实验测出的。密立根设计的 实验装置如图所示。一个很小的带电油滴在电场 E 内。调节 E,使作用在油滴上的电场力与 油滴的重量平衡。如果油滴的半径为 1.64×10-4cm,在平衡时,E=1.92×105N/C。求油滴上 的电荷(已知油的密度为 0.851g/cm3) 解: 3、 在早期(1911 年)的一连串实验中,密立根在不同时刻观察单个油滴上呈现的电荷, 其测量结果(绝对值)如下: 6.568×10-19 库仑 13.13×10-19 库仑 19.71×10-19 库仑 8.204×10-19 库仑 16.48×10-19 库仑 22.89×10-19 库仑 11.50×10-19 库仑 18.08×10-19 库仑 26.13×10-19 库仑 根据这些数据,可以推得基本电荷 e 的数值为多少? 解:油滴所带电荷为基本电荷的整数倍。则各实验数据可表示为 kie。取各项之差点儿 4、 根据经典理论,在正常状态下,氢原子中电子绕核作圆周运动,其轨道半径为 5.29× 10-11 米。已知质子电荷为 e=1.60×10-19 库,求电子所在处原子核(即质子)的电场强度。 解: 5、 两个点电荷,q1=+8 微库仑,q2=-16 微库仑(1 微库仑=10-6 库仑) ,相距 20 厘米。求 离它们都是 20 厘米处的电场强度。 解: 与两电荷相距 20cm 的点在一个圆周上,各点 E 大小相等,方向在圆锥在上。 6、 如图所示, 一电偶极子的电偶极矩 P=ql.P 点到偶极子中心 O 的距离为 r ,r 与 l 的夹角为。 在 r>>l 时,求 P 点的电场强度 E 在 r=OP 方向的分量 Er 和垂直于 r 方向上的分量 Eθ。 解:

赵凯华-电磁学-第三版-第二章-静电场中的导体和电介质

赵凯华-电磁学-第三版-第二章-静电场中的导体和电介质

R2 R1 R0
解: 1)导体电荷只分布在表面上 球A的电荷只可能在球的表面
B
Q
Aq
o
壳电B荷有可两能个分表布面在内、外两个表面R(2具体R1分布?)R0
由于A、B同心放置
带电体系具有球对称性
电量在表面上均匀分布(满足E内=0要求)
电量在表面上均匀分布 Q q
电量q在球A表面上均匀分
R 1
4 0
9109 m 103 RE 1F
106 F
法拉单位过大, 常用单位: 1nF 109 F
1pF 1012 F
二.导体组的电容
由静电屏蔽:导体壳内部的电场只由腔内的电 量和几何条件及介质决定电位差仅与电荷 Q,几何尺寸有关,不受外部电场的影响,可
以定义电容。

UB

Qq
E dr
Qq
R2
4 0r R2 4 0 R2
例3 如图所示,接地导体球附近有一点电荷 。
求:导体上感应电荷的电量
解: 接地,即 U 0
设:感应电量为 Q
R
由于导体是个等势体
O
l
q
O点的电势也为零 ,则
Q q 0 40 R 40l
Q Rq l
腔内无电场,E腔内=0 腔内电势处处相等
S
证明: 在导体壳内紧贴内表面作高斯面S

E ds 0 高斯定理 S
Qi 内表面 0
1.处处没有电荷
与等位矛盾 证明了上述 两个结论
2.内表面有一部分是正 则 会 从 正 电 荷 向 负 电荷,一部分是负电荷 电荷发出电力线
这就是物质对静电场的响应---第二章的研究内容:电场中的导体感应、 电解质极化, 并且分析感应、极化电荷对静电场的影响---静电场与物质的 相互作用(影响)

电磁学(赵凯华,陈熙谋第三版)第三章 习题解答

电磁学(赵凯华,陈熙谋第三版)第三章 习题解答
习题 ! ! "
" ’ , # ) !* ) !* ! (! ( ) +*) () "% ’ , # & !% $! % ・ ・ ・ $ ・ ・( & (& ! ) +* ( ) !*) (&! %&
" ! . ’% !( . ’%%% . $ " % . % " &% . % " ’% . ! " % ) $ ! " % . ’% !! ) $ ! " % #) " & ! . % " ’% . % " &%
(
!
!
)
习题 ! ! ""
新概念物理教程・电磁学$ 第三章 电磁感应 电磁场的相对论变换$ 习题解答
$ $ ! ! "# " 如本题图,一金属棒长为 % " &% ! 水平放置,以长度的 " # & 处为轴, 在水平面内 旋转, 每秒转两转。 已知该处地磁场在竖直方 向上的分量 $ " % % " &% "#, 求 &、 ’ 两端的电势 差。 解:在图中棒上轴的右边取一点 &(,使 它到轴的距离等于 & 点到轴的距离。 这两段导 相互抵消, 因此 ) & ’ %! ! &(’ %! ( ! * ") ・$# %! " " ! $ ( +,’ # ! +,&($# ) # # " !& !’ # %! * # ! * # * % " &% * "% * ( % " ’% ! % " "% # ) % %!’ " ( * "% % " #

电磁学第三版赵凯华答案

电磁学第三版赵凯华答案

2. 真空中两个点电荷q与Q,相距5.0毫米,吸引力为40达 因。已知q=1.2 10-6 库仑,求Q。
解: 依库仑定律:F
qQ
4 0r 2
Q F • 4 0r 2
q
4.0104
4 3.14 8.85 1012 1.2 10 6
5.0 10 3
2
9.310(13 库仑)
3. 为了得到一库仑电量大小的概念,试计算两个都是一库 仑的点电荷在真空中相距一米时的相互作用力和相距一千 米时的相互作用力。
解:若此处的电场为E,则
E
mg q
9.110 31 9.8 1.6 10 19
5.6 10 11
伏/米
2. 电子说带的电荷量(基本电荷 -e )最先是由密立根通过油
滴试验测的。密立根设计的试验装置如附图所示。一个很小的 带电油滴在电场E内。调节E,使作用在油滴上的电场力与油滴 的总量平衡。如果油滴的半径为1.64 10-4厘米,在平衡时, E=1.92 105牛顿/库仑。求油滴上的电荷(已知油的密度为 0.851克/厘米3)。
5.141011伏 / 米或牛顿/ 库仑
5. 两个点电荷,q1 =+8.0微库仑,q2= - 16.0微库仑(1微 库仑=10-6库仑),相距20厘米。求离它们都是20厘米处的 电场强度E。
解:依题意,作如图所示:
E1
q1
4 0r12
E2
q2
4 0r22
E y E1y E2 E1 cos 600 E2 cos 600
电荷重合在一起。证明:在它们的延长线上离中心(即负电荷)
为r处,
E
3Q
4 0r 4
(r
l ),
+q -2q +q

赵凯华_电磁学_第三版_第一章_静电场_129_pages

赵凯华_电磁学_第三版_第一章_静电场_129_pages

dq
dV
q
P
(点电荷!!)组成,然后利用场强叠加 原理
r
dE
E
q

dE
q

dq 4 0 r
ˆ r 2
dq dV ds dl
体电荷 密度 面电荷 密度 线电荷 密度
dq dl
dq dV
dq ds
电荷密度 一般是位 置的函数
例1
等量异号电荷的电场 电荷之间的距离为 l。
E q 4 0 r ˆ r 2
球对称!!(图示见 下页) r 从源电荷指向场点 场强方向:
两式得
正电荷受力方向
z
F q ˆ r 2 q0 4 0 r

o
j
A
y
球对称!
静电场基本 特性的原因 !!!
x
问题 如何求 任意 带电体的场强?
方法: 电力叠加原理+场强定义
2 0
E E E
在可视为电 偶极子时 E
ˆ r
4 r
q
2 0
ˆ r
ˆ ˆ p 3 r p r 3 4 0 r
1
推导:
E 4 r q
2 0
ˆ r
4 r
q
P
ˆ r
2 0
r
r
l
q r r E 3 3 4 0 r r
由图中
q
r
q
矢量关系
平方
2 2
l r r 2
2
l r r 2
l r r r l 4
2 2 2
l r r r l, 4

赵凯华 电磁学 第三版 第四章 稳恒磁场(2) 14 pages

赵凯华 电磁学 第三版 第四章 稳恒磁场(2) 14 pages

dl
L
L
dl
p
p
dl
p p dS 的立体角dω ω dS 的立体角d 立体角>0 立体角<0
分为两段积分
2
L
L p2 p1 B dl B dl B dl p p1 p2 p L p1 0 I p2 p1 d p2 B dl 4 0 I ( p2 ) ( p1 ) B dl p2 p1 4 2 0 2 0 I P1、 P2无限靠近 4 0 I 电流回路平面时 4 在如图所示的情形 B dl 0 I
?
安培环路定理证明 (任意闭合电流) 不讲授! 说明
Your attention please !
B dl 0 I i内
L i
B由多个闭合电流回路产生,对单个电流回路 证明安培环路定理成立,多个回路由单回路 叠加即可。
单个电流回路安培环路定理证明 B dl 0 I L 0 Idl r ˆ B 4 L r 2
C
A C
ˆ 0 I dl r dl r 2 4 L

ˆ n
C h
B

A
S
B
A

S
0 I dl ( dl ) r ˆ B dl r 2 4 L ˆ ˆ r r 0 I ( dl ) ( dl )( r ) ˆ 2 4 L r
i
i
B dl B1 dl B2 dl 0 I 1
L L L
穿越安培环路的电流线必须闭合或无穷长

赵凯华电磁学第三版麦克斯韦电磁理论和电磁波232pages精品PPT课件

赵凯华电磁学第三版麦克斯韦电磁理论和电磁波232pages精品PPT课件

一些有见识的物理学家支持麦克斯韦的电磁理论,赫 兹的大学老师-----亥姆霍兹就是其中之一。
1879年冬,德国柏林科学院根据亥姆霍兹的倡议, 颁布了一项科学竞赛奖,以重金向当时科学界征求对 麦克斯韦部分理论的证明。
1887-1888年赫兹完成了电磁波证实实验。
(2)实验仪器及现象
电感、电容小,振荡频率高,且有电阻,是阻尼振荡。
赫兹的局限:由于时代的局限和未能进一步深入研究,他在电磁波的应用方面也
犯下了失误.在电磁波被证实以后,有一些工程界人士对于其实用价值极感兴趣,但遗 憾的是他本人对这一点却持怀疑、否定的态度.他说:“如果要利用电磁波进行通讯联 系,那非得有一面和欧洲大陆面积差不多大的巨型反射镜才行.”而且还要把它“悬挂 在很高很高的天上.” -------如何反射传播?
四、偶极振子发射的电磁波(一般了解)
1、电偶极振子模型
p
p0
cost
一段通有高频电流的直导线,当导线长度远小于波长,且导线直径与导线
长度之比远小于1时,可近似的认为导线上各点电流的幅值和相位相同。这样
的一段直导线称为基本振子,
由于基本振子在辐射电磁波的过程中,导线上流动的电流会在导线的两端
点形成电量相等、符号相反的电荷,与静电场中电偶极子十分相似,因此基
微 厘米波 0.1~0.01 3~30千兆赫 电视、雷达、导航


毫米波 0.01 ~ 0.001米
30~300千兆 雷达、导肮、其它专

门用途
红外线
1、发现:1800年 赫谢耳 2、主要作用:热作用, 3、产生:一切物体 4、应用:红外线探测,如红外摄影
防盗报警 导弹制导 测温(Sars)
红外摄影--高红外光部分强

电磁学_赵凯华_教学大纲

电磁学_赵凯华_教学大纲

第1章电磁学教学大纲(包括讲座共60学时)第2章静电场参考学时 10§1 库仑定律•扭称实验及其它实验,电力平方反比律•库仑定律的物理内涵•库仑定律的成立条件• 电荷守恒定律,电荷的量子性§2 电场电场强度•电场,电场强度矢量•场强叠加原理§3 静电场的高斯定理•源与旋,通量与环流•静电场的高斯定理§4 静电场的环路定理电势•静电场的环路定理•关于静电场高斯定理和环路定理的几点说明•电势•场强与电势的微分关系§5静电场的基本微分方程*讲座:“电力平方反比律的理论与示零实验”;第3章静电场中的导体和电介质参考学时 8§1导体和电介质§2 静电场中的导体•导体的静电平衡条件•导体空腔与静电屏蔽•导体的静电平衡的基本性质•静电场边值问题的唯一性定理•尖端放电及其应用§3电容和电容器•孤立导体的电容•电容器及其电容•平行板电容器球形电容器同轴柱形电容器•分布电容•电容器的串并联§4 电介质极化•极化的微观机制•极化的描绘•极化强度矢量P和极化电荷q’的关系•极化强度矢量P和总电场E的关系——极化规律•各向异性电介质铁电体•例题§4有介质时的静电场•有介质时的高斯定理电位移矢量•应用例举§5静电场的边界条件•D的法向分量连续•E的切向分量连续§5带电体系的静电能•带电体系的静电势能•电容器储存的静电能•静电场的能量第4章直流电参考学时 4§1电流的连续性方程恒定条件·电流和电流密度矢量·电流的连续性方程恒定条件§2欧姆定律· 欧姆定律(积分形式)·电阻率和电导率·欧姆定律(微分形式)·焦耳定律•金属导电的经典微观解释§3 电源和电动势•电源的电动势•电源的路端电压•电源的功率•直流电路中的静电场的作用•温差电动势§4 直流电路•简单电路·复杂电路基尔霍夫定律第5章恒定磁场参考学时 10§1奥斯特实验•磁的基本现象•奥斯特实验•相关实验•研究课题§2毕奥-萨伐尔定律•毕奥-萨伐尔定律的建立•磁感应强度•载流回路的磁场§3磁场的“高斯定理”和“安培环路定律”•磁感应线•磁场的高斯定理•矢势*•磁单极* •安培环路定理§4安培定律•安培定律的建立* •安培定律=毕萨定律+安培力公式•磁场对载流线圈的作用,磁矩含讲座:“毕奥-萨筏尔定律、安培定律的示零实验”;§5 洛伦滋力•洛仑兹力•带电粒子在均匀电磁场中的运动•回旋加速器基本原理•霍耳效应•J.J.Thowmson的阴极射线实验,电子的发现•例题含讲座:“带电粒子在电磁场中的运动—磁约束、漂移、寝渐不变量”;第6章磁介质参考学时 4§1“分子电流”模型§2 顺磁质与抗磁质•顺磁质•抗磁质§3 磁化规律• 磁化的描绘•磁化强度矢量M与磁化电流I’的关系• 磁化强度矢量M与总磁感应强度B的关系§4有磁介质存在时的磁场•有磁介质存在时的磁高斯定理•有磁介质存在时的安培环路定理•磁介质的磁化规律§4 铁磁质•铁磁质的磁化规律•铁磁质磁化机制•铁磁材料的分类及其应用§5磁场的边界条件和磁路定理•B的法向分量连续•H的切向分量连续•磁路定理•磁屏蔽第7章电磁感应参考学时 10§1法拉第电磁感应定律•电磁感应现象的发现•法拉第对电磁感应的研究*•法拉第电磁感应定律•楞次定律•涡电流,电磁阻尼和电磁驱动含讲座:“法拉第电磁感应定律及其定量表达式”;§2动生电动势感生电动势涡旋电场•动生电动势•感生电动势,涡旋电场•交流发电机原理•电子感应加速器§3自感与互感•自感系数与互感系数•自感磁能与互感磁能•磁场的能量与能量密度§4暂态过程• RL电路的暂态过程•RC电路的暂态过程•RLC电路的暂态过程•灵敏电流计讲座:“超导体”;第8章交流电参考学时 8§1交流电概述• 各种形式的交流电• 简谐交流电的特征量• 几点说明§2交流电路中的基本元件•电阻元件•电感元件•电容元件•小结§3 元件的串联、并联——矢量图解法•串联电路•并联电路•多个元件的串、并联电路§4 交流电路的复数解法•交流电的复数表示法• 串、并联电路的复数解法• 串、并联电路的应用•复数形式的基尔霍夫定律•交流电桥§5 谐振电路•串联谐振电路•并联谐振电路• Q值的物理意义•谐振电路应用例举§6 交流电功率•瞬时功率、平均功率和功率因数•有功电阻与电抗•有功电流和无功电流•视在功率和无功功率•提高功率因数的意义•提高功率因数的方法§7 变压器简介•理想变压器•电压变比公式•电流变比公式•阻抗变比公式•功率传输效率§8 三相交流电•三相交流电• 相电压、线电压•负载的联接•三相电功率第9章麦克斯韦方程组——电磁波参考学时6讲座:“Maxwell电磁理论的建立”§1位移电流•电磁场的基本规律•位移电流§2麦克斯韦方程组•积分形式•微分形式•边界条件§3电磁波•电磁波的产生和传播•赫兹实验•电磁波的性质•电磁场的能量与动量•电磁波的传输与辐射•电磁理论与时空观狭义相对论的提出•麦克斯韦*。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 磁介质
导引概念
作业:p388 3,4,5
物质处在外磁场中,在外磁场作用下能发生变 化,并能反过来影响外磁场的媒质叫做磁介 质。
各种物质都是磁介质
在外磁场作用下磁介质出现磁性或磁性发生变化 的现象称为磁化
§1 分子电流观点
1.1、介质的磁化
1.介质与磁场的作用(与电场比较 )
电介质电场的产生 电场对电介质的作用
1、磁介质与磁场间的相互影响
外场 B0 磁介质 磁化 磁化电流 I 激发B B0 B B
最终决定介质磁化的是总磁场
B B0 B'
2、示例
求充满磁介质的螺绕环内的总场 B 。
设螺绕环通电流 I0 ,介质均匀磁化,强度为M ,

B0 B
0nI0 0i
0
M
i 0
i
两者同向,总磁场为:B
B0
B
B 0 ( nI i ) 0nI 0 M
问题:M, i 仍然是未知量,如何求总磁场?
1.3 磁场强度 H, 磁介质中的场方程(比较静电场)
1. 对比 磁场
电场
B
B0
B( M
)
引入H f (B)
消去M , 省去磁
如 何 求H?





E
E0
E(P )


D
0
E
析消
0
P

将I M dl 用于介质表面
M
L
Mt
I il M dl Mtl
il
i
L
Mt l
Mt
i
M 1sin
l i
M
n
不同磁介质L表面的磁化电流分析Байду номын сангаас
iL
M
n
M n : :介为质磁表介面质的磁法化向强矢度量
i 0
底面 n
i
i 0
n
侧面
1.2 磁介质内的总磁场
a
dl
nm分 子 dl M dl
● 穿越安培回路L分子环流电流强度: dI M dl
I dI M dl 穿出
L
穿入
L
L
● 均匀磁介质 (比较电介质)
均匀磁介质
均匀电介质
(b)磁表化LM 面电电流 d流面l:密i度I与 M磁 0?化强度的表 关S面 P系电dS荷 : nqe
→本质上是对电介质电荷的作用 →物质的电结构→电偶极子
磁介质磁场的产生 磁场对磁介质的作用
→对物质电流的作用 →物质的电流(磁结构)→?
2、用分子电流观点解释磁化现象
(1)历史上首先形成的解释磁化的观点: 磁荷观点
(a)认为磁场由磁荷产生,磁介质同电介质;
(b)该观点不符合现代物质结构; (c) 但可用于计算(简单);可解释磁化现象(如

质);
(2)
磁化强度
M
与磁化电流
I
的关系
电极化中
e,Pe的关系


磁化中
I ,M的 关 系
推导方法: 高斯定理
推导方法: 安培环路 定理(?)
e SPPdnS qe
M dl I
L i M?
(a) 穿越磁介质内安培环路的磁化电流 I I M dl L
L
仅穿越回路L的C类分子对电流有贡献
去P ,



化电

D的 求 解 : D S q0
S



2. H的 定 义 及 求 解
B dl 0 I 0 I0 0 I 0 I0 0 M dl
传导电流 分子电流
( B 0 M ) dl 0 I0 ( B 0 M ) dl I0
定义:H B 0 M H dl I0
(3)极磁化化电电荷流→(产生对比E极→化总电电荷场):
E
E0
E
磁化电流→产生 B→ 总磁场: B B0 B
问题 (1)磁化电流产生磁场遵守的定律?
(2)磁化电流总存在磁介质表面?
(3) B B0 B 仅适于介质内部? (4)磁化电流是否有热效应?
3、 (定量)磁化描述:--磁介质产生 B 大小的衡量
退磁)(自学)。
(2) 分子电流观点(讲授)
(2) 分子电流观点
(a)分子等效磁矩
组成磁介质分子的原子核、电子组成的复杂
带电系统。 由于电子、原子核的运动,分子有 一个等效电流i ,相应有一个分子等效磁矩
m分 i分 a
i分
a
m分
按照量子力学的观点:
m分 是各个的电子轨道磁矩、电子自旋磁矩、原子
C类分子的所在空间:分子电流环中心与
c dl
边界L的距离<分子电流环半径
dl 段上的C类分子数(下页)
三类磁分子
L cc
dl
d
l
M
a分
dl
ddl以段N上dl的n为cd类棱V分的子斜数n柱( :体分的a子分 d中子l心) 数在以
a
为底,
穿越 dl
dI
段上的分子环流的电流 强度: i分dN i分na dl ni分
H dl I0(自由电荷电流)
D dS q0(自由电荷)
S
3. 磁介质存在时磁场中的“高斯定理”
B dS ( B0 B ) dS B0 dS B dS 0 0 0
S
S
S
S
应用:两种不同磁介质中
连续
B连续,但 “折射”
B2
B1
问题:仅采用 H dl I0,是否可得到B?
磁介质存在时的 安培环路定理
H的 名 称 : 磁 场 强 度
单 位 : 安 培/ 米 H dl I0 ,常 用 单 位 : 奥 斯 特(Oe )
1Oe
103
4
安培 米


H dl I0
L与I0成


系,
I0为


电流

H定 义 为 磁 场 强 度 , 对 应静 电 学 中 的E,D?
例子
轴 对 称
2rH
I0
H
I
0
2r
H
B
0
M
B
0
(
H
M
)
I0
尚 需 条 件 :M f ( H ) 磁化规律
下一节
§2 等效的磁荷观点(自学要点) P561-562 P580表6-2
P581最后一段
(1)
磁化强度
M
定义: 单位体积内磁分子的分子磁矩之矢量和,即
M
m分
V
单位:
安 米2 米3
安米
M
n
m分
n
i分a
n:单位体积内的磁介质分子数
当 没 有 外 磁 场 时 ,M 0,B 0, 非 永 久 磁 体 ;
[讨论]






B0增

,M


在 真 均 匀
空 中 ,M 0( 没 有 磁 磁 化 :M(r)=C,
核磁矩的总和。
(b)按分子等效磁矩特性进行 磁介质分类 B0 0时 ,m分 0 ,分子具有固有磁矩,称为 顺磁质
顺磁质的磁化
何谓“顺
无外场时:各分子的磁矩取向杂乱无章,宏观对外不显磁性
(无磁场)
B0 0
B0 0
有外场时:分子磁矩在外磁场的作用下,一定程度上沿 外磁场方向有序排列。 对外表现出宏观磁性 (产生磁场) 宏观磁化电流(下页)
相关文档
最新文档