2008年十堰市中考数学试卷及解析

合集下载

湖北省十堰市中考数学真题试题(解析版)

湖北省十堰市中考数学真题试题(解析版)

湖北省十堰市2013年中考数学试卷一、选择题(本题共10个小题,每小题3分,满分30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填在后面的括号里。

﹣2.(3分)(2013•十堰)如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于()4.(3分)(2013•十堰)用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()5.(3分)(2013•十堰)已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a6.(3分)(2013•十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()7.(3分)(2013•十堰)如图,梯形ABCD中,AD∥BC,AB=DC=3,AD=5,∠C=60°,则下底BC的长为()∴cos60°===8.(3分)(2013•十堰)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是()9.(3分)(2013•十堰)张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是(),解得,所以汽车加油后还可行驶:30÷8=310.(3分)(2013•十堰)如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是()轴右侧,∴x=﹣>二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2013•十堰)我国南海面积约为350万平方千米,“350万”这个数用科学记数法表示为 3.5×106.12.(3分)(2013•十堰)计算:+(﹣1)﹣1+(﹣2)0= 2..13.(3分)(2013•十堰)某次能力测试中,10人的成绩统计如表,则这10人成绩的平均数×(5×3+4×1+3×2+2×2+1×2)14.(3分)(2013•十堰)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是 1 .,15.(3分)(2013•十堰)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为750米.(米)(米).16.(3分)(2013•十堰)如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当≤r<2时,S的取值范围是﹣1≤S<﹣.DG==﹣×1×﹣﹣时,DG=﹣==﹣﹣的取值范围是:﹣1≤S<﹣故答案为:﹣1≤S<﹣三、解答题(共9小题,满分72分)17.(6分)(2013•十堰)化简:.×++18.(6分)(2013•十堰)如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.19.(6分)(2013•十堰)甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字.问:甲、乙两人每分钟各打多少字?由题意得,=20.(9分)(2013•十堰)某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为40 ,并把条形统计图补充完整;(2)扇形统计图中m= 10 ,n= 20 ,表示“足球”的扇形的圆心角是72 度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.)∵=21.(6分)(2013•十堰)定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.(1)如果[a]=﹣2,那么a的取值范围是﹣2≤a<﹣1 .(2)如果[]=3,求满足条件的所有正整数x.]]22.(7分)(2013•十堰)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?23.(10分)(2013•十堰)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.y=,y=上,=,,y==,24.(10分)(2013•十堰)如图1,△ABC中,CA=CB,点O在高CH上,OD⊥CA于点D,OE⊥CB 于点E,以O为圆心,OD为半径作⊙O.(1)求证:⊙O与CB相切于点E;(2)如图2,若⊙O过点H,且AC=5,AB=6,连接EH,求△BHE的面积和tan∠BH E的值.∴AH=BH==4=,即=EF==BH•EF=×3×=,BF==﹣,=225.(12分)(2013•十堰)已知抛物线y=x2﹣2x+c与x轴交于A.B两点,与y轴交于C点,抛物线的顶点为D点,点A的坐标为(﹣1,0).(1)求D点的坐标;(2)如图1,连接AC,BD并延长交于点E,求∠E的度数;(3)如图2,已知点P(﹣4,0),点Q在x轴下方的抛物线上,直线PQ交线段AC于点M,当∠PMA=∠E时,求点Q的坐标.上,得到﹣m CD==xmm﹣)或(﹣,﹣。

湖北省十堰市中考数学试卷及答案解析

湖北省十堰市中考数学试卷及答案解析

湖北省十堰市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1..函数y=中,自变量x的取值范围是()A.x>1 B.x≥1C.x<1 D.x≤12..如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°3..如图所示的几何体的俯视图是()A.B.C.D.4..下列计算中,不正确的是()A.﹣2x+3x=x B.6xy2÷2xy=3yC.(﹣2x2y)3=﹣6x6y3D.2xy2•(﹣x)=﹣2x2y25..某校篮球队13名同学的身高如下表:身高(cm)175 180 182 185 188人数(个) 1 5 4 2 1则该校篮球队13名同学身高的众数和中位数分别是()A.182,180 B.180,180 C.180,182 D.188,1826..在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)7..当x=1时,ax+b+1的值为﹣2,则(a+b﹣1)(1﹣a﹣b)的值为()A.﹣16 B.﹣8 C.8D.168..如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与O点的距离为s,则s关于t的函数图象大致是()A.B.C.D.9..如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A.222 B.280 C.286 D.29210..如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为()A.2B.3C.D.二、填空题(本题有6小题,每小题3分,共18分)11..光的速度大约是300000千米/秒,将300000用科学记数法表示为.12..计算;3﹣1+(π﹣3)0﹣|﹣|=.13..不等式组的整数解是.14..如图,分别以Rt△ABC的直角边AC及斜边AB为边向外作等边△ACD、等边△ABE,EF⊥AB,垂足为F,连接DF,当=时,四边形ADFE是平行四边形.15..如图,小华站在河岸上的G点,看见河里有一小船沿垂直于岸边的方向划过来.此时,测得小船C的俯角是∠FDC=30°,若小华的眼睛与地面的距离是1.6米,BG=0.7米,BG平行于AC所在的直线,迎水坡i=4:3,坡长AB=8米,点A、B、C、D、F、G在同一平面内,则此时小船C到岸边的距离CA的长为米.(结果保留根号)16..抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)三、解答题(本题有9小题,共72分)17..化简:(a﹣)÷(1+)18..如图,CA=CD,∠B=∠E,∠BCE=∠ACD.求证:AB=DE.19..在我市开展“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?20.端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角为度;条形统计图中,喜欢“糖馅”粽子的人数为人;(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;(3)小最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小、小丽每人各选一只.请用树状图或列表法求小、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.21.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.22.如图,点A(1﹣,1+)在双曲线y=(x<0)上.(1)求k的值;(2)在y轴上取点B(0,1),为双曲线上是否存在点D,使得以AB,AD为邻边的平行四边形ABCD的顶点C在x轴的负半轴上?若存在,求出点D的坐标;若不存在,请说明理由.23.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种).x(亩)20 25 30 35z(元)1700 1600 1500 1400(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.24.如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=,求图中阴影部分的面积;(3)若=,DF+BF=8,如图2,求BF的长.25.已知抛物线C1:y=ax2+bx+(a≠0)经过点A(﹣1,0)和B(3,0).(1)求抛物线C1的解析式,并写出其顶点C的坐标;(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C 分别平移到点D,E处.设点F在抛物线C1上且在x轴的下方,若△DEF是以EF为底的等腰直角三角形,求点F的坐标;(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时:①tan∠ENM的值如何变化?请说明理由;②点M到达点C时,直接写出点P经过的路线长.湖北省十堰市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1..函数y=中,自变量x的取值范围是()A.x>1 B.x≥1C.x<1 D.x≤1考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x﹣1≥0,解得x≥1.故选B.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2..如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°考点:平行线的性质.分析:先根据平行线的性质求出∠C的度数,再由三角形外角的性质即可得出结论.解答:解:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.3..如图所示的几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的视图是俯视图,可得答案.解答:解:从上面看是一个大正方形,大正方形内部的左下角是一个小正方形,故选:D.点评:本题考查了简单组合体的三视图,从上面看的到的视图是俯视图.4..下列计算中,不正确的是()A.﹣2x+3x=x B.6xy2÷2xy=3yC.(﹣2x2y)3=﹣6x6y3D.2xy2•(﹣x)=﹣2x2y2考点:整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.分析:根据同类项、同底数幂的除法、积的乘方以及整式的乘法计算即可.解答:解:A、﹣2x+3x=x,正确;B、6xy2÷2xy=3y,正确;C、(﹣2x2y)3=﹣8x6y3,错误;D、2xy2•(﹣x)=﹣2x2y2,正确;故选C.点评:此题考查同类项、同底数幂的除法、积的乘方以及整式的乘法,关键是根据法则进行计算.5..某校篮球队13名同学的身高如下表:身高(cm)175 180 182 185 188人数(个) 1 5 4 2 1则该校篮球队13名同学身高的众数和中位数分别是()A.182,180 B.180,180 C.180,182 D.188,182考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.解答:解:由图表可得,众数是:182cm,中位数是:180cm.故选:A.点评:本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6..在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)考点:位似变换;坐标与图形性质.分析:根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得答案.解答:解:∵点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是:(﹣2,1)或(2,﹣1).故选:D.点评:此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.7..当x=1时,ax+b+1的值为﹣2,则(a+b﹣1)(1﹣a﹣b)的值为()A.﹣16 B.﹣8 C.8D.16考点:整式的混合运算—化简求值.分析:由x=1时,代数式ax+b+1的值是﹣2,求出a+b的值,将所得的值代入所求的代数式中进行计算即可得解.解答:解:∵当x=1时,ax+b+1的值为﹣2,∴a+b+1=﹣2,∴a+b=﹣3,∴(a+b﹣1)(1﹣a﹣b)=(﹣3﹣1)×(1+3)=﹣16.故选:A.点评:此题考查整式的化简求值,运用整体代入法是解决问题的关键.8..如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与O点的距离为s,则s关于t的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:根据蚂蚁在上运动时,随着时间的变化,距离不发生变化,得出图象是与x轴平行的线段,即可得出结论.解答:解:一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行,在开始时经过半径OA这一段,蚂蚁到O点的距离随运动时间t的增大而增大;到弧AB这一段,蚂蚁到O点的距离S不变,图象是与x轴平行的线段;走另一条半径OB时,S随t的增大而减小;故选:B.点评:本题主要考查动点问题的函数图象;根据随着时间的变化,到弧AB这一段,蚂蚁到O点的距离S不变,得到图象的特点是解决本题的关键.9..如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A.222 B.280 C.286 D.292考点:规律型:图形的变化类.分析:设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了根火柴棍,并且三角形的个数比正六边形的个数多6个,列方程组求解解答:解:设连续搭建三角形x个,连续搭建正六边形y个.由题意得,,解得:.故选D.点评:本题考查了二元一次方程组的应用及图形的变化类问题,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.10..如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为()A.2B.3C.D.考点:全等三角形的判定与性质;勾股定理;正方形的性质.分析:首先延长FD到G,使DG=BE,利用正方形的性质得∠B=∠CDF=∠CDG=90°,CB=CD;利用SAS定理得△BCE≌△DCG,利用全等三角形的性质易得△GCF≌△ECF,利用勾股定理可得AE=3,设AF=x,利用GF=EF,解得x,利用勾股定理可得CF.解答:解:如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=3,CB=6,∴BE===3,∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x,∴EF==,∴(9﹣x)2=9+x2,∴x=4,即AF=4,∴GF=5,∴DF=2,∴CF===2,故选A.点评:本题主要考查了全等三角形的判定及性质,勾股定理等,构建全等三角形,利用方程思想是解答此题的关键.二、填空题(本题有6小题,每小题3分,共18分)11..光的速度大约是300000千米/秒,将300000用科学记数法表示为 3.0×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将300000用科学记数法表示为3.0×105.故答案为:3.0×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12..计算;3﹣1+(π﹣3)0﹣|﹣|=1.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式=+1﹣=1,故答案为:1点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.13..不等式组的整数解是﹣1,0.考点:一元一次不等式组的整数解.分析:首先解不等式组求得不等式的解集,然后确定解集中的整数解即可.解答:解:,解①得:x≥﹣1,解②得:x<1,则不等式组的解集是:﹣1≤x<1,则整数解是:﹣1,0.故答案是:﹣1,0.点评:本题考查了不等式组的整数解,正确解不等式组是解题的关键.14..如图,分别以Rt△ABC的直角边AC及斜边AB为边向外作等边△ACD、等边△ABE,EF⊥AB,垂足为F,连接DF,当=时,四边形ADFE是平行四边形.考点:平行四边形的判定;等边三角形的性质.分析:由三角形ABE为等边三角形,EF垂直于AB,利用三线合一得到EF为角平分线,得到∠AEF=30°,进而确定∠BAC=∠AEF,再由一对直角相等,及AE=AB,利用AAS即可得证△ABC≌△EAF;由∠BAC与∠DAC度数之和为90°,得到DA垂直于AB,而EF垂直于AB,得到EF与AD平行,再由全等得到EF=AC,而AC=AD,可得出一组对边平行且相等,即可得证.解答:解:当=时,四边形ADFE是平行四边形.理由:∵=,∴∠CAB=30°,∵△ABE为等边三角形,EF⊥AB,∴EF为∠BEA的平分线,∠AEB=60°,AE=AB,∴∠FEA=30°,又∠BAC=30°,∴∠FEA=∠BAC,在△ABC和△EAF中,,∴△ABC≌△EAF(AAS);∵∠BAC=30°,∠DAC=60°,∴∠DAB=90°,即DA⊥AB,∵EF⊥AB,∴AD∥EF,∵△ABC≌△EAF,∴EF=AC=AD,∴四边形ADFE是平行四边形.故答案为:.点评:此题考查了平行四边形的判定、平行线的判定与性质、全等三角形的判定与性质以及等边三角形的性质,熟练掌握判定与性质是解本题的关键.15..如图,小华站在河岸上的G点,看见河里有一小船沿垂直于岸边的方向划过来.此时,测得小船C的俯角是∠FDC=30°,若小华的眼睛与地面的距离是1.6米,BG=0.7米,BG平行于AC所在的直线,迎水坡i=4:3,坡长AB=8米,点A、B、C、D、F、G在同一平面内,则此时小船C到岸边的距离CA的长为8﹣5.5米.(结果保留根号)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:把AB和CD都整理为直角三角形的斜边,利用坡度和勾股定理易得点B和点D到水面的距离,进而利用俯角的正切值可求得CH长度.CH﹣AE=EH即为AC长度.解答:解:过点B作BE⊥AC于点E,延长DG交CA于点H,得Rt△ABE和矩形BEHG.∵i==,AB=8米,∴BE=,AE=.∵DG=1.6,BG=0.7,∴DH=DG+GH=1.6+=8,AH=AE+EH=+0.7=5.5.在Rt△CDH中,∵∠C=∠FDC=30°,DH=8,tan30°==,∴CH=8.又∵CH=CA+5.5,即8=CA+5.5,∴CA=8﹣5.5(米).答:CA的长约是(8﹣5.5)米.点评:此题考查了俯角与坡度的知识.注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.16..抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是③⑤.(只填写序号)考点:二次函数图象与系数的关系.专题:数形结合.分析:根据题意画出抛物线的大致图象,利用函数图象,由抛物线开口方向得a>0,由抛物线的对称轴位置得b<0,由抛物线与y轴的交点位置得c<0,于是可对①进行判断;由于抛物线过点(﹣1,0)和(m,0),且1<m<2,根据抛物线的对称性和对称轴方程得到0<﹣<,变形可得a+b>0,则可对②进行判断;利用点A(﹣3,y1)和点B(3,y2)到对称轴的距离的大小可对③进行判断;根据抛物线上点的坐标特征得a﹣b+c=0,am2+bm+c=0,两式相减得am2﹣a+bm+b=0,然后把等式左边分解后即可得到a (m﹣1)+b=0,则可对④进行判断;根据顶点的纵坐标公式和抛物线对称轴的位置得到<c≤﹣1,变形得到b2﹣4ac>4a,则可对⑤进行判断.解答:解:如图,∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c<0,∴abc>0,所以①的结论正确;∵抛物线过点(﹣1,0)和(m,0),且1<m<2,∴0<﹣<,∴a+b>0,所以②的结论正确;∵点A(﹣3,y1)到对称轴的距离比点B(3,y2)到对称轴的距离远,∴y1>y2,所以③的结论错误;∵抛物线过点(﹣1,0),(m,0),∴a﹣b+c=0,am2+bm+c=0,∴am2﹣a+bm+b=0,a(m+1)(m﹣1)+b(m+1)=0,∴a(m﹣1)+b=0,所以④的结论正确;∵<c,而c≤﹣1,∴<﹣1,∴b2﹣4ac>4a,所以⑤的结论错误.故答案为③⑤.点评:本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.三、解答题(本题有9小题,共72分)17..化简:(a﹣)÷(1+)考点:分式的混合运算.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加减法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:原式=÷=•=.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.18..如图,CA=CD,∠B=∠E,∠BCE=∠ACD.求证:AB=DE.考点:全等三角形的判定与性质.专题:证明题.分析:如图,首先证明∠ACB=∠DCE,这是解决问题的关键性结论;然后运用AAS公理证明△ABC≌△DEC,即可解决问题.解答:解:如图,∵∠BCE=∠ACD,∴∠ACB=∠DCE;在△ABC与△DEC中,,∴△ABC≌△DEC(AAS),∴AB=DE.点评:该题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是牢固掌握全等三角形的判定方法,这是灵活运用、解题的基础和关键.19..在我市开展“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?考点:分式方程的应用.分析:首先设原来每天改造管道x米,则引进新设备前工程队每天改造管道(1+20%)x 米,由题意得等量关系:原来改造360米管道所用时间+引进了新设备改造540米所用时间=27天,根据等量关系列出方程,再解即可.解答:解:设原来每天改造管道x米,由题意得:+=27,解得:x=30,经检验:x=30是原分式方程的解,(1+20%)x=1.2×30=36.答:引进新设备前工程队每天改造管道36米.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意分式方程不要忘记检验.20.端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角为144度;条形统计图中,喜欢“糖馅”粽子的人数为3人;(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;(3)小最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小、小丽每人各选一只.请用树状图或列表法求小、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.分析:(1)用周角乘以很喜欢所占的百分比即可求得其圆心角,直接从条形统计图中得到喜欢糖馅的人数即可;(2)利用总人数800乘以所对应的百分比即可;(3)利用列举法表示,然后利用概率公式即可求解解答:解:(1)扇形统计图中,“很喜欢”所对应的圆心角为360°×40%=144度;条形统计图中,喜欢“糖馅”粽子的人数为 3人;(2)学生有800人,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和为800×(1﹣25%)=600(人);(3)肉馅、糖馅、枣馅、海鲜馅四种粽子分别用A、B、C、D表示,画图如下:∵共12种等可能的结果,其中小、小丽两人中有且只有一人选中自己最爱吃的粽子有4种,∴P(小、小丽两人中有且只有一人选中自己最爱吃的粽子)==.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.考点:根的判别式;根与系数的关系.分析:(1)根据根的判别式的意义得到△≥0,即(2m+3)2﹣4(m2+2)≥0,解不等式即可;(2)根据根与系数的关系得到x1+x2=2m+3,x1x2=m2+2,再变形已知条件得到(x1+x2)2﹣4x1x2=31+|x1x2|,代入即可得到结果.解答:解:(1)∵关于x的一元二次方程x2﹣(2m+3)x+m2+2=0有实数根,∴△≥0,即(2m+3)2﹣4(m2+2)≥0,∴m≥﹣;(2)根据题意得x1+x2=2m+3,x1x2=m2+2,∵x12+x22=31+|x1x2|,∴(x1+x2)2﹣2x1x2=31+|x1x2|,即(2m+3)2﹣2(m2+2)=31+m2+2,解得m=2,m=﹣14(舍去),∴m=2.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程根与系数的关系.22.如图,点A(1﹣,1+)在双曲线y=(x<0)上.(1)求k的值;(2)在y轴上取点B(0,1),为双曲线上是否存在点D,使得以AB,AD为邻边的平行四边形ABCD的顶点C在x轴的负半轴上?若存在,求出点D的坐标;若不存在,请说明理由.考点:反比例函数综合题.分析:(1)直接利用反比例函数图象上点的坐标性质代入求出即可;(2)根据平行四边形的性质得出D点纵坐标,进而代入函数解析式得出D点横坐标即可.解答:解:(1)∵点A(1﹣,1+)在双曲线y=(x<0)上,∴k=(1﹣)(1+)=1﹣5=﹣4;(2)过点A作AE⊥y轴于点E,过点D作DF⊥x轴于点F,∵四边形ABCD是以AB,AD为邻边的平行四边形ABCD,∴DC AB,∵A(1﹣,1+),B(0,1),∴BE=,由题意可得:DF=BE=,则=,解得:x=,∴点D的坐标为:(﹣,).点评:此题主要考查了反比例函数综合以及平行四边形的性质,得出D点纵坐标是解题关键.23.为支持国家南水北调工程建设,小王家由原来养殖户变为种植户,经市场调查得知,种植草莓不超过20亩时,所得利润y(元)与种植面积m(亩)满足关系式y=1500m;超过20亩时,y=1380m+2400.而当种植樱桃的面积不超过15亩时,每亩可获得利润1800元;超过15亩时,每亩获得利润z(元)与种植面积x(亩)之间的函数关系如下表(为所学过的一次函数、反比例函数或二次函数中的一种).x(亩)20 25 30 35z(元)1700 1600 1500 1400(1)设小王家种植x亩樱桃所获得的利润为P元,直接写出P关于x的函数关系式,并写出自变量的取值范围;(2)如果小王家计划承包40亩荒山种植草莓和樱桃,当种植樱桃面积x(亩)满足0<x<20时,求小王家总共获得的利润w(元)的最大值.考点:一次函数的应用.分析:(1)根据图表的性质,可以得出P关于x的函数关系式和出x的取值范围.(2)根据利润=亩数×每亩利润,可得①当0<x≤15时②当15<x<20时,利润的函数式,即可解题;解答:解:(1)观察图表的数量关系,可以得出P关于x的函数关系式为:P=(2)∵利润=亩数×每亩利润,∴①当0<x≤15时,W=1800x+1380(40﹣x)+2400=420x+55200;当x=15时,W有最大值,W最大=6300+55200=61500;②当15<x<20,W=﹣20x+2100+1380(40﹣x)+2400=﹣1400x+59700;∵﹣1400x+59700<61500;∴x=15时有最大值为:61500元.点评:本题主要考查了一次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是一次函数的性质.24.如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=,求图中阴影部分的面积;(3)若=,DF+BF=8,如图2,求BF的长.考点:圆的综合题.专题:综合题.分析:(1)连结O D,如图1,由角平分线定义得∠BAD=∠CAD,则根据圆周角定理得到=,再根据垂径定理得OD⊥BC,由于BC∥EF,则OD⊥DF,于是根据切线的判定定理即可判断DF为⊙O的切线;(2)连结OB,OD交BC于P,作BH⊥DF于H,如图1,先证明△OBD为等边三角形得到∠ODB=60°,OB=BD=2,易得∠BDF=∠DBP=30°,根据含30度的直角三角形三边的关系,在Rt△DBP中得到PD=BD=,PB=PD=3,接着在Rt△DEP中利用勾股定理计算出PE=2,由于OP⊥BC,则BP=CP=3,所以CE=1,然后利用△BDE∽△ACE,通过相似比可得到AE=,再证明△ABE∽△AFD,利用相似比可得DF=12,最后根据扇形面积公式,利用S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)进行计算;(3)连结CD,如图2,由=可设AB=4x,AC=3x,设BF=y,由=得到CD=BD=2,先证明△BFD∽△CDA,利用相似比得到xy=4,再证明△FDB∽△FAD,利用相似比得到16﹣4y=xy,则16﹣4y=4,然后解方程易得BF=3.解答:证明:(1)连结OD,如图1,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴=,∴OD⊥BC,∵BC∥EF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,如图1,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=2,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,。

湖北省十堰市初中毕业生学业考试数学试题(有答案)

湖北省十堰市初中毕业生学业考试数学试题(有答案)

湖北省十堰市初中毕业生学业考试数 学 试 题注意事项:⒈本试卷共8页,25个小题,满分120分,考试时间120分钟.⒉在密封区内写明县(市、区)名、校名、姓名和考号,不要在密封区内答题.⒊请用蓝色或黑色钢笔、中性笔(圆珠笔)答题,作图可用铅笔.不允许使用计算器.一、选择题(本题共10个小题,每小题3分,共30分)下面每题给出的四个选项中,只有一个是正确的,请 把你认为正确选项的字母代号填在下表内1.-7的相反数是A .7B .-7C .D . 2.函数中自变量x 的取值范围是A .x> 0B .x≥0C .x>9D .x≥9 3.一次函数y=2x -2的图象不经过...的象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.下列方程中,有两个不相等实数根的是A .B .C .D .5.下列运算正确的是A .B .C .D .6.下列命题中,错误的是A .三角形两边之和大于第三边7171-9-=x y 0122=--x x 0322=+-x x 3322-=x x 0442=+-x x 523=+623=⨯13)13(2-=-353522-=-B .三角形的外角和等于360°C .三角形的一条中线能将三角形面积分成相等的两部分D .等边三角形既是轴对称图形,又是中心对称图形 7.如图,△ABC 内接于⊙O ,连结OA 、OB , 若∠ABO=25°,则∠C 的度数为 A .55° B .60° C .65° D .70° 8.如图是四棱锥(底面是矩形,四条侧棱等长) ,则它的俯视图是9.同时掷两个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则两个骰子向上的一面的点数和为8的概率为 A .B .C .D . 10.如图,已知Rt ΔABC 中,∠ACB=90°,AC= 4,BC=3,以AB 边所在的直线为轴,将ΔABC 旋转一周,则所得几何体的表面积是A .B .C .D .二、填空题(本题共6个小题,每小题3分,共18分.)请将答案直接填写在该题目中的横线上 11.据统计,今年我市参加初中毕业学业考试的学生约为38000人,这个数据用科学记数法表示为 .12.方程(x +2)(x -1)=0的解为 . 13.如图,直线a 与直线b 被直线c 所截, a ∥b ,若∠1=62°,则∠3= 度. 14.的平行四边形是是菱形(只填一个条件).9136561367π5168π24π584π1215.如图,在平面直角坐标系中,点A 的坐标 为(1,4),将线段OA 绕点O 顺时针旋转90°得到 线段OA′,则点A′的坐标是 . 16.已知函数的图象与轴、y 轴分 别交于点C 、B ,与双曲线交于点A 、D, 若AB+CD= BC ,则k 的值为 .三、解答题(本题共4个小题,共27分) 17.(6分)计算: 解:==18.(6分)已知:a+b=3,ab=2,求下列各式的值: (1)a 2b+ab 2 (2)a 2+b 219.(7分)“一方有难,八方支援”,在四川汶川大地震后,某市文华中学全体师生踊跃捐款,向灾区人民献爱心. 为了了解该校学生捐款情况,对其中60个学生捐款数x (元)分五组进行统计,第一组:1≤x ≤5,第二组:6≤x ≤10,第三组:11≤x ≤15,第四组:16≤x ≤20;,第五组:x ≥21,并绘制如下频数分布直方图(假定每名学生捐款数均为整数),解答下列问题: (1) 补全频数分布直方图;(2) 这60个学生捐款数的中位数落在第____组; (3)已知文华中学共有学生1800人,请估算该校捐款数 不少于16元的学生人数.1+-=x y x xky =02)45cos 1(3)3(︒---+-02)45cos 1(3)3(︒---+-20.(8分)如图,直线l 切⊙O 于点A ,点P 为直线l 上一点,直线PO 交⊙O 于点C 、B ,点D 在线段AP 上,连结DB ,且AD=DB . (1)求证:DB 为⊙O 的切线.(2)若AD=1,PB=BO ,求弦AC 的长.四、应用题(本题共3个小题,共23分) 21.(7分)如图,在一次数学课外活动中,小明同学在点P处测得教学楼A 位于北偏东60°方向,办公楼B 位于南偏东45°方向.小明沿正东方向前进60米到达C 处,此时测得教学楼A 恰好位于正北方向,办公楼B 正好位于正南方向.求教学楼A 与办公楼B 之间的距离(结果精确到0.1米). (供选用的数据:≈1.414,≈1.732)22.(8分)某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?2323.(8分)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A 、B 两种型号的沼气池共20个,以解决该村所有农户的燃料有492户.(1)满足条件的方案共有几种?写出解答过程. (2)通过计算判断,哪种建造方案最省钱.五、综合与探究题(本题共2小题,共22分)24.(10分)如图①,四边形ABCD 是正方形, 点G 是BC 上任意一点,DE ⊥AG 于点E ,BF ⊥AG 于点F . (1) 求证:DE -BF = EF .(2) 当点G 为BC 边中点时, 试探究线段EF 与GF 之间的数量关系, 并说明理由.(3) 若点G 为CB 延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE 、BF 、EF 之间的数量关系(不需要证明).25.(12分)如图①, 已知抛物线(a ≠0)与轴交于点A(1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;(2) 设抛物线的对称轴与轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.32++=bx ax y x x湖北省十堰市初中毕业生学业考试数学试题参考答案及评分说明一、选择题(每题3分,共30分)第1~5题:A D B A B 第6~10题:D C C B C 二、填空题(每空3分,共18分)11. 12.-2,1;-2或1(x=-2,x=1或)13.62 14.对角线互相垂直(或有一组邻边相等,或一条对角线平分一组对角) 15.(4,-1) 16. 三、解答题(6分+6分+7分+8分=27分)17.解:原式=9+-1……………………………5分 =8+……………………………… 6分 说明:第一步计算中,只对一项给2分,只对两项给4分. 18.解法①:(1)………………………3分 (2) ∵∴…………… 6分 解法②:由题意得 解得: ……………………2分 当时,……………4分 当时,……………6分 说明:(1)第二种解法只求出一种情形的给4分;(2)其它解法请参照上述评分说明给分. 19.解:(1)如图(频数为15)…2分 (2)三 ………………4分(3)……6分∴ 捐款数不少于16元的学生数大约为600人. ……7分 说明:(1)未说明“频数是15”不扣分;(2)未写“大约”不扣分.4108.3⨯1,221=-=x x 43-33632)(22=⨯=+=+b a ab ab b a 2222)(b ab a b a ++=+52232)(2222=⨯-=-+=+ab b a b a ⎩⎨⎧==+23ab b a ⎩⎨⎧==1211b a ⎩⎨⎧==2122b a 1,2==b a 514,6242222=+=+=+=+b a ab b a 2,1==b a 541,6422222=+=+=+=+b a ab b a 600180060155=⨯+20.(1)证明: 连结OD ………………………………………………………1 分 ∵ PA 为⊙O 切线 ∴ ∠OAD = 90°………………………………………2 分 ∵ OA=OB ,DA=DB ,DO=DO , ∴ΔOAD ≌ΔOBD …………………3分 ∴ ∠OBD=∠OAD = 90°, ∴PA 为⊙O 的切线…………………4 分 (2)解:在RtΔOAP 中, ∵ PB=OB=OA ∴ ∠OPA=30°………………5 分 ∴ ∠POA=60°=2∠C , ∴PD=2BD=2DA=2……………………………6 分 ∴ ∠OPA=∠C=30°…………………………………7 分 ∴ AC=AP=3…………………………………………8 分 说明:其它解法请参照上述评分说明给分. 四、应用题(7分+8分+8分=23分) 21.解:由题意可知 ∠ACP= ∠BCP= 90°,∠APC=30°,∠BPC=45°…2分 在Rt △BPC 中,∵∠BCP=90°,∠BPC =45°,∴……3分 在Rt △ACP 中,∵∠ACP=90°,∠APC =30°,∴ …… 5分 ∴………………………………………6分 ≈60+20×1.732 =94.64≈94.6(米)答:教学楼A 与办公楼B 之间的距离大约为94.6米.………………7分 说明:(1)其它解法请参照上述评分说明给分;(2)不作答不扣分. 22.解:设该厂原来每天加工x 个零件,………………………………1分由题意得: ………………………………………5分解得 x=50 ………………………………………………………6分 经检验:x=50是原分式方程的解………………………………………7分 答:该厂原来每天加工50个零件.……………………………………8分 说明:其它解法请参照上述评分说明给分.23.解: (1) 设建造A 型沼气池 x 个,则建造B 型沼气池(20-x )个………1分依题意得: …………………………………………3分解得:7≤ x ≤ 9 ………………………………………………………………4分∵ x 为整数 ∴ x = 7,8 ,9 ,∴满足条件的方案有三种.. ……………5分 (2)设建造A 型沼气池 x 个时,总费用为y 万元,则:y = 2x + 3( 20-x) = -x+ 60 ………………………………………………6分 ∵-1< 0,∴y 随x 增大而减小,当x=9 时,y 的值最小,此时y= 51( 万元 ) …………………………………7分 ∴此时方案为:建造A 型沼气池9个,建造B 型沼气池11个. ……………8分解法②:由(1)知共有三种方案,其费用分别为:方案一: 建造A 型沼气池7个, 建造B 型沼气池13个, 总费用为:7×2 + 13×3 = 53( 万元 ) ……………………………6分 方案二: 建造A 型沼气池8个, 建造B 型沼气池12个, 总费用为:8×2 + 12×3 = 52( 万元 ) ……………………………7分60==PC BC 320=AC 32060+=+=BC AC AB 72500100=+xx ()()⎩⎨⎧≥-+≤-+492203018365202015x x x x方案三: 建造A 型沼气池9个, 建造B 型沼气池11个, 总费用为:9×2 + 11×3 = 51( 万元 )∴方案三最省钱. …………………………………………… 8分 说明:(1)若只有正确结论,给1分;(2)不带单位不扣分;(3)其它解法请参照上述评分说明给分; 五、综合与探究题(10分+12=22分) 24.(1) 证明:∵ 四边形ABCD 是正方形, BF ⊥AG , DE ⊥AG∴ DA=AB , ∠BAF + ∠DAE = ∠DAE + ∠ADE = 90° ∴ ∠BAF = ∠ADE ………………………2 分 ∴ △ABF ≌ △DAE ………………………3 分 ∴ BF = AE , AF = DE∴ DE -BF = AF -AE = EF ……………………4 分 (2)EF = 2FG 理由如下: ∵ AB ⊥BC , BF ⊥AG , AB =2 BG∴ △AFB ∽△BFG ∽△ABG ………………5 分 ∴………………………6分 ∴ AF = 2BF , BF = 2 FG …………………7分 由(1)知, AE = BF ,∴ EF = BF = 2 FG ……8分 (3) 如图 …………………………………………9分 DE + BF = EF ……………………………10分说明:第(2)问不先下结论,只要解答正确,给满分.若只有正确结论,给1分. 25.解: (1)由题知: ……………………………………1 分解得: ……………………………………………………………2分∴ 所求抛物线解析式为: ……………………………3分(2) 存在符合条件的点P, 其坐标为P (-1, )或P(-1,- )或P (-1, 6) 或P (-1, )………………………………………………………7分 (3)解法①:过点E 作EF ⊥x 轴于点F , 设E ( a ,--2a +3 )( -3< a < 0 )∴EF=--2a +3,BF=a +3,OF=-a ………………………………………………8 分2===FGBFBF AF BF AB ⎩⎨⎧=+-=++033903b a b a ⎩⎨⎧-=-=21b a 322+=x --x y 1010352a 2a∴S 四边形BOCE =BF·EF + (OC +EF)·OF =( a +3 )·(--2a +3) + (--2a +6)·(-a )……………………………9 分 =………………………………………………………………………10 分 =-+∴ 当a =-时,S 四边形BOCE 最大, 且最大值为 .……………………………11 分 此时,点E 坐标为 (-,)……………………………………………………12分 解法②:过点E 作EF ⊥x 轴于点F , 设E ( x , y ) ( -3< x < 0 ) …………………………8分 则S 四边形BOCE =(3 + y )·(-x) + ( 3 + x )·y ………………………………………9分 =( y -x)= ( ) …………………………………10 分= -+∴ 当x =-时,S 四边形BOCE 最大,且最大值为 . …………………………11分 此时,点E 坐标为 (-,) ……………………………………………………12分 说明:(1)抛物线解析式用其它形式表示,只要正确不扣分.(2)直接应用公式法求抛物线顶点坐标或最大值不扣分. (3)其它解法请参照评分说明给分.2121212a 212a 2929232+--a a 232)23(+a 863238632341521212323332+x --x 232)23(+x 8632386323415。

十堰市中考数学试题集锦

十堰市中考数学试题集锦

2012年湖北省十堰市中考数学试卷一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.(3分)(2012•十堰)有理数﹣1,﹣2,0,3中,最小的一个数是()A.﹣1 B.﹣2 C.0D.32.(3分)(2012•十堰)点P(﹣2,3)关于x轴对称点的坐标是()A.(﹣3,2)B.(2,﹣3)C.(﹣2,﹣3)D.(2,3)3.(3分)(2012•十堰)郧阳汉江大桥是国家南水北调中线工程的补偿替代项目,是南水北调丹江口库区最长的跨江大桥,桥长约2100米,将数字2100用科学记数法表示为()A.2.1〓103B.2.1〓102C.21〓102D.2.1〓1044.(3分)(2012•十堰)如图是某体育馆内的颁奖台,其主视图是()A.B.C.D.5.(3分)(2012•十堰)如图,直线BD∥EF,AE与BD交于点C,若∠ABC=30°,∠BAC=75°,则∠CEF的大小为()A.60°B.75°C.90°D.105°6.(3分)(2012•十堰)下列运算中,结果正确的是()A.x6〔x2=x3B.(x+y)2=x2+y2C.(x2)3=x5D.7.(3分)(2012•十堰)下列说法正确的是()A.要了解全市居民对环境的保护意识,采用全面调查的方式B.若甲组数据的方差,乙组数据的方差,则甲组数据比乙组稳定C.随机抛一枚硬币,落地后正面一定朝上D.若某彩票“中奖概率为1%”,则购买100张彩票就一定会中奖一次8.(3分)(2012•十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为()A.22 B.24 C.26 D.289.(3分)(2012•十堰)一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,两车离乙地的路程S(千米)与行驶时间t(小时)的函数关系如图所示,则下列结论中错误的是()A.甲、乙两地的路程是400千米B.慢车行驶速度为60千米/小时C.相遇时快车行驶了150千米D.快车出发后4小时到达乙地10.(3分)(2012•十堰)如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④=6+3;⑤S △AOC+S△=6+.其中正确的结论是()AOBA.①②③⑤B.①②③④C.①②③④⑤D.①②③二、填空题(本题有6个小题,每小题3分,共18分)11.(3分)函数中,自变量x的取值范围是_________ .12.(3分)(2012•十堰)计算:|﹣1|+(π+1)0= _________ .13.(3分)(2012•十堰)某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数是_________ .14.(3分)(2012•十堰)如图,矩形ABCD中,AB=2,AD=4,AC的垂直平分线EF交AD于点E、交BC于点F,则EF= _________ .15.(3分)(2012•十堰)如图,Rt△ABC中,∠ACB=90°,∠B=30°,AB=12cm,以AC为直径的半圆O交AB于点D,点E是AB的中点,CE交半圆O于点F,则图中阴影部分的面积为_________ cm2.16.(3分)(2012•十堰)如图,直线y=6x,y=x分别与双曲线y=在第一象限内交于点A,B,若S△OAB=8,则k= _________ .三、解答题(本题有9小题,共72分)17.(6分)(2012•十堰)先化简,再求值:,其中a=2.18.(6分)(2012•十堰)如图,在四边形ABCD中,AB=AD,CB=CD.求证:∠B=∠D.19.(6分)(2012•十堰)一个不透明的布袋里装有3个大小、质地均相同的乒乓球,分别标有数字1,2,3,小华先从布袋中随即取出一个乒乓球,记下数字后放回,再从袋中随机取出一个乒乓球,记下数字.求两次取出的乒乓球上数字相同的概率.20.(8分)(2012•十堰)一辆汽车开往距离出发地180千米的目的地,按原计划的速度匀速行驶60千米后,再以原来速度的1.5倍匀速行驶,结果比原计划提前40分钟到达目的地,求原计划的行驶速度.21.(8分)(2012•十堰)如图,为了测量某山AB的高度,小明先在山脚下C点测得山顶A的仰角为45°,然后沿坡角为30°的斜坡走100米到达D点,在D点测得山顶A的仰角为30°,求山AB的高度.(参考数据:≈1.73)22.(6分)(2012•十堰)阅读材料:例:说明代数式的几何意义,并求它的最小值.解:=+,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则可以看成点P与点A(0,1)的距离,可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B=3,即原式的最小值为3.根据以上阅读材料,解答下列问题:(1)代数式的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B _________ 的距离之和.(填写点B的坐标)(2)代数式的最小值为_________ .23.(10分)(2012•十堰)某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费200元,生产一件B产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费)24.(10分)(2012•十堰)如图1,⊙O是△ABC的外接圆,AB是直径,OD∥AC,且∠CBD=∠BAC,OD交⊙O于点E.(1)求证:BD是⊙O的切线;(2)若点E为线段OD的中点,证明:以O、A、C、E为顶点的四边形是菱形;(3)作CF⊥AB于点F,连接AD交CF于点G(如图2),求的值.25.(12分)(2012•十堰)抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.2012年湖北省十堰市中考数学试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.(3分)(2012•十堰)有理数﹣1,﹣2,0,3中,最小的一个数是()A.﹣1 B.﹣2 C.0D.3考点:有理数大小比较。

2008年湖北各地中考数学“几何选择题”选编(附答案)

2008年湖北各地中考数学“几何选择题”选编(附答案)

2008年湖北省各地中考数学试题精选几 何 选 择 题(1) 2008年湖北省鄂州市中考数学几何选择题(08湖北鄂州)5.图1是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是( A )A .B .C .D .(08湖北鄂州)6.如图2,已知ABC △中,45ABC ∠=,4AC =,H 是高AD 和BE 的交点,则线段BH 的长度为( B ) AB .4 C.D .5(08湖北鄂州)8.如图3,利用标杆BE 测量建筑物DC 的高度,如果标杆BE 长为1.2米,测得 1.6AB = 米,8.4BC =米.则楼高CD 是( B ) A .6.3米B .7.5米C .8米D .6.5米(08湖北鄂州)9.因为1sin 302=,1sin 2102=- ,所以sin 210sin(18030)sin30=+=-;因为sin 45=sin 225= ,所以sin 225sin(18045)sin 45=+=-, 由此猜想、推理知:一般地当α为锐角时有sin(180)sin αα+=- ,由此可知:sin 240=( C )A .12-B.C.D.(08湖北鄂州)12.ABC △A2A 与边BC 相切于D 点,则AB AC 的值为(D )2 13图1D CBAE H 图2E ABC图3AB .4 C.2D.(08湖北鄂州)14.如图6,Rt ABC △中,90ACB ∠= ,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH所扫过部分的面积(即阴影部分面积)为( C ) A.7π3 B.4π3+ C .πD.4π3+(2) 2008年湖北省武汉市中考数学几何选择题(08湖北武汉)6.如图,六边形ABCDEF 是轴对称图形.CF 所在的直线是它的对称轴,若∠AFC+ ∠BCF =150°,则∠AFE+∠BCD 的大小是( )(A )150°.(B )300°.(C )210°.(D )330°. 答案 B(08湖北武汉)7.如图是一个五环图案,它由五个圆组成.下排的两个圆的位置关系是( )(A )内含. (B )外切. (C )相交. (D )外离.答案D(08湖北武汉)8.如图,小雅家(图中点O处)门前有一条东西走向的公路, 经测得有一水塔(图中点A处)在她家北偏东60度500m 处,那么水塔所在的位 置到公路的距离AB 是( ). (A )250m (B ) (C (D ) 答案A(08湖北武汉)9.一个无盖的正方体盒子的平面展开图可以是下列图形中的( )(A )只有图①. (B )图①、图②. (C )图②、图③. (D )图①、图③. 答案D图6 AH B OC 1O1H1A1CAO B东北 ③ ② ①FEDCBA(3) 2008年湖北省黄冈市中考数学几何选择题(08湖北黄冈)9.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是( C ) A .长方体B .圆柱体C .球体D .三棱柱(08湖北黄冈)12(多项选择).如图,已知梯形ABCD 中,AD BC ∥,AB CD AD ==,AC BD ,相交于O 点,60BCD ∠=,则下列说法正确的是( ) A .梯形ABCD 是轴对称图形B .2BC AD =C .梯形ABCD 是中心对称图形 D .AC 平分DCB ∠ 答案:ABD(4) 2008年湖北省黄石市中考数学几何选择题(08湖北黄石)3.如图,AB CD ∥,AD 和BC 相交于点O ,35A ∠=,75AOB ∠=,则C ∠等于( C ) A .35B .75C .70D .80(08湖北黄石)4.下列图形中既是轴对称图形,又是中心对称图形的是( B )A .B .C .D . (08湖北黄石)7.下面左图所示的几何体的俯视图是( D )A .B .C .D .ADOCB(08湖北黄石)8.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △ 相似的是( B )(08湖北黄石)12.如图,在等腰三角形ABC 中,120ABC ∠=,点P 是底边AC 上一个动点,M N ,分别是AB BC ,的中点,若PM PN +的最小值为2,则ABC △的周长是( D ) A .2B.2C .4D.4+(5) 2008年湖北省恩施州中考数学几何选择题(08湖北恩施)10. 为了让州城居民有更多休闲和娱乐的地方,政府又新建了几处广场,工人师傅在铺设地面时,准备选用同一种正多边形地砖.现有下面几种形状的正多边形地砖,其中不能..进行平面镶嵌的是( C )A. 正三角形B. 正方形C. 正五边形D. 正六边形 (08湖北恩施)12. 在Rt △ABC 中,∠C =90°,若AC =2BC ,则tan A 的值是( A )A.21 B. 2 C. 55 D. 25(08湖北恩施)13. 将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C ) A. 7 B. 6 C. 5 D. 4(08湖北恩施)16. 如图6,扇形OAB 是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个圆锥的底面半径为( B ) A.21 B. 22 C.2 D. 22A .B .C .D .ABAB CPM N(6) 2008年湖北省荆门市中考数学几何选择题(08湖北荆门)6.如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则弧 AmB 等于(C ) (A) 60°. (B) 90°. (C)120°. (D)150°.(08湖北荆门)7.左下图是由若干个小正方形所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时, 所看到的几何图形是( B )(08湖北荆门)10.用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x ,y 表示矩形的长和 宽(x >y ),则下列关系式中不正确的是 ( D ) (A) x +y =12 . (B) x -y =2. (C) xy =35. (D) x 2+y 2=144.(7) 2008年湖北省荆州市中考数学几何选择题(08湖北荆州)3.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数 是( D ) A.1 B.2 C.3 D.4(08湖北荆州)5.如图,五边形ABCDE 与五边形A′B′C′D′E′是位似图形,O 为位似中心,OD=12OD′,则A′B′:AB 为( D )A.2:3B.3:2C.1:2D.2:1从左面看第7题图(A)(D)(C)(第3题图)′′第10题图(08湖北荆州)8.如图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( C )A.5:3B.3:5C.4:3D.3:4(8) 2008年湖北省十堰市中考数学几何选择题(08湖北十堰)2.下列长度的三条线段,能组成三角形的是(C )A .1cm ,2 cm ,3cmB .2cm ,3 cm ,6 cmC .4cm ,6 cm ,8cmD .5cm ,6 cm ,12cm (08湖北十堰)3.如图,C 、D 是线段AB 上两点,若CB =4cm ,DB=7cm ,且D 是AC 的中点,则AC的长等于(B )A .3cmB .6cmC .11cmD .14cm(08湖北十堰)4.如图,在ΔABC 中,AC=DC=DB ,∠ACD=100°,则∠B 等于(D )A .50°B .40°C .25°D .20°(08湖北十堰)7.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是(D )(08湖北十堰)8.如图,点E 在AD 的延长线上,下列条件中能判断BC ∥AD 的是CA .∠3=∠4B .∠A+∠ADC=180°C .∠1=∠2D .∠A =∠5(第8题图)CB第4题图DA 第3题图D C BA AC第8题图EE54321DBBCA(9) 2008年湖北省天门市中考数学几何选择题(08湖北天门)02.一个几何体的三视图如图所示,则这个几何体是( C ).(08湖北天门)06.如图,a ∥b ,∠1=105°,∠2=140°,则∠3的度数是( B ). A 、75° B 、65° C 、55° D 、50° (08湖北天门)07.下列命题中,真命题是( D).A 、一组对边平行且有一组邻边相等的四边形是平行四边形;B 、顺次连结四边形各边中点所得到的四边形是矩形;C 、等边三角形既是轴对称图形又是中心对称图形;D 、对角线互相垂直平分的四边形是菱形(08湖北天门)08.如图,为了测量河两案A、B 两点的距离,在与AB 垂直的方向点C 处测得AC =a ,∠ACB =α,那么AB 等于( B ). A 、a·sinα B 、a·tanα C 、a·cosαD 、tan a(08湖北天门)10.设计一个商标图案如图中阴影部分,矩形ABCD 中,AB =2BC ,且AB =8cm ,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,则商标图案的面积等于( A ). A 、(4π+8)cm 2 B 、(4π+16)cm 2 C 、(3π+8)cm 2 D 、(3π+16)cm 2(10) 2008年湖北省仙桃、潜江、江汉油田中考数学几何选择题(08湖北仙桃等)3.在下面的四个几何体中,它们各自的左视图与主视图不相同的是 ( B )ABCD主视图左视图俯视图(第2题A123 (第6题abAB Ca α(第08题(第10题正方体 长方体圆柱 圆锥 ABCDABCDEO(第5题图) (第8题图)(08湖北仙桃等)5.如图,四边形ABCD 是菱形,过点A 作BD 的平行线交CD 的延长线于点E ,则下列式子不成立...的是( B ) A. DE DA = B. CE BD = C. 90=∠EAC ° D. E ABC ∠=∠2(08湖北仙桃等)8.如图,小明从半径为5cm 的圆形纸片中剪下40%圆周的一个扇形,然后利用剪 下的扇形制作成一个圆锥形玩具纸帽(接缝处不重叠), 那么这个圆锥的高为( C )A.3cmB.4cmC.21cmD.62cm(11) 2008年湖北省咸宁市中考数学几何选择题(08湖北咸宁)4.在Rt △ABC 中, ∠C =90︒,AB =4,AC =1,则cos A 的值是 【 B 】AB .14CD .4(08湖北咸宁)7.下列说法:①对角线互相平分且相等的四边形是菱形;②计算2-的结果为1; ③正六边形的中心角为60︒;④函数y 的自变量x 的取值范围是x ≥3. 其中正确的个数有 【 C 】 A .1个 B .2个C .3个D .4个(08湖北咸宁)8.如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论: ①△AED ≌△AEF ; ②△ABE ∽△ACD ; ③BE DC DE +=; ④222BE DC DE +=其中正确的是【 B 】 A .②④; B .①④; C .②③; D .①③.40%5=R(图1)(图2)60%(第8题图)ABCDEF(08湖北襄樊)3.如图1,已知AD 与BC 相交于点O ,AB CD ∥,如果40B ∠=,30D ∠=,则AO C ∠的大小为( B ) A .60B .70C .80D .120(08湖北襄樊)5.在正方形网格中,ABC △的位置如图2所示,则cos B ∠的值为( B )A .12B .2C .2D .3(08湖北襄樊)7.顺次连接等腰梯形四边中点所得四边形是( A )A .菱形B .正方形C .矩形D .等腰梯形(08湖北襄樊)9.如图4,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是( C )A .7个B .8个C .9个D .10个(08湖北襄樊)10.如图5,扇形纸扇完全打开后,外侧两竹条AB AC ,夹角为120,AB 的长为30cm ,贴纸部分BD 的长为20cm ,则贴纸部分的面积为( D )A .2100cm π B .2400cm 3π C .2800cm πD .2800cm 3π(08湖北孝感)4.一几何体的三视图如右,这个几何体是( D )A .圆锥B .圆柱C .三棱锥D .三棱柱(08湖北孝感)7.如图a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=( C )A .180B .270C .360D .540(08湖北孝感)9.下列图形中,既是轴对称图形又是中心对称图形的是( A )A .菱形B .梯形C .正三角形D .正五边形(08湖北孝感)11.Rt ABC △中,90C ∠=,8AC =,6BC =,两等圆A ,B 外切,那么图中两个扇形(即阴影部分)的面积之和为( A ) A .254π B .258π C .2516π D .2532π(14) 2008年湖北省宜昌市中考数学几何选择题(08湖北宜昌)1.下列物体的形状类似于球的是( C ).A .茶杯B .羽毛球C .乒乓球D .白炽灯泡(08湖北宜昌)3.如图是江峡中学实验室某器材的主视图和俯视图, 那么这个器材可能是( A ).A .条形磁铁B .天平砝码C .漏斗D .试管(08湖北宜昌)9.如图,将三角尺ABC (其中∠ABC =60°,∠C =90°)绕B 点按顺时针方向转动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( A ). A .120° B .90° C .60° D .30°俯视图左 视 图主视图(第4题图)bM P N 123(第7题图)(第11题图)俯 视 图主 视 图(第3题)(08湖北宜昌)10.如图,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中,第1个黑色3个正方形组成,第27个正方形组成,那么组成第6( B ).A .22B .23C .24D .25(第10题)(第9题)1A 1A。

湖北省十堰市2008年初中毕业生学业考试

湖北省十堰市2008年初中毕业生学业考试

湖北省十堰市2008年初中毕业生学业考试思想品德试题(开卷)注意事项:1、本试题共4页,满分50分,考试时间50分钟。

2、答题前,请把你所在的市(县、区)、学校、考号和姓名填写在密封线内的指定位置。

3、本考试为开卷考试,考生可带任何资料入场,但每位考生必须独立完成试题,不得与其他考生交换资料和互相讨论。

4、考生答题过程中不得出现真实的姓名、校名、地名。

一、选择题(下列各题的三个选项中,只有一个是最符合题意的,请你将该选项代号写在下面答题框的对应题号下,写在其他位置无效。

每小题1分,共15分)1.2007年9月18日,国家统计局发布报告显示,我国经济持续平稳快速增长,经济总量跃居世界第四位。

人均国民总收入步入_____国家行列。

A、高等收入B、中等收入C、中低收入2.涉及人民群众切身利益、关系着国计民生的《中华人民共和国____》自2007年10月1日起施行。

A、食品安全法B、劳动争议调解仲裁法C、物权法3.中国共产党第十七次全国代表大会于2007年10月15—21日在北京召开,胡锦涛作了题为《高举_____伟大旗帜、为夺取全面建设小康社会新胜利而奋斗》的报告。

A、中国特色社会主义B、邓小平理论C、“三个代表”重要思想4.2007年12月13日,是南京大屠杀_____周年纪念日,南京大屠杀遇难同胞纪念馆建成并对外开放。

A、71B、70C、695.2007年12月1日是第20个世界艾滋病日,宣传主题是:A、“珍爱生命、遏制艾滋”B、“遏制艾滋、促进健康”C、“遏制艾滋、履行承诺”6.香港影星成龙说:“我16岁时,爸爸教我三件事一定不可以做:一是绝对不能吸毒,二是绝对不能加入黑社会,三是绝对不能赌博。

我一直牢记在心头。

”生活中的“雷区”很多,成龙成功迈过“雷区”的方法是A、牢记教诲B、以正压邪C、以毒攻毒7.改革开放30年来,我国发生了翻天覆地的变化,如果说中国的农村改革始于1978年的土地承包制,那么中国的城市改革和开放则始于A、小岗村村民签订契约B、党的十一届三中全会召开C、经济特区的创办8.下面对“总体小康”与“全面小康”理解正确的观点是A、我们已经实现的是总体小康,正在建设的是全面小康B、我们已经实现的是全面小康,正在建设的是总体小康C、全面小康与总体小康都没有实现9.某校八年级学生田鸣品学兼优,先后获得数千元奖学金,汶川大地震后,他征得父母同意,向灾区捐款200元。

十堰中招数学试题及答案

十堰中招数学试题及答案

十堰中招数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.5B. √4C. πD. 0.33333...答案:C2. 一个等腰三角形的底边长为6cm,腰长为8cm,其周长是多少?A. 22cmB. 26cmC. 30cmD. 28cm答案:B3. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C4. 一个数的相反数是-5,这个数是多少?A. 5C. 0D. 10答案:A5. 下列哪个选项是完全平方数?A. 16B. 17C. 18D. 19答案:A6. 一个圆的半径是5cm,它的面积是多少?A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²答案:B7. 一个正方体的体积是27cm³,它的棱长是多少?A. 3cmB. 6cmC. 9cmD. 12cm答案:A8. 一个数的立方根是2,这个数是多少?B. 8C. 2³D. 4答案:C9. 一个二次函数的顶点坐标是(1, -4),且开口向上,它的对称轴是什么?A. x=-1B. x=1C. x=2D. x=0答案:B10. 一个等差数列的首项是3,公差是2,第5项是多少?A. 11B. 13C. 15D. 17答案:A二、填空题(每题3分,共15分)1. 一个直角三角形的两个直角边长分别是3cm和4cm,斜边长是____cm。

答案:52. 一个数的绝对值是5,这个数可以是____或____。

答案:5或-53. 一个二次函数的一般形式是y=ax²+bx+c,其中a、b、c是常数,且a≠0。

如果a>0,那么这个函数的图象开口____。

答案:向上4. 一个数的平方根是2,那么这个数的立方根是____。

答案:2³5. 一个等比数列的首项是2,公比是3,第4项是____。

2008年湖北各地中考数学“几何填空题”选编含答案

2008年湖北各地中考数学“几何填空题”选编含答案

2008年湖北各地中考数学试题精选几 何 填 空 题(1) 2008年湖北省鄂州市中考数学几何填空题(08湖北鄂州)17.如图7,正方体的棱长为2,O 为边AD 的中点,则以1O A B ,,三点为顶点的三角形面积为.(08湖北鄂州)18.已知在O 中,半径5r =,AB CD ,是两条平行弦,且8AB =,6CD =,则弦AC的长为.(08湖北鄂州)20.如图8,在ABC △中,45BAC ∠=,AD BC ⊥于D 点,已知64BD CD ==,,则高AD 的长为 .12(2) 2008年湖北省武汉市中考数学几何填空题(08湖北武汉)16.下列图案均是用长度相同的小木棒按一定规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,……,依此规律,拼搭第8个图案需要小木棒___88_根.(3)2008年湖北省黄冈市中考数学几何填空题(08湖北黄冈)4.已知圆锥的底面直径为4cm ,其母线长为3cm ,则它的侧面积为 2cm .DOACB 11B 1C 1D 图7CABD 图8A D第1个第2个第4个第3个(08湖北黄冈)5.如图,ABC △和DCE △都是边长为2的等边三角形,点B C E ,,在同一条直线上,连接BD ,则BD 的长为 .(4) 2008年湖北省黄石市中考数学几何填空题(08湖北黄石)15.如图,在Rt ABC △中,90BAC ∠=,6BC =,点D 为BC 中点,将ABD △绕点A 按逆时针方向旋转120得到AB D ''△,则点D 在旋转过程中所经过的路程为 .(结果保留π)2π(08湖北黄石)16.如图,AB 为O 的直径,点C D ,在O 上,50BAC ∠=,则ADC ∠= .40(5) 2008年湖北省恩施州中考数学几何填空题(08湖北恩施)4. 如图2,该图形经过折叠可以围成一个正方体形,折好以后,与“静”字相对的字是 . 着(08湖北恩施)5. 如图3,在R t△ABC 中,∠ACB =90°,CD ⊥AB ,D 为垂足.在不添加辅助线的情况下,请写出图中一对相等的锐角: .(只需写出一对即可) ∠A =∠2或 ∠1=∠B(08湖北恩施)7. 已知菱形的两对角线长分别为6㎝和8㎝,则菱形的面积为 ㎝2.24(6) 2008年湖北省荆门市中考数学几何填空题(08湖北荆门)12.如图,半圆的直径AB =__________.22 (08湖北荆门)13.如图,l 1∥l 2,∠α=__________度.35B ACDD 'B 'B(08湖北荆门)17.如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM +PN 的最小值是_____________.5(08湖北荆门)18.如图,矩形纸片ABCD 中,AD =9,AB =3,将其折叠,使点D 与点B 重合,折痕为EF ,那么折痕EF 的长为________.10(7) 2008年湖北省荆州市中考数学几何填空题(08湖北荆州)10.两个相似三角形周长的比为2:3,则其对应的面积比为___________.4:9 (08湖北荆州)14.如图所示的长方体是某种饮料的纸质包装盒,规格为5×6×10(单位:㎝),在上盖中开有一孔便于插吸管, 吸管长为13㎝, 小孔到图中边AB 距离为1㎝,到上盖中与AB 相邻的两边距离相等,设插入吸管后露在盒外面的管长为h ㎝, 则h 的最小值大约为_________㎝.2.2≈≈≈)2(8) 2008年湖北省十堰市中考数学几何填空题(08湖北十堰)14.如图,直线AB 、CD 相交于点O ,AB OE ⊥,垂足为O ,如果︒=∠42EOD ,则=∠AOC _____.48°第13题图25° α l 1 l 2120° 第17题图D ACP MNC ’A FD BC第18题图 第12题图 A105 6吸管(第14题图)第14题图┌OEA BCD第15题图PRFEABCD(08湖北十堰)15.如图,已知矩形ABCD ,P 、R 分别是BC 和DC 上的点,E 、F 分别是PA 、PR 的中点.如果DR=3,AD=4,则EF 的长为 _____.2.5(9) 2008年湖北省天门市中考数学几何填空题(08湖北天门)14.如图,已知AE =CF ,∠A =∠C ,要使△ADF ≌△CBE ,还需添加一个条件______________________(只需写一个).(10) 2008年湖北省仙桃、潜江、江汉油田中考数学几何填空题(08湖北仙桃等)13.如图是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(下底挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,则∠1+∠2= 度.90(08湖北仙桃等)15.如图,矩形ABCD 的面积为5,它的两条对角线交于点1O ,以AB 、1AO 为两邻边作平行四边形11O ABC ,平行四边形11O ABC 的对角线交于点2O ,同样以AB 、2AO 为两邻边作平行四边形22O ABC ,……,依次类推,则平行四边形n n O ABC 的面积为 .n25(11) 2008年湖北省咸宁市中考数学几何填空题(08湖北咸宁)10.如图,AB ∥CD ,∠C =65o ,CE ⊥BE ,垂足为E ,则∠B 的度数为 .25° (08湖北咸宁)11.如图∠DAB =∠CAE ,请补充一个条件: ,使△ABC ∽△ADE .D B ∠=∠或AED C ∠=∠或AD AEAB AC=AB CD EF(第14题(第13题图)ABC1OD 1C2O2C……(第15题图)(08湖北咸宁)13.如图,在8×8的网格中,每个小正方形的顶点叫做格点,△OAB 的顶点都在格点上,请在网格中画出.....△OAB 的一个位似图形,使两个图形以O 为位似中心,且所画图形与△OAB 的位似比为2︰1.(12) 2008年湖北省襄樊市中考数学几何填空题(08湖北襄樊)12.如图6,O 中OA BC ⊥,25CDA ∠=,则AOB ∠的度数为 .50(08湖北襄樊)15.如图8,张华同学在学校某建筑物的C 点处测得旗杆顶部A 点的仰角为30,旗杆底部B 点的俯角为45.若旗杆底部B 点到建筑物的水平距离9BE =米,旗杆台阶高1米,则旗杆顶点A 离地面的高度为 米(结果保留根号).10+(08湖北襄樊)16.如图9,在锐角AOB ∠内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;……照此规律,画10条不同射线,可得锐角 个.66A (第13题B O(第11题D ACBA B CDE(第10题图)(13) 2008年湖北省孝感市中考数学几何填空题(08湖北孝感)15.如图,AB AC =,120BAC ∠=,AB 的垂直平分线交BC 于点D ,那么ADC ∠= .60(08湖北孝感)18.四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正 方形面积为1,大正方形面积为25,直角三角形中较小的锐角为θ, 那么sin θ= .35(或0.6)(14) 2008年湖北省宜昌市中考数学几何填空题(08湖北宜昌)12.翔宇学中的铅球场如图所示,已知扇形AOB 的面积是36米2,AB 的长度为9米,那么半径OA = 米.8(08湖北宜昌)14.如图,奥运五环旗上的五个环可以近似地看成五个圆,这五个圆反映出的圆与圆的位置关系有 或者 .相交;外离(第18题图)(第14题)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省十堰市2008年初中毕业生学业考试数 学 试 题友情提示:Hi,展示自己的时候到啦,你可要冷静思考、沉着答卷啊!即使遇到困难也不要放弃,要相信自己,能行!祝你取得好成绩!⒈本试卷共8页,25个小题,满分120分,考试时间120分钟.⒉在密封区内写明县(市、区)名、校名、姓名和考号,不要在密封区内答题. ⒊答题时允许使用规定的科学计算器.一、选择题(本题共10个小题,每小题3分,共30分)下面每题给出的四个选项中,只有一个是正确的,请A .51B .51C .-5D .52.下列长度的三条线段,能组成三角形的是A .1cm,2 cm,3cmB .2cm,3 cm,6 cmC .4cm,6 cm,8cmD .5cm,6 cm,12cm3.如图,C 、D 是线段AB 上两点,若CB =4cm,DB =7cm,且D 是AC 的中点,则AC 的长等于A .3cmB .6cmC .11cmD .14cm4.如图,在ΔABC 中,AC =DC =DB ,∠ACD =100°,则∠B 等于 A .50° B .40° C .25° D .20°C B 第4题图DA 第3题图D C BA5.把方程2133123+-=-+x x x 去分母正确的是 A .)1(318)12(218+-=-+x x x B .)1(3)12(3+-=-+x x x C .)1(18)12(18+-=-+x x x D .)1(33)12(23+-=-+x x x 6.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是A .91B .61C .31D .217.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是8.如图,点E 在AD 的延长线上,下列条件中能判断BC ∥AD 的是 A .∠3=∠4 B .∠A +∠ADC =180° C .∠1=∠2 D .∠A =∠59.如图,将ΔPQR 向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是A . (-2,-4)B . (-2,4)C .(2,-3)D .(-1,-3)10.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交,则当0x <时,该交点位于A .第一象限B .第二象限C .第三象限D .第四象限第9题图 AC 第8题图E E54321D B B C A二、填空题(本题共6小题,每小题3分,共18分.请将答案直接填写在该题目中的横线上)11.2008年5月18日晚,中央电视台举办了“爱的奉献”大型募捐活动.据了解,本次活动社会各界共向四川灾区捐款大约1514000000元人民币,这个数字用科学记数法可表示为 元人民币.12.已知,|x |=5,y =3,则=-y x . 13.计算:=---31922a a a .14.如图,直线AB 、CD 相交于点O ,AB OE ⊥,垂足为O, 如果︒=∠42EOD ,则=∠AOC .15.如图,已知矩形ABCD ,P 、R 分别是BC 和DC 上的点,E 、F 分别是P A 、PR 的中点.如果DR =3,AD =4,则EF 的长为 . 16.观察下面两行数:根据你发现的规律,取每行数的第10个数,求得它们的和是(要求) .三、解答题(本题共3小题,每小题7分,共21分)17.(7分)计算:022)21(45sin 2)1(--︒+-- 解:022)21(45sin 2)1(--︒+--= =2, 4, 8, 16, 32, 64, … ①5, 7, 11, 19, 35, 67, … ②第14题图┌O E A BC D第15题图PR F EA B C D18.(7分)解方程组: ⎩⎨⎧=-=+. ②y x , ① y x 54219.(7分)在同一条件下,对同一型号的汽车进行耗油1升所行驶路程的实验,将收集到的数据作为一个样本进行分析,绘制出部分频数分布直方图和部分扇形统计图.如下图所示(路程单位:km)结合统计图完成下列问题:⑴扇形统计图中,表示135.12x <≤部分的百分数是 ; ⑵请把频数分布直方图补充完整,这个样本数据的中位数落在第 组;⑶哪一个图能更好地说明一半以上的汽车行驶的路程在1413x <≤之间?哪一个图能更好地说明行驶路程在135.12x <≤的汽车多于在5.1414x <≤的汽车?12.5≤x <1312≤x <12.513.5≤x <1413≤x <13.530%30%14≤x <14.513.3%6.7%四、应用题(本大题2小题,共15分)20.(7分)海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.21.(8分)如图,利用一面墙(墙的长度不超过45m),用80m 长的篱笆围一个矩形场地.⑴怎样围才能使矩形场地的面积为750m 2?⑵能否使所围矩形场地的面积为810m 2,为什么?得分 评卷人西 东 第20题图 墙第21题图B A D C五、推理与计算(本大题2小题,共15分)22.(7分)如图,把一张矩形的纸ABCD 沿对角线BD 折叠,使点C落在点E 处,BE 与AD 交于点F . ⑴求证:ΔABF ≌ΔEDF ;⑵若将折叠的图形恢复原状,点F 与BC 边上的点M 正好重合,连接DM ,试判断四边形BMDF 的形状,并说明理由.23.(8分)如图,AB 、BC 、CD 分别与⊙O 切于E 、F 、G ,且AB ∥CD .连接OB 、OC ,延长CO 交⊙O 于点M ,过点M 作MN ∥OB 交CD 于N .⑴求证:MN 是⊙O 的切线;⑵当0B =6cm,OC =8cm 时,求⊙O 的半径及MN 的长.第23题图O GCABDN MFEC D B A M第22题图F E六、综合应用与探究(本大题2小题,共21分)24.(9分)5月12日,我国四川省汶川县等地发生强烈地震,在抗震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地需要25台,乙地需要23台;A、B两省获知情况后慷慨相助,分别捐赠该型号挖掘机26台和22台并将其全部调往灾区.如果从A 省调运一台挖掘机到甲地要耗资0.4万元,到乙地要耗资0.3万元;从B省调运一台挖掘机到甲地要耗资0.5万元,到乙地要耗资0.2万元.设从A省调往甲地x台挖掘机,A、B两省将捐赠的挖掘机全部调往灾区共耗资y万元.⑴请直接写出y与x之间的函数关系式及自变量x的取值范围;⑵若要使总耗资不超过15万元,有哪几种调运方案?⑶怎样设计调运方案能使总耗资最少?最少耗资是多少万元?2与x轴的一个交点为25.(12分)已知抛物线b=2-+axy+axA(-1,0),与y轴的正半轴交于点C.⑴直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;⑵当点C在以AB为直径的⊙P上时,求抛物线的解析式;⑶坐标平面内是否存在点M,使得以点M和⑵中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.湖北省十堰市2008年初中毕业生学业考试数学试题参考答案及评分说明一、选择题(每题3分,共30分)第1~10题:A C B D A A D C A C二、填空题(每空3分,共18分)11.910514.1⨯ 12.2或-8(错一个扣1分,错两个不得分)13.31+a 14.48° 15.2.5 16.2051 三、解答题(第17~19题,每题7分,共21分)17.解:原式=12121-⨯+ ……………………………6分=1 …………………………………7分说明:第一步三项中,每对一项给2分. 18.解:①+②,得,x 93= ∴.x 3= ………………3分把3=x 代入②,得,y 53=- ∴.y 2-= …6分∴原方程组的解是 ⎩⎨⎧-==.y ,x 23 ………………………7分 说明:其它解法请参照给分.19.解:⑴20%; …………………………………………2分⑵补图略;3; …………………5分说明:频数为6,补对直方图给2分;组数填对给1分. ⑶扇形统计图能很好地说明一半以上的汽车行驶的路程在1413x <≤之间;条形统计图(或直方统计图)能更好地说明行驶路程在135.12x <≤的汽车多于在5.1414x <≤的汽车. ……………7分说明:只回答“扇形统计图”;“条形统计图(或直方统计图)”也给满分.四、应用题(第20题7分,第21题8分,共15分)20.解:有触礁危险.………………………………1分理由: 过点P 作PD ⊥AC 于D .…………………2分设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°. ∴BD =PD =x . ………………………………3分 在Rt △PAD 中,∵∠PAD =90°-60°=30°,∴x .xAD 330tan =︒=………………………………4分∵BD ,AB AD +=∴x .x +=123 ∴)13(61312+=-=x .………6分∵,<18)13(6+∴渔船不改变航线继续向东航行,有触礁危险. ………………7分 说明:开头“有触礁危险”没写,但最后解答正确不扣分.21.解:⑴设所围矩形ABCD 的长AB 为x 米,则宽AD 为)80(21x -米. ………1分说明:AD 的表达式不写不扣分依题意,得 ,x x 750)80(21=-• …………………2分即,.x x 01500802=+-解此方程,得 ,x 301= .x 502= ………3分∵墙的长度不超过45m,∴502=x 不合题意,应舍去. …4分当30=x 时,.x 25)3080(21)80(21=-⨯=-所以,当所围矩形的长为30m 、宽为25m 时,能使矩形的面积为750m 2. ……5分⑵不能.因为由,x x 810)80(21=-•得.x x 01620802=+- ………………………………6分 又∵ac b 42-=(-80)2-4×1×1620=-80<0,∴上述方程没有实数根.…………………………7分因此,不能使所围矩形场地的面积为810m 2……………8分 说明:如果未知数的设法不同,或用二次函数的知识解答,只要过程及结果正确,请参照给分.五、推理与计算(第22题7分,第23题8分,共15分)22.解:⑴证明:由折叠可知,C .E ED ,CD ∠=∠= ……1分在矩形ABCD 中,C ,A CD ,AB ∠=∠=∴E .A ED AB ∠=∠=, ∵∠AFB =∠EFD ,∴△AFB ≌△EFD . ……………………4分⑵四边形BMDF 是菱形. ………………………5分理由:由折叠可知:BF =BM ,DF =DM . …………6分由⑴知△AFB ≌△EFD ,∴BF =DF .∴BM =BF =DF =DM .∴四边形BMDF 是菱形. …………………7分23.解:⑴证明:∵AB 、BC 、CD 分别与⊙O 切于点E 、F 、G , ∴DCB .OCB ABC ,OBC ∠=∠∠=∠2121 …………………1分 ∵AB ∥CD ,∴∠ABC +∠DCB =180°. ∴.DCB ABC OCB OBC ︒=︒⨯=∠+∠=∠+∠9018021)(21 ∴.OCB OBC -BOC ︒=︒-︒=∠+∠︒=∠9090180)(180 ……2分 ∵MN ∥OB ,∴∠NMC =∠BOC =90°.∴MN 是⊙O 的切线.……4分⑵连接OF ,则OF ⊥BC .…………………………………5分由⑴知,△BOC 是Rt △,∴.OC DB BC 10862222=+=+= ∵OF ,BC OC OB S BOC ••=••=∆2121 ∴6×8=10×OF .∴0F =4.8.即⊙O 的半径为4.8cm . …………………………………6分由⑴知,∠NCM =∠BCO ,∠NMC =∠BOC =90°,∴△NMC ∽△BOC . …………………7分 ∴.MN .CO CM OB MN 88.486+==即 ∴MN =9.6(cm). …………………………………8分说明:不带单位不扣分.六、综合应用与探究(第24题9分,第25题12分,共21分)24.解:⑴.x x x x y )2623(2.0)25(5.0)26(3.04.0+-+-+-+=或:.x x x x y )2522(2.0)25(5.0)26(3.04.0+-+-+-+=即:.x y 7.192.0+-= (253≤≤x ) ………3分说明:函数式正确给2分,x 的取值范围正确给1分,函数式不化简不扣分.⑵依题意,得.x 157.192.0≤+- 解之,得.x 247≥又∵253≤≤x ,且x 为整数, ∴.x 2524或=……5分说明:用建立不等式组的方法求解也可,请参照给分.即,要使总耗资不超过15万元,有如下两种调运方案:方案一:从A 省往甲地调运24台,往乙地调运2台;从B 省往甲地调运1台,往乙地调运21台.方案二:从A 省往甲地调运25台,往乙地调运1台;从B 省往甲地调运0台,往乙地调运22台. …………6分⑶由⑴知:.x y 7.192.0+-= (253≤≤x )∵-0.2<0, ∴y 随x 的增大而减小.∴当25=x 时,∴.y 7.147.19252.0=+⨯-=最小值 ……8分答:设计如下调运方案:从A 省往甲地调运25台,往乙地调运1台; 从B 省往甲地调运0台,往乙地调运22台,能使总耗资最少,最少耗资为14.7万元. ……………9分25.解:⑴对称轴是直线:1=x ,点B 的坐标是(3,0). ……2分说明:每写对1个给1分,“直线”两字没写不扣分.⑵如图,连接PC ,∵点A 、B 的坐标分别是A (-1,0)、B (3,0),∴AB =4.∴.AB PC 242121=⨯== 在Rt △POC 中,∵O P =PA -OA =2-1=1, ∴.PO PC OC 3122222=-=-=∴b =.3 ………………………………3分当01=-=,y x 时,,a a 032=+-- ∴.a 33= ………………………………4分 ∴.x x y 3332332++-= ………………5分 ⑶存在.……………………………6分理由:如图,连接AC 、BC .设点M 的坐标为),(y x M .①当以AC 或BC 为对角线时,点M 在x 轴上方,此时CM ∥AB ,且CM =AB .由⑵知,AB =4,∴|x |=4,3==OC y .∴x =±4.∴点M 的坐标为)3,4()3,4(-或M .…9分说明:少求一个点的坐标扣1分.②当以AB 为对角线时,点M 在x 轴下方.过M 作MN ⊥AB 于N ,则∠MNB =∠AOC =90°.∵四边形AMBC 是平行四边形,∴AC =MB ,且AC ∥MB .∴∠CAO =∠MBN .∴△AOC ≌△BNM .∴BN =AO =1,MN =CO =3. ∵OB =3,∴0N =3-1=2.∴点M 的坐标为(2,3)M -. ……………………………12分说明:求点M 的坐标时,用解直角三角形的方法或用先求直线解析式,然后求交点M 的坐标的方法均可,请参照给分.综上所述,坐标平面内存在点M ,使得以点A 、B 、C 、M 为顶点的四边形是平行四边形.其坐标为123(4,3),(4,3),(2,3)M M M --.说明:①综上所述不写不扣分;②如果开头“存在”二字没写,但最后解答全部正确,不扣分.。

相关文档
最新文档