ENVI4.5监督分类图文并茂超详细操作步骤

合集下载

ENVI监督分类操作步骤简单示例

ENVI监督分类操作步骤简单示例

ENVI监督分类操作步骤简单示例
1.打开TM8
波段组合6、4、3
2.确定影像中心经纬度,同时打开google earth,确定影像在google中的对应位置
影像中心经纬度为:
33。

0’6” N; 98。

9’44” E
3.结合分类任务、影像信息以及google,确定图像总类别数
重点分:地表水、草地、林地
(1)初步判断影像中地表水可分为三类:1冰川、2湖泊、3河流
河流
冰川
湖泊(2)还分布有深绿色的4林地
林地
(3)草地往往分布在平坦的区域,比如河流周边等,颜色为浅绿色的5草地
草地
(4)根据纹理可以判断影像中有很多山脉,且是裸露的山脉(类似6山脉)
山脉
(5)河谷平原中还分布有7建筑物
建筑物
(6)在图像中还有许多未知地类,但是肯定不属于目标地物(林地、草地、地表水)的类别,建议单独分为一类,比如:云(颜色偏白色)等
8其他
初步判定,影像至少可以分为8类地物:
1冰川、2湖泊、3河流、4林地、5草地、6山脉、7建筑物、8其他
4.开始选择ROI
原则:每类均匀分类、数量足够
建议在ZOOM窗口下选ROI
考虑到建筑物的光谱信息与山脉以及其他较为接近,且在图像中分布极少,因此调整分类类别为:
1冰川、2湖泊、3河流、4林地、5草地、6山脉、7其他5.选择SVM分类(或最大似然分类)模型,进行分类。

ENVI软件基础知识以及监督分类详细步骤

ENVI软件基础知识以及监督分类详细步骤

ENVI软件基础知识以及监督分类详细步骤Ⅰ.软件的基本操作ENVI主⼯具条:1.图像的输⼊与输出.⾸先启动ENVI, 选择File- Open Image File,出现Enter DataFilename 对话框,选择⽂件的正确路径,点击⽂件名,再点击“OK”打开⽂件。

2.在打开的Available Band List 菜单中,可以显⽰图像的各个波段的基本信息,其中“Gray Scale”为灰⾊显⽰,“RGB Color”为彩⾊合成,并且可以选择彩⾊合成的波段,单击“Load”就可显⽰图像,打开的图像由三部分组成:Scroll(滚动)窗⼝、主图像窗⼝、以及缩放(Zoom)窗⼝, 可以使⽤多个显⽰窗⼝组,组中每个窗⼝的⼤⼩都可以调整。

其中菜单中的“New Diaplay”可以打开⼀个新的图像。

3.在“Available BandsList”菜单中选择“Available Files List”还可以可以显⽰出遥感图像的基本信息,具体如图所⽰:4.若要保存图像,需要在图像所在窗⼝中选择File-Save Image As-Image File,弹出Output Display to ImageFile 对话框。

对于单波段图像,选择8-bit Color,⽽多波段彩⾊合成图像则选择24-bit Color图像的保存⽅式有两种:⼀是直接保存为⽂件;⼆是选“Memory”,记忆在“Available BandsList”菜单中。

Ⅱ.图像增强与变换⼀.空间域增强1.线性变换线性拉伸:线性拉伸的最⼩和最⼤值分别设置为0 和255,两者之间的所有其它值设置为中间的线性输出值,选择Stretch_Type > Linear Contrast Stretch。

分段线性拉伸:分段线性对⽐度拉伸可以通过使⽤⿏标在输⼊直⽅图中放置⼏个点进⾏交互地限定。

当在点之间提供线性拉伸时,线段在点处连接起来,选择Stretch_Type > Piecewise Linear。

ENVI监督分类步骤

ENVI监督分类步骤

ENVI监督分类步骤监督分类是一种机器学习技术,用于将输入数据分为不同的类别。

此技术广泛应用于各种领域,如自然语言处理、计算机视觉和数据挖掘等。

以下是监督分类的步骤:1.收集和准备数据:在监督分类之前,需要收集与问题相关的数据集。

这些数据可以是结构化的,如表格数据,也可以是非结构化的,如文本或图像数据。

然后,需要对数据进行清洗和预处理,以确保数据的质量和一致性。

2.选择特征:特征是用于描述数据的属性或要素。

在监督分类中,需要选择合适的特征,以便能够准确地区分不同的类别。

特征选择的目标是减少特征空间的维度,同时保留最有信息量的特征。

3.划分数据集:将数据集划分为训练集和测试集是非常重要的步骤。

训练集用于训练分类模型,而测试集用于评估模型的性能。

通常,数据集的大部分数据被用于训练,而较小的部分用于测试,以确保模型的泛化能力。

4.选择合适的分类算法:监督分类有多种算法可供选择,如逻辑回归、支持向量机、决策树和随机森林等。

选择合适的算法取决于问题的特点、数据的类型和规模以及计算资源的可用性等因素。

5.训练模型:在监督分类中,需要使用训练集对选择的分类算法进行训练。

训练过程包括通过调整模型的参数来最大程度地减少预测误差。

训练时间的长短取决于数据集的规模和复杂性,以及使用的算法的效率。

6.评估模型性能:使用测试集来评估训练好的模型的性能是非常重要的。

可以使用各种指标来度量模型的性能,如准确率、精确率、召回率和F1分数等。

这些指标可以帮助理解模型在不同类别上的表现,并为模型的改进提供方向。

7.优化和改进模型:如果模型的性能不理想,可以通过优化和改进模型来提高性能。

这可以包括调整模型的超参数、增加更多的训练数据、采用集成学习方法或应用特征工程等。

8.部署和应用模型:一旦模型经过训练和验证,并且达到了理想的性能水平,就可以将其部署到实际应用中。

在应用中,可以使用模型来进行分类预测,对新的未知数据进行分类。

监督分类是一个迭代的过程,往往需要多次尝试和调整,以得到最好的模型性能。

利用envi进行tm影像监督分类详细操作步骤

利用envi进行tm影像监督分类详细操作步骤

利用envi进行tm影像监督分类详细操作步骤1.进行波段组合选取。

TM影像共有7个波段,一般的(根据经验值)选择543波段进行组合。

首先打开影像,点击File- Open Image File打开图像选择B5、B4、B3影像。

点击Basic Tools—Layer stacking-Import File,分别双击B5、B4、B3,然后点击Choose选择合成影像的路径并进行命名。

在ABL里,对应RGB选择合成影像的B5、B4、B3波段,点击Load RGB,显示影像2、选择样本训练区点击Basic Tools-Region Of Interest-ROI Tool点击New Region确定分类样本,水体、居民地、道路、耕地、森林,为了选择精确选择Zoom 窗口进行选择。

选择水体后,开始在zoom里选样本,点击右键结束,可在不同区域的水体上选择样本选择合适水体样本后,则依次选取居民地等地物的样本3、验证样本样本选择完成之后,需要对样本从定量和定性上分别进行评价。

(1)定量Options-Compute ROI Separability-选择合成影像-ok点击select all items-ok该工具来计算任意类别间的统计距离,一般的,参数的值在0~2.0之间,大于1.9说明样本之间可分离性好;小于1.8大于1.4属于合格样本;小于1.4需要重新选择样本;小于1考虑将两类样本合成一类样本。

多次试验,道路不易单独提取,建议进行人工后期提取。

(2)定性点击File-Export ROIs to n-D Visualizer,选择影像点击ok-Select all items-ok在n-DContrs对话框点击1、2、3,变成白色之后点击start,在visualizer 会出现动态变化的样本聚类情况,如下图,看样本的集中度,越高代表样本越好。

3、进行监督分类点击Classification-Supervised-Maximum Likelihood(最大似然法),选择影像,点击ok选择要分的类,设置好输出路径。

envi遥感图像监督分类与非监督分类

envi遥感图像监督分类与非监督分类

envi遥感图像监督分类监督分类,又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程。

它就是在分类之前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决函数进行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决函数去对其他待分数据进行分类。

使每个像元和训练样本作比较,按不同的规则将其划分到和其最相似的样本类,以此完成对整个图像的分类。

遥感影像的监督分类一般包括以下6个步骤,如下图所示:详细操作步骤第一步:类别定义/特征判别根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统;对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理.这个过程主要是一个目视查看的过程,为后面样本的选择打下基础。

启动ENVI5.1,打开待分类数据:can_tmr.img。

以R:TM Band 5,G:TM Band 4,B:TM Band 3波段组合显示。

通过目视可分辨六类地物:林地、草地/灌木、耕地、裸地、沙地、其他六类。

第二步:样本选择(1)在图层管理器Layer Manager中,can_tmr.img图层上右键,选择”New Region Of Interest",打开Region of Interest (ROI)Tool面板,下面学习利用选择样本。

1)在Region of Interest (ROI) Tool面板上,设置以下参数:ROI Name:林地ROI Color:2)默认ROIs绘制类型为多边形,在影像上辨别林地区域并单击鼠标左键开始绘制多边形样本,一个多边形绘制结束后,双击鼠标左键或者点击鼠标右键,选择Complete and Accept Polygon,完成一个多边形样本的选择;3)同样方法,在图像别的区域绘制其他样本,样本尽量均匀分布在整个图像上;4)这样就为林地选好了训练样本。

ENVI软件基础知识以及监督分类详细步骤

ENVI软件基础知识以及监督分类详细步骤

ENVI软件基础知识以及监督分类详细步骤一、ENVI软件基础知识:1. 遥感数据格式:ENVI软件支持处理多种遥感数据格式,包括常见的影像格式(如TIFF、JPEG、GeoTIFF)、高光谱遥感数据格式(如ENVI HDR、RST、HDF)以及雷达数据格式等。

2.遥感数据预处理:ENVI软件能够对遥感数据进行预处理,包括辐射校正、大气校正、几何校正等,以消除图像中的噪声、改正光谱形状,使数据更适合进行各种分析和应用。

3.遥感数据显示和可视化:ENVI软件提供多种数据显示和可视化方法,包括灰度显示、伪彩色显示、颜色合成、直方图等,以直观地展示遥感数据的信息。

4.遥感数据分析和处理:ENVI软件提供多种遥感数据分析和处理方法,包括光谱分析、空间分析、特征提取、分类、变化检测等,以获取遥感数据背后的信息。

5.遥感数据输出和应用:ENVI软件能够输出处理结果为常见的图像格式,方便进行后续的分析和应用。

二、监督分类的详细步骤:1.数据准备:首先需要准备监督分类所需的遥感数据集。

该数据集应包含所要分类的不同类别的样本数据,以及待分类的遥感影像数据。

样本数据应包含不同类别的典型样本,以训练分类器。

2.样本选择:从待分类的遥感影像数据中选择具有代表性的样本,包括不同类别的样本。

样本应遵循典型性、复杂性和可区分性的原则,以提高分类结果的准确性。

3.特征提取:从遥感影像数据中提取适当的特征用于分类器的训练和分类。

常用的特征包括光谱特征、纹理特征、形状特征等。

4.样本标记:对选择的样本进行标记,将其与相应的类别关联起来,以便进行监督分类的训练。

5.分类器选择:选择适合当前任务的分类器,常用的分类器包括最大似然分类器、支持向量机分类器、随机森林分类器等。

6.分类器训练:使用标记的样本数据对分类器进行训练,以建立分类模型。

7.分类器验证:使用未标记的样本数据对训练好的分类器进行验证,评估分类器的准确性和精确性。

8.影像分类:使用训练好的分类器对待分类的遥感影像数据进行分类,将其划分为不同的类别。

【VIP专享】ENVI4.5监督分类图文并茂超详细操作步骤

单击file—Open Image File打开图像,我的是TM7波段图像,加载5、4、3波段。

根据lay 选样本,OverLay—Region Of Interesting森林灌木、草地裸地耕地沙地其他(如水体、阴影之类的)选样本在Zoon放大窗口里选,这样可以选的更精确一些。

左键下点,右键结束因光谱值有差异,不在同一片地方选样本再在另一片地方选一下样本:正常情况下是通过别的方式选样本,如:野外调查或波峰影像上选样本,本次因条件限制就直接在图上选了。

选的差不多了,就选第二种灌木、草地样本,点的New Region按钮,选法一样,直至六类都选完:样本选完后验证样本对不对,静不精确点的Options后出现的下来菜单,选倒数第二个Compute ROI Separability点击后出现上面的对话框,选择我所要分类的图像,单击“OK”。

出现下面的对话框:,点击Select All Iterm选择全部的可分离性的样本,然后点击“OK”,出来下表:在这个表里,凡是最后的那个数值大于1.8的就说明符合要求,由此看出第一个是不符合要求的,应该是选的时候有问题(估计主要问题是灌木没有选好),按要求有问题就应该重新选,不过灌木和森林容易混淆,不容易选对,就不再重新选样本了。

只列出修改方法:在上面的对话框里选择森林,然后点击Goto,浏览每一个样本,将不好的样本删掉,再重新选一遍,然后再重新计算,直到达到要求为止。

上面是定量的评价,还有一个是定性的看:单击File,然后点击Export ROIs to Visualizer会出现,然后点击“OK”,出现,也是一样全选,点击“OK”出现n-D可视化对话框,,然后点击1、2、3、4、5、6,全选后,,单击Start,会出现一动态变化的样本聚类情况,在此只截一张图定性的看样本是否选的好,就看那个样本集中的程度,越高代表样本越好。

下面就可以分类了:点击主菜单的Classification—Supervised—Maximum Likelihood(最大似然发),出现,单击OK,出现此对话框设置如下:按着Shift全选样本,给输出分类文件命名并选择存储位置,然后点击OK输出,可用波段列表里会多出一个如图,在其上右键然后单击Load Band to New Display在新窗口加载分类图像如下:对分类图的后后处理(改名字、改颜色、分类后处理):单击Overlay—Classification叠加分类图选择分类文件点OK,勾选样本前面的On可以叠加相应的分类,如:改名字:选择每一个分类,然后去掉后面的像素数,修改完毕点OK,然后单击Edit,选择第二个即将选择的类别并到其他类别里面去,出现下面的对话框,选Zoom,在On前面勾选即被归并的类别,点击颜色即要归并入的类别,然后在Zoom里左键画线,单击第一次一次右键闭合选择某一区域,再单击一次右键及可把此区域分错类别才分类并入另一类别里如:错分成林地的草地变回成了草地。

ENVI的监督分类操作步骤

老师要求提交:1.可能性矩阵2.精度评价报告3.分类结果图具体流程:1.打开影像,考试时的影像是老师给的高分辨率影像。

以已有的QuickBird影像为例:File---Open Image File ,在Available Band 中以RGB打开,为真彩色,即地物的真实颜色。

2.选择监督分类样本(感兴趣区域):在影像的工具栏中选择,Overlay---Region of interest在打开的#1 ROI Tool 工具栏中,以多边形的方式选择感兴趣区:ROI-Type----Polygon 在zoom窗口中进行选择选择类别,植被,水体,裸地,房屋。

查看分离程度,继续在ROI Tool 工具栏中,选择Option—compute ROI separability ,选择影像ok.,相关度大于1.8的说明分类较好。

保存文件。

2.用最大似然法进行监督分类,主菜单栏中,Classification —Supervised—Maximum Likelihood,进入选择参数的对话框。

Select all Item阈值Probability Threshold一般在0~1之间。

不需输出真实值。

因为还要分类后处理,储存至memory.3.分类后处理,①分类合并,在主菜单中Classification—post classification—Sieve Classes选择刚才分类好的,memory影像,改变Group Min Threshold数值,由2改到8.即改变每类别最小像元值,由于我只选了四个类别数,应该做完后不会有类别的合并。

保存文件,即要求交的分类结果图。

②生成混淆矩阵主菜单中,Classification—post classification—confusion Matrix—Using Ground Truth ROIS. 将所有类别都选上。

保存混淆矩阵大致是这样,可能还不完整。

监督分类 envi

在ENVI监督分类过程
(乌鲁木齐市的遥感图像)
地理科学与旅游学院地理信息系统10-3班学生艾则孜提约麦尔·麦麦提
学号:20100703150031
序号:32
1.打开将要分类的影像File——open image file选择相应的波段,合成后裁剪感兴趣区,下面的是乌鲁木齐市的由7 ,4 ,2波段来显示的界面。

2.在待分类影像上选样本。

主菜单:Basic Tool——Region of interest——ROI Tool,进行取采样点。

在弹出的对话框中选Polygon.
3.按照自己的需求选完训练区后保存ROI.
选择好个地物的样本后在ROI对话框中Options——Compute ROI Separability 中检查把不同地物的差异情况,如大于1.8为合格,若小于可对该样本进行GO TO 修改,或Delete ROI处理。

在ROI Separability Calculation中双击Select All Items选择所有Roi用于分离性计算
参数值<1.8需重新选择,>1.9说明样本之间分离性好
Roitools对话框中单击saveRois保存
4.选取的训练区保存以后。

进行分类。

主菜单—Classification—supervised--------maximum likelihood
在弹出的对话框中选待分类的图像:
接下来可以看看结果是什么样的。

ENVI中监督分类方法及参数说明

ENVI中监督分类方法及参数说明ENVI 中监督分类方法及参数说明(2011-10-10 09:56:27)标签:转载分类:ENVI/IDL学习原文地址:ENVI中监督分类方法及参数说明作者:ENVIIDL根据分类的复杂度、精度需求等选择一种分类器。

在主菜单->Classification-> Supervised->分类器类型(如表 6.1),此外还包括应用于高光谱数据的波谱角(Spectral Angle Mapper Classification)、光谱信息散度(Spectral Information Divergence Classification)和二进制编码(Binary Encoding Classification)分类方法。

表6.1 六种监督分类器说明分类器说明平行六面体(Parallelpiped)根据训练样本的亮度值形成一个n维的平行六面体数据空间,其他像元的光谱值如果落在平行六面体任何一个训练样本所对应的区域,就被划分其对应的类别中。

平行六面体的尺度是由标准差阈值所确定的,而该标准差阈值则是根据所选类的均值求出。

最小距离(Minimum Distance)利用训练样本数据计算出每一类的均值向量和标准差向量,然后以均值向量作为该类在特征空间中的中心位置,计算输入图像中每个像元到各类中心的距离,到哪一类中心的距离最小,该像元就归入到哪一类。

马氏距离(Mahalanobis Distance)计算输入图像到各训练样本的马氏距离(一种有效的计算两个未知样本集的相似度的方法),最终统计马氏距离最小的,即为此类别。

最大似然(Likelihood Classification)假设每一个波段的每一类统计都呈正态分布,计算给定像元属于某一训练样本的似然度,像元最终被归并到似然度最大的一类当中。

神经网络(Neural Net Classification)指用计算机模拟人脑的结构,用许多小的处理单元模拟生物的神经元,用算法实现人脑的识别、记忆、思考过程应用于图像分类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单击file—Open Image File打开图像,我的是TM7波段图像,加载5、4、3波段。

根据lay 选样本,OverLay—Region Of Interesting
森林灌木、草地裸地耕地沙地其他(如水体、阴影之类的)
选样本
在Zoon放大窗口里选,这样可以选的更精确一些。

左键下点,右键结束
因光谱值有差异,不在同一片地方选样本
再在另一片地方选一下样本:
正常情况下是通过别的方式选样本,如:野外调查或波峰影像上选样本,本次因条件限制就直接在图上选了。

选的差不多了,就选第二种灌木、草地样本,点
的New Region按钮,
选法一样,直至六类都选完:样本选完后验证样本对不对,静不精确
点的Options后出现的下来菜单,选倒数第二个Compute ROI Separability
点击后出现上面的对话框,选择我所要分类的图像,单击“OK”。

出现下面的对话框:
,点击Select All Iterm选择全部的可分离性的样本,然后点击“OK”,出来下表:
在这个表里,凡是最后的那个数值大于1.8的就说明符合要求,由此看出第一个是不符合要求的,应该是选的时候有问题(估计主要问题是灌木没有选好),按要求有问题就应该重新选,不过灌木和森林容易混淆,不容易选对,就不再重新选样本了。

只列出修改方法:
在上面的对话框里选择森林,然后点击Goto,浏览每一个样本,将不好的样本删掉,再重新选一遍,然后再重新计算,直到达到要求为止。

上面是定量的评价,还有一个是定性的看:
单击File,然后点击
Export ROIs to Visualizer会出现
,然后点击“OK”,出现,也是一样全选,点击“OK”
出现n-D可视化对话框,,然后点击1、2、3、4、5、6,全选后,
,单击Start,会出现一动态变化的样本聚类情况,在此只截一张图
定性的看样本是否选的好,就看那个样本集中的程度,越高代表样本越好。

下面就可以分类了:
点击主菜单的Classification—Supervised—Maximum Likelihood(最大似然发),出现
,单击OK,出现
此对话框设置如下:
按着Shift全选样本,给输出分类文件命名并选择存储位置,然后点击OK输出,可用波段列
表里会多出一个如图,在其上右键然后单击Load Band to New Display在新窗口加载分类图像如下:
对分类图的后后处理(改名字、改颜色、分类后处理):
单击Overlay—Classification叠加分类图
选择分类文件点OK,
勾选样本前面的On可以叠加相应的分类,如:
改名字:
选择每一个分类,然后去掉后面的像素数,修改完毕点OK,然后单击
Edit,选择第二个即将选择的类别并到其他类别里面去,出现下面的对话框
,选Zoom,在On前面勾选即被归并的类别,点击颜色即要归并入的类别,然后在Zoom里左键画线,单击第一次一次右键闭合选择某一区域,再单击一次右键及可把此区域分错类别才分类并入另一类别里
如:错分成林地的草地变回成了草地。

其他的分类后处理:
1.精度印证:用混合矩阵,选
(出来对话框
精度印证样本怎么来的:野外调查,在google上看那个是什么东西)
出来对话框:
选择分类图像,点OK,左边是印证样本,右边是选择样本,匹配分类后点OK,
点OK,出来下面的矩阵表
()
)后处理(出去小碎点):
点OK,(Majority的Kernel Size值越大
合并的越多;Minority很少用)点OK,结果为
(未处理前
为)把一些小斑点给合并了。

2.处理后
这两种都是定性的方式定量的方式(剔除):
填3是只小于一公顷的像元剔除掉
分类统计
选做过去掉小班点的那个再选原来的图像
出图:1.出矢量图
2.
分类结果叠加到影像上去
这个是543上只叠加耕地的
可能需要拉
伸一下才会好看一些。

相关文档
最新文档