电磁波期末考试题集及答案详解

合集下载

电磁场与电磁波期末考试复习试题4套(部分含答案)

电磁场与电磁波期末考试复习试题4套(部分含答案)

电磁场与电磁波期末考试复习资料11.圆柱坐标系中单位矢量 , 。

2.对于矢量A ,若 ,则=+•y x a y x a x )(2 ,=⨯x z a y a x 2 。

3.给定两个矢量z y x a a a A 32-+=,z y a a B +-=4,则矢量A 的单位矢量为 ,矢量B A ⋅= 。

4.已知直角坐标系中点P 1(5,-2,1),P 2(3,1,2),则P1的位置矢量为 ,P1到P2的距离矢量为 。

5.已知球坐标系中单位矢量 。

6.在两半无限大导电平面组成的直角劈形中间放置一点电荷,此时点电荷的镜像电荷个数为 。

7.点电荷q 在自由空间任一点r 处电场强度为 。

8.静电场中导体内的电场为 ,电场强度与电位函数的关系为 。

9.高斯散度定理的积分式为 ,它广泛的用于将一个封闭面积分变成等价的体积分,或者将一个体积分变成等价的封闭面积分。

10.已知任意一个矢量场A ,则其旋度的散度为 。

11.真空中静电场的基本方程的微分形式为 、 、 。

12.分析恒定磁场时,在无界真空中,两个基本场变量为 ,它们之间的关系为 。

13.斯托克斯定理为 ,它表明矢量场A 的旋度沿曲面S 的方向分量的面积分等于该矢量沿围绕此面积曲线边界的线积分。

14.任意一个标量场u ,则其梯度的旋度为 。

15.对于某一矢量 ,它的散度定义式为 ,用哈密顿算子表示为 。

16.介质中静电场的基本方程的积分式为 , , 。

17.介质中恒定磁场的基本方程的微分形式为 、 、 。

18.介质中恒定磁场的基本方程的积分式为 , , 。

19.静电场中两种介质分界面的边界条件是 , 。

20.在无限大的导体平面上方d 处放一点电荷q ,则其镜像电荷电量为 ,位置位于 ;如果一个点电荷置于两平行导体中间,则此点电荷有 镜像电荷。

21.矢量场223z a yz a y x a A z y x ++=在点P(1,1,0)的散度为 。

22.一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,则其镜像电荷带电量为 ,位置位于 ;当点电荷q 向无限远处运动时,其镜像电荷向 运动。

电磁场与电磁波期末试题

电磁场与电磁波期末试题

电磁场与电磁波期末试题一、选择题(10×2=20分)1.产生电场的源为( C )A 位移电流和传导电流;B 电荷和传导电流;C 电荷和变化的磁场;D 位移电流和变化的磁场。

2.在有源区,静电场电位函数满足的方程是( A )A 泊松方程;B 亥姆霍兹方程;C 高斯方程;D 拉普拉斯方程。

3. 如果真空中有一个点电荷q 放在直角坐标系的原点,则坐标),,(z y x 处的电位=Φ( D )A 22241z y xq++πε; B 222041z y x q++πε; C 22241zy x q ++πε; D 22241zy x q ++πε。

4. 某金属在频率为1MHz 时的穿透深度为60m μ,当频率提高到4 MHz 时,其穿透深度为( B )A 15m μ;B 30m μ;C 120m μ;D 240m μ。

5. 在正弦电磁场中,位移电流应与该处电场的方向一致,其相位( C ) A 与电场相同; B 与电场相反; C 超前电场90°; D 滞后电场90°。

6. 一个半径为a 的导体球,球外为非均匀电介质,介电常数为a r 0εε=,设导体球的球心与坐标原点重合,则导体球与无穷远点的电容为( B )A a 04πε; B a 08πε; C a 012πε; D a 02πε。

7.对于非磁性介质,平行极化的均匀平面斜入射到介质分界面上,发生全透射的条件为( B )A 反射波平行极化;B 入射角等于布儒斯特角;C 入射角等于临界角;D 入射波为左旋园极化。

8.麦克思韦提出的( D )的概念,使在任何状态下的全电流都可保持连续A 传导电流;B 时变电流;C 运流电流;D 位移电流。

9. 如图所示的一个电量为q 的点电荷放在060导体内坐标),(d a 处,为求解导体包围空间的电位,需要( C )个镜像电荷A 1个;B 3个;C 5个;D 8个。

10. 已知良导体的电导率磁导率和介电常数分别为σμ和ε,则频率为ω的平面电磁波入射到该导体上时的集肤深度为( A ) Aωμσ2; B 2ωμσ; Cωμσ21;D σωμ2。

《电磁场与电磁波》期末复习题及答案

《电磁场与电磁波》期末复习题及答案

《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。

A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。

电磁场与电磁波考试题答案参考资料

电磁场与电磁波考试题答案参考资料

第一章 静电场一、选择题(每题三分)1) 将一个试验电荷Q (正电荷)放在带有正电荷的大导体附近P 点处,测得它所受力为F ,若考虑到电量Q 不是足够小,则:()A 、F/Q 比P 点处原先的场强数值大 C 、F/Q 等于原先P 点处场强的数值B 、F/Q 比P 点处原先的场强数值小 D 、F/Q 与P 点处场强数值关系无法确定 答案(B )·P+Q2) 图中所示为一沿X 轴放置的无限长分段均匀带电直线,电荷线密度分别为+λ(X<0)和一个-λ(X>0),则OXY 坐标平面上点(0,a )处的场强E为( )A 、0B 、a 2i 0πελC 、a 4i 0πελD 、a 4)j i (0πε+λ3) 图中所示曲线表示球对称或轴对称静电场的某一物理量随径向距离r 变化的关系,请指出该曲线可描述下面那方面内容(E 为电场强度的大小,U为静电势)()A 、半径为R 的无限长均匀带电圆柱体电场的E-r 关系 C 、半径为R 的均匀带正电球体电场的U-r 关系B 、半径为R 的无限长均匀带电圆柱面电场的E-r 关系 D 、半径为R 的均匀带正电球面电场的U-r 关系答案(B )4) 有两个点电荷电量都是+q ,相距2a,今以左边的点电荷为球心,以a 为半径作一球形高斯面,在球面上取两块相等的小面积1S 和 2S 的电场强度通量分别为1ϕ和 2ϕ,通过整个球面的电场强度通量为3ϕ,则()为零D 、以上说法都不对 答案(C ) 6) 两个同心带电球面,半径分别为)(,b a b a R R R R <,所带电量分别为b a Q Q ,。

设某点与球心相距r,当b a R r R <<时,该点的电场强度的大小为() A 、2ba 0rQ Q 41+∙πε B 、2ba 0rQ Q 41-∙πε C 、)R Q r Q (412bb 2a 0+∙πε D 、2a 0r Q 41∙πε 答案(D )7) 如图所示,一个带电量为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量为() A 、6q ε B 、12qε C 、24q ε D 、048qε 答案(C )8) 半径为R 的均匀带电球面,若其电荷密度为σ,则在距离球面R 处的电场强度为()A 、0εσ B 、02εσC 、04εσD 、8εσ答案(C )9) 高斯定理⎰⎰ερ=∙vs dV S d E ()A 、适用于任何静电场 C 、只适用于具有球对称性,轴对称性和平面对称性的静电场B 、只适用于真空中的静电场 D 、只适用于虽然不具有(C)中所述的对称性,但可以找到合适的高斯面的静电场 答案(B ) 10) 关于高斯定理的理解正确的是()A 、 如果高斯面上处处E为零,则该面内必无电荷 C 、如果高斯面内有许多电荷,则通过高斯面的电通量必不为零B 、 如果高斯面内无电荷,则高斯面上处处E为零 D 、如果高斯面的电通量为零,则高斯面内电荷代数和必为零 答案(D ) 11) 如图两同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点场强大小E 为() A 、2021r 4Q Q πε+ B 、+πε2101R 4Q 2202R 4Q πε C 、201r 4Q πε D 、0 答案(D )12)若均匀电场的场强为E,其方向平行于半径为R 的半球面的轴,则通过此半球面的电通量Φ为()13) 下列说法正确的是()A 、 闭合曲面上各点场强为零时,面内必没有电荷 C 、闭合曲面的电通量为零时,面上各点场强必为零B 、 闭合曲面内总电量为零时,面上各点场强必为零 D 、通过闭合曲面的电通量仅决定于面内电荷 答案(D )14) 在空间有一非均匀电场,其电力线分布如图,在电场中作一半径为R 的闭合球面S ,已知通过球面上某一面元S ∆的电场线通量为e ∆Φ,则通过该球面其余部分的电场强度通量为()A 、e ∆Φ-B 、e S r ∆Φ⋅∆24π C 、e SSr ∆Φ⋅∆∆-24π D 、0 答案(15) 在电荷为q +的电场中,若取图中点P 处为电势零点,则M 点的电势为()16)下列说法正确的是()A 、 带正电的物体的电势一定是正的 C 、带负电的物体的电势一定是负的B 、 电势等于零的物体一定不带电 D 、物体电势的正负总相对电势参考点而言的 答案(D )17) 在点电荷q 的电场中,选取以q 为中心,R 为半径的球面上一点P 处作电势零点,则与点电荷q 距离为r 的P ‘点电势为()A 、r 4q 0πε B 、)R 1r 1(4q 0-πε C 、)R r (4q 0-πε D 、)R1r 1(4q 0-πε-答案(B )18) 半径为R的均匀带电球面,总电量为Q ,设无穷远处的电势为零,则球内距球心为r 的P 强度和 电势为() A 、E=0, U=r 4Q 0πε B 、 E=0, U=R 4Q 0πε C 、E=2r 4Q0πε. U=r 4Q 0πε D 、E=2r 4Q0πε答案(B )19) 有N 个电量为q 布,比较在这两种情况下在通过圆心O 并垂直与圆心的Z 轴上任意点P 的 场强与电势,则有() A 、场强相等,电势相等B 、场强不相等,电势不相等C 、场强分量z E 相等,电势相等D 、场强分量z E 答案(C )20)在边长为a 正方体中心处放置一电量为Q A 、a 4Q 0πε B 、R 2Q 0πε C 、R Q 0πε D 、R22Q0πε答案(B )21)如图两个同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点的电势U 为()A 、r4Q Q 021πε+ B 、101R 4Q πε+202R 4Q πε C 、0 D 、101R 4Q πε 答案(B )22) 真空中一半径为R 的球面均匀带电为Q ,,在球心处有一带电量为q 的点电荷,如图设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处的电势为()A 、E R 2π B 、E R 22π C 、E R 221π D 、E R 22πE 、22ERπ 答案(A )A 、a 4q 0πε B 、a8q 0πε C 、a 4q 0πε-D 、a8q0πε- 答案(D )A 、r4Q 0πε B 、)R Q r q (410+πε C 、r 4q Q 0πε+ D 、)RqQ r q (410-+πε 答案(B )23)当带电球面上总的带电量不变,而电荷的分布作任意改变时,这些电荷在球心出产生的电场强度E和电势U 将()A 、E 不变,U 不变 B 、E 不变,U 改变 C 、E 改变 ,U 不变 D 、E改变,U 也改变 答案(C )24) 真空中有一电量为Q 的点电荷,在与它相距为r 的A 点处有一检验电荷q,现使检验电荷q 从A 点沿半圆弧轨道运动到B 点,如图则电场场力做功为()A 、q2r r 4Q 220⋅π⋅πε B 、rq 2r 4Q 20⋅πε C 、rq r 4Q 20π⋅πε D 、0 答案(D ) 25) 两块面积为S 的金属板A 和B 彼此平行放置,板间距离为d (d 远远小于板的线度),设A 板带电量1q , B 板带电量2q ,则A,B 板间的电势差为() A 、S2q q 021ε+ B 、d S 4q q 021⋅ε+ C 、d S 2q q 021⋅ε- D 、d S4q q 021⋅ε- 答案(C )26)图中实线为某电场中电力线,虚线表示等势(位)面,由图可以看出() A 、c E >>b a E E c U >>b a U U C 、c E >>b a E E c U <<b a U UB 、c E <<b aE E c U <<ba U U D 、c E <<b a E Ec U >>b a U U 答案(A )27) 面积为S 的空气平行板电容器,极板上分别带电量为q ±,若不考虑边缘效应,则两极板间的相互作用力为()A 、S q 02ε- B 、S 2q 02ε- C 、202S 2q ε D 、202S q ε 答案(B )28)长直细线均匀带电。

电磁场与电磁波复习题(含问题详解)

电磁场与电磁波复习题(含问题详解)

电磁场与电磁波复习题(含问题详解)电磁场与电磁波复习题⼀、填空题1、⽮量的通量物理含义是⽮量穿过曲⾯的⽮量线总数.散度的物理意义⽮量场中任意⼀点处通量对体积的变化率。

散度与通量的关系是⽮量场中任意⼀点处通量对体积的变化率。

2、散度在直⾓坐标系的表达式 z A y A x A z yxA A ??++=??=ρρdiv ;散度在圆柱坐标系下的表达;3、⽮量函数的环量定义⽮量A 沿空间有向闭合曲线C 的线积分.旋度的定义过点P 作⼀微⼩曲⾯S,它的边界曲线记为L,⾯的法线⽅与曲线绕向成右⼿螺旋法则。

当S 点P 时,存在极限环量密度。

⼆者的关系 ndS dC e A ρρ?=rot ;旋度的物理意义点P 的旋度的⼤⼩是该点环量密度的最⼤值;点P 的旋度的⽅向是该点最⼤环量密度的⽅向。

4.⽮量的旋度在直⾓坐标系下的表达式。

5、梯度的物理意义标量场的梯度是⼀个⽮量,是空间坐标点的函数。

梯度的⼤⼩为该点标量函数?的最⼤变化率.即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向.它指向函数的增加⽅向等值⾯、⽅向导数与梯度的关系是梯度的⼤⼩为该点标量函数的最⼤变化率.即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向.它指向函数的增加⽅向.; 6、⽤⽅向余弦cos ,cos ,cos αβγ写出直⾓坐标系中单位⽮量l e r 的表达式;7、直⾓坐标系下⽅向导数u l8、亥姆霍兹定理的表述在有限区域.⽮量场由它的散度、旋度及边界条件唯⼀地确定.说明的问题是⽮量场的散度应满⾜的关系及旋度应满⾜的关系决定了⽮量场的基本性质。

9、麦克斯韦⽅程组的积分形式分别为 0()sls s l s D dS Q B E dl dS t B dS D H dl J dS t ?=??=-??=?=+r r r r r r r r g r r r r r g ????其物理描述分别为10、麦克斯韦⽅程组的微分形式分别为020E /E /t B 0B //t B c J E ρεε??=??=-=??=+??r r r r r r r其物理意义分别为11、时谐场是激励源按照单⼀频率随时间作正弦变化时所激发的也随时间按照正弦变化的场. ⼀般采⽤时谐场来分析时变电磁场的⼀般规律.是因为任何时变周期函数都可以⽤正弦函数表⽰的傅⾥叶级数来表⽰;在线性条件下.可以使⽤叠加原理。

电磁场与波期末考试试题A卷含答案

电磁场与波期末考试试题A卷含答案

莆田学院期末考试试卷 (A )卷2011 — 2012 学年第 一 学期课程名称: 电磁场与波 适用年级/专业: 09/电信 试卷类别 开卷( ) 闭卷(√) 学历层次 本科 考试用时 120分钟《.考生..注意:答案要全部抄到答题纸上,做在试卷上不给分.......................》.一、填空题(每空2分,共30分)1.给定两个矢量z y x a a a A 32-+=,z y a a B +-=4,则矢量A 的单位矢量为 ① ,矢量B A ⋅= ② 。

2.高斯散度定理的积分式为 ① ,它广泛的用于将一个封闭面积分变成等价的体积分,或者将一个体积分变成等价的封闭面积分。

3.已知任意一个矢量场A ,则其旋度的散度为 ① 。

4.介质中恒定磁场的基本方程的积分式为 ① , ② , ③ 。

5.一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,则其镜像电荷带电量为 ① ,位置位于 ② ;当点电荷q 向无限远处运动时,其镜像电荷向 ③ 运动。

6.标量场2),,(x xyz z y x +=ψ通过点P(1,1,2)的梯度为① 。

7.引入位移电流的概念后,麦克斯韦对安培环路定律做了修正,其修正后的微分式是 ① ,其物理含义是: ② 。

8.自由空间传播的电磁波,其磁场强度)sin(z t H a H m y βω-=,则此电磁波的传播方向是 ① ,磁场强度复数形式为 ② 。

二、单项选择题(每小题2分,共20分)1.自由空间中的平行双线传输线,导线半径为a ,线间距为D ,则传输线单位长度的电容为 。

A .)ln(1aaD C -=πε B. )ln(201aa D C -=πε C. )ln(2101a a D C -=πε2.如果某一点的电场强度为零,则该点的电位为 。

A.一定为零 B.不一定为零 C.为无穷大3.真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为 。

高三物理电磁波试题答案及解析

高三物理电磁波试题答案及解析

高三物理电磁波试题答案及解析1.下列关于电磁波的说法正确的是 ( )A.变化的磁场能够在空间产生电场B.电磁波在真空和介质中传播的速度相同C.电磁波既可能是横波,也可能是纵波D.电磁波的波长.波速.周期的关系为【答案】A【解析】变化的电场产生磁场,变化的磁场产生电场,这是麦克斯韦电磁场理论的两大支柱,A 正确;电磁波在真空和介质中传播的速度不相同,在真空中传播的速度最大,B错误;在传播方向的任一点,电场与磁场互相垂直,而且二者均与波的传播方向垂直,电磁波是横波,C错误;电磁波的波长.波速.周期的关系为,D错误。

2.过量接收电磁辐射有害人体健康.按照有关规定,工作场所受到的电磁辐射强度(单位时间内垂直通过单位面积的电磁辐射能量)不得超过某一临界值W。

若某无线电通讯装置的电磁辐射功率为P,则符合规定的安全区域到该通讯装置的距离可能为( )A.B.C.D.【答案】CD【解析】由题意知,不符合规定的区域与安全区域的临界面为一球面,设其半径为R,则有球面积,,所以。

思路分析:利用球面辐射,能量以球面的形式向外释放,总能量除以表面积即为单位面积接收到的电磁辐射。

试题点评:考查电磁波的吸收、球面辐射的计算3.(9分)如图所示,一艘海轮用船上天线D向海岸边的信号接收器A发送电磁波脉冲信号。

信号接收器和船上天线的海拔高度分别为AB=H和CD=h。

船上天线某时刻发出一个电磁波脉冲信号,接收器接收到一个较强和一个较弱的脉冲,前者是直接到达的信号,后者是经海平面反射后再到达的信号,两个脉冲信号到达的时间间隔为△t,电磁波的传播速度为c,求船上天线发出此信号时海轮与海岸的距离L。

【答案】【解析】如图所示,从船上天线D向接收器发出的电磁脉冲信号,一方面沿直线DA直接传到A,另一方面经过海面E点反射沿折线DEA传播到A,前者较强,后者较弱。

由反射定律可知,延长AE交DC的延长线与F,过A做AG平行于BC,交CD的延长线与G,则有DE=EF,GD=H-h,GF="H+h" (2分),设信号接收器接收到沿直线DA和折线DEA传播的电磁脉冲信号需要的时间分别为t1和t2,则有(2分) (2分)根据题意有(1分) 联立解得 (2分).【考点】本题考查电磁波的传播,需要先把电磁波的传播路径画出来再结合几何关系求解.4.关于生活中遇到的各种波,下列说法正确的是()A.电磁波可以传递信息,声波不能传递信息B.手机在通话时涉及的波既有电磁波又有声波C.太阳光中的可见光和医院“B超”中的超声波传递速度相同D.遥控器发出的红外线波长和医院CT中的X射线波长相同【答案】B【解析】A:一切波都可以传播能量和信息,声波作为机械波可以传递信息,A选项错误。

电磁场与电磁波期末考试试题库

电磁场与电磁波期末考试试题库

2I 1I 1l l⨯•《电磁场与电磁波》自测试题1.介电常数为ε的均匀线性介质中,电荷的分布为()r ρ,则空间任一点E ∇= ____________, D ∇= _____________。

2. /ρε;ρ1. 线电流1I 与2I 垂直穿过纸面,如图所示。

已知11I A =,试问1.l H dl =⎰__ _______;若.0lH dl =⎰, 则2I=_____ ____。

2. 1-; 1A1. 镜像法是用等效的 代替原来场问题的边界,该方法的理论依据是___。

2. 镜像电荷; 唯一性定理1. 在导电媒质中, 电磁波的相速随频率改变的现象称为_____________, 这样的媒质又称为_________ 。

2. 色散; 色散媒质1. 已知自由空间一均匀平面波, 其磁场强度为0cos()y H e H t x ωβ=+, 则电场强度的方向为__________, 能流密度的方向为__________。

2. z e ; x e -1. 传输线的工作状态有________ ____、_______ _____、____________三种,其中________ ____状态不传递电磁能量。

2. 行波; 驻波; 混合波;驻波1. 真空中有一边长为的正六角 形,六个顶点都放有点电荷。

则在图示两种情形 下,在六角形中心点处的场强大小为图中____________________;图中____________________。

2. ;1. 平行板空气电容器中,电位(其中 a 、b 、c 与 d 为常数), 则电场强度__________________,电荷体密度_____________________。

2.;1. 在静电场中,位于原点处的电荷场中的电场强度线是一族以原点为中心的__________________ 线, 等位线为一族_________________。

2. 射 ; 同心圆1. 损耗媒质中的平面波 , 其传播系数 可表示为__________ 的复数形式,其中表 示衰减的为___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场与电磁波练习1、 一半径为a 的均匀带电圆环,电荷总量为q ,求圆环轴线上离环中心o 点为z 处的电场强度E 。

解:(1)如图所示,环上任一点电荷元dq 在P 点产生的场强为204Rdq E d πε=由对称性可知,整个圆环在P 点产生的场强只有z 分量,即()2322204cos zazdqRz Rr dq E d E d z +===πεπεθ积分得到()()()()2322232202322232242444zaqza zaz dlzazdq za zE lz +=+=+=+=⎰⎰πεππελλπεπε2、 半径为a 的圆面上均匀带电,电荷面密度为δ,试求:(1)轴线上离圆心为z 处的场强,(2)在保持δ不变的情况下,当0→a 和∞→a 时结果如何?(3)在保持总电荷δπ2a q =不变的情况下,当0→a 和∞→a 时结果如何?解:(1)如图所示,在圆环上任取一半径为r 的圆环,它所带的电荷量为δπdr dq 2=由习题2.1的结果可知该回环在轴线上P 点处的场强为zRdqo azRdqo()()2322232224zrrdrz zrzdqE d +=+=εδπε则整个均匀带电圆面在轴线上P 点出产生的场强为()⎪⎪⎭⎫⎝⎛+-=+=⎰22002322122za z zrrdrz E az εδεδ (2)若δ不变,当0→a 时,则0)11(20=-=εδz E;当∞→a ,则002)01(2εδεδ=-=z E(3)若保持δπ2a q =不变,当0→a 时,此带电圆面可视为一点电荷。

则204zq E z πε=。

当∞→a 时,0→δ,则0=z E。

3、 有一同轴圆柱导体,其内导体半径为a ,外导体内表面的半径为b ,其间填充介电常数为ε的介质,现将同轴导体充电,使每米长带电荷λ。

试证明储存在每米长同轴导体间的静电能量为ab W ln42πελ=。

证:在内外导体间介质中的电场为)(2b r a rE <<=πελ沿同轴线单位长度的储能为a bdr r e dVE e dV D E W ln 422222122πελππελ=⎪⎭⎫⎝⎛==∙=⎰⎰⎰4、 在介电常数为ε的无限大约均匀介质中,有一半径为a 的带电q 的导体球,求储存在介质中的静电能量。

解:导体在空间各点产生的电场为)()0(02a r rr q E a r E r w >=<<=πε故静电能量为a q dr r r qdVE dV E D W VV πεππεεε84421212122222=⎪⎭⎫⎝⎛==∙=⎰⎰⎰∞5、 真空中一半径为R 的圆球空间内,分布有体密度为ρ的电荷,ρ为常量。

试求静电能量。

解:应用高斯通量定理,得出电场强度)(3)(32030R r rRE R r r E r r >=<=ερερ故5224205202222220154494922Rdr r rR dr r rdV E W RRVe ρεππερπερεε=⎥⎦⎤⎢⎣⎡+==⎰⎰⎰⎰⎰∞6、一电荷面密度为σ的“无限大”平面,在距离平面a 处的一点的场强大小的一半是由平面上的一个半径为R 的圆面积范围内的电荷所产生的.试求该圆半径的大小。

解:电荷面密度为σ的“无限大”平面,在其周围任意点的场强为:以图中O 点为圆心,取半径为r →r+dr的环形面积,其电量为:它在距离平面为a 的一点处产生的场强为:则半径为R 的圆面积内的电荷在该点的场强为: 由题意:()⎪⎪⎭⎫⎝⎛+-=+=⎰22002/322122R a arardra E Rεσεσ 02E εσ=rdr2dq πσ=()2/3220ra 2ardr dE +εσ=220412εσεσ=⎪⎪⎭⎫ ⎝⎛+-R a aaR O Eσ7、已知两半径分别为a 和)(a b b >的同轴圆柱构成的电容器,其电位差为V 。

试证:将半径分别为a 和b ,介电常数为ε的介质管拉进电容器时,拉力为ab VF ln )(20εεπ-=证:内外导体间的电场为ab r V E r ln=插入介质管后的能量变化为ab zVdz dr ra b r B dVE W zbavln )(ln 2)(21)(21200222020εεππεεεε-=⎪⎭⎫ ⎝⎛-=-=⎰⎰⎰式中z 为介质管拉进电容器内的长度。

故拉力为ab VzW F V ln )(20εεπ-=∂∂=不变8、今有一球形薄膜导体,半径为R ,其上带电荷q 。

求薄膜单位面积上所受膨胀力。

解:孤立导体球电容RRq q qC 0044/πεπεϕ===采用球坐标,原点置于球心,选g 为R ,则20222222284222RqCqRCC qF g C C qF R g πεπε==∂∂=∂∂=R F 的方向与R 增大的方向相同,为膨胀力。

单位面积上的力为DEER qR F F S SR R 21212)4(240222022====='ρερπεπ该膨胀力是由于电荷同号相斥面产生的。

9、一同轴线的内导体半径为a ,外导体半径为b ,内、外导体间为空气,内、外导体均为理想导体,载有直流电流I ,内、 外导体间的电压为U 。

求同轴线的传输功率和能流密度矢量。

解:分别根据高斯定理和安培环路定律,可以求出同轴线内、外导体间的电场和磁场:)(2,1b r a e rI H e ab nr U E r <<==φπze a b nr UI H E S 122π=⨯=上式说明电磁能量沿z 轴方向流动,由电源向负载传输。

通过同轴线内、外导体间任一横截面的功率为⎰⎰=⋅=⋅=baS UIrdr ab nr UI dS S P ππ212'2'这一结果与电路理论中熟知的结果一致。

10、设同轴线的内导体半径为a , 外导体的内半径为b ,内、 外导体间填充电导率为σ的电媒质,求同轴线单位长度的漏电电导。

11、已知时变电磁场中矢量位 ,其中A m 、k 是常数,求电场强度、磁场强度和坡印廷矢量。

12、已知无源(ρ=0, J =0)的自由空间中,时变电磁场的电场强度复矢量式中k 、E 0为常数。

求:(1)磁场强度复矢量; (2)坡印廷矢量的瞬时值; (3)平均坡印廷矢量。

)sin(kz t A e A m x -=ω)/(m V jkz y eE e z E -=0)(13、已知无界理想媒质(ε=9ε0, μ=μ0,σ=0)中正弦均匀平面电磁波的频率f =108 Hz , 电场强度试求: (1) 均匀平面电磁波的相速度v p 、波长λ、相移常数k 和波阻抗η;()m V ee e e z E j jkz y jkz x /33)(3π+--+=(2) 电场强度和磁场强度的瞬时值表达式;(3) 与电磁波传播方向垂直的单位面积上通过的平均功率。

114、电磁波在真空中传播,其电场强度矢量的复数表达式为试求:(1) 工作频率f ;(2) 磁场强度矢量的复数表达式; (3) 坡印廷矢量的瞬时值和时间平均值; (4) 此电磁波是何种极化,旋向如何。

)/(10)()(204m V ee j e z E z j y x π---=15、若内充空气的矩形波导尺寸为λλ2<<a ,工作频率为3GHz 。

如果要求工作频率至少高于主模TE 10波的截止频率的20%,且至少低于TE 01波的截止频率的20%。

试求:①波导尺寸a 及b ;②根据所设计的波导,计算工作波长,相速,波导波长及波阻抗。

16、某一内部为真空的矩形金属波导,其截面尺寸为25mm ⨯10mm ,当频率MHz f 410=的电磁波进入波导中以后,该波导能够传输的模式是什么?当波导中填充介电常数4=r ε 的理想介质后,能够传输的模式有无改变? 17、判断下列平面电磁波的极化形式:解:(3) E=jE0(jex+ey)e-jkz ,Ex 和Ey 振幅相等,且Ex 相位超前Ey 相位π/2,电磁波沿+z 方向传播,故为右旋圆极化波。

(1) E=jE0(ex-2ey)ejkz ,Ex 和Ey 相位差为π,故为在二、四象限的线极化波。

(4) Ezm ≠Exm ,Ez 相位超前Ex 相位π/2,电磁波沿+y 方向传播, 故为右旋椭圆极化波。

(2)r ke j z xy r e e k j z y x n y x eje e E e je e e E E ⋅-⋅⎪⎭⎫⎝⎛---=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+=1005354100)(554535在垂直于en 的平面内将E 分解为exy 和ez 两个方向的分量,则这两个分量互相垂直,振幅相等,且exy 相位超前ez 相位π/2,exy ×ez=en ,故为右旋圆极化波。

18、证明导体表面的电荷密度σ与导体外的电位函数有如下关系n∂∂-=ϕεσ0,其中n ∂∂ϕ是电位对表面外法线方向的导数。

19、一不带的电孤立导体球(半径为a )位于均匀电场0E 中。

求电位函数和电场强度。

)68(00)543()()2()2()()1(y x jk z y x jkz y x ee j e e E z E ee j e j E z E ---+=-= jkyz x jkzy x eje e E E eje e E E --+=+-=)3()4()()3(0020、一个在自由空间传播的均匀平面波,电场强度是)220(4)20(41010ππωπω+----∙+=z t j y z t j x eee e E (v/m )求 (1)电磁波的传播方向。

(2)电磁波的频率。

(3)电磁波的极化方式。

(4)磁场强度∙H 。

(5)沿传播方向单位面积流过的平均功率。

21、从maxwell 方程出发证明电荷守恒定律。

22、在均匀电场0E 中放置一根半径为a ,介电常数为ε的无限长均匀介质圆柱体,它的轴线与电场垂直。

柱外是自由空间,介电常数为0ε。

试求圆柱体内外的电位函数和电场强度。

23、在任何均匀线性各向同性的理想介质中,一个椭圆极化波的电场是jkzj y j x eeE eE -∙+=)(2121ϕϕe e E ,证明 (1)空间任一点的平均电能密度等于平均磁能密度。

(2)能速等于相速。

相关文档
最新文档