人教版九年级数学上册 《二次函数》参考教案
(精)人教版数学九年级上册《二次函数》全章教案(最新)

22.1 二次函数的图像和性质(一)一、学习目标1.知识与技术目标:(1)理解并掌握二次函数的看法;(2)能判断一个给定的函数能否为二次函数,并会用待定系数法求函数分析式;(3)能依据实质问题中的条件确立二次函数的分析式。
二、学习重点难点1.重点:理解二次函数的看法,能依据已知条件写出函数分析式;2.难点:理解二次函数的看法。
三、教课过程(一)创建情境、导入新课:回想一下什么是正比率函数、一次函数、反比率函数?它们的一般形式是如何的?(二)自主研究、合作沟通:问题 1:正方体的六个面是全等的正方形,假如正方形的棱长为x,表面积为 y,写出 y 与 x 的关系。
问题 2: n 边形的对角线数 d 与边数 n 之间有如何的关系 ?问题 3:某工厂一种产品此刻的年产量是20 件,计划此后两年增添产量.假如每年都比上一年的产量增添 x 倍,那么两年后这种产品的数目y 将随计划所定的x 的值而定, y 与 x 之间的关系如何表示 ?问题 4:察看以上三个问题所写出来的三个函数关系式有什么特色?小组沟通、议论得出结论:经化简后都拥有的形式。
问题 5:什么是二次函数?形如。
问题 6:函数 y=ax2+bx+c ,当 a、 b、 c 知足什么条件时, (1)它是二次函数 ?(2) 它是一次函数?(3) 它是正比率函数?(三)试试应用:例 1.对于 x 的函数y (m 21)x m2 m求 m 的值.是二次函数,注意:二次函数的二次项系数一定是的数。
例 2.已知对于 x 的二次函数,当数值为 7。
求这个二次函数的分析式.x=- 1 时,函数值为(待定系数法 )10,当x=1时,函数值为4,当x=2时,函(四)稳固提升:1.以下函数中,哪些是二次函数?(1)y=3x - 1 ; (2)y=3x 2+2; (3)y=3x 3+2x 2; (4)y=2x 2- 2x+1;(5)y=x 2- x(1+x);(6)y=x -2+x .2.一个圆柱的高等于底面半径,写出它的表面积S与半径R之间的关系式。
人教版九年级数学上册《二次函数》教案

《二次函数》教案教学目标1、从实际情境中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系;2、理解二次函数的概念,掌握二次函数的形式;3、会建立简单的二次函数模型,并能根据实际问题确定自变量的取值范围;教学重点二次函数的概念和解析式教学难点本节涉及的实际问题有的较为复杂,要求学生有较强的概括能力.教学过程创设情境,导入新课问题1、现有一根12m长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题)合作学习,探索新知请用适当的函数解析式表示下列问题中情景中的两个变量y与x之间的关系:(1)面积y(cm2)与圆的半径x(cm)(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文x两年后王先生共得本息y元;(3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om,室内通道的尺寸如图,设一条边长为x (cm),种植面积为y (m2)x教师组织合作学习活动:先个体探求,尝试写出y 与x 之间的函数解析式.上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨.(1)y =πx 2 (2)y =2000(1+x )2=20000x 2+40000x +20000(3)y =(60-x -4)(x -2)=-x 2+58x -112(二)上述三个函数解析式具有哪些共同特征?让学生充分发表意见,提出各自看法.教师归纳总结:上述三个函数解析式经化简后都具y =ax ²+bx +c (a ,b ,c 是常数, a ≠0)的形式.板书:我们把形如y =ax ²+bx +c (其中a ,b ,c 是常数,a ≠0)的函数叫做二次函数(quadra ticfuncion ).称a 为二次项系数,b 为一次项系数,c 为常数项.请讲出上述三个函数解析式中的二次项系数、一次项系数和常数项做一做下列函数中,哪些是二次函数?(1)2x y = (2)21xy -= (3)122--=x x y (4))1(x x y -= (5))1)(1()1(2-+--=x x x y2、分别说出下列二次函数的二次项系数、一次项系数和常数项:(1)12+=x y (2)12732-+=x x y (3))1(2x x y -= 3、若函数m mx m y --=2)1(2为二次函数,则m 的值为 .例题示范,了解规律 例1、已知二次函数 q px x y ++=2当x =1时,函数值是4;当x =2时,函数值是-5.求这个二次函数的解析式.此题难度较小,但却反映了求二次函数解析式的一般方法,可让学生一边说,教师一边板书示范,强调书写格式和思考方法.练习:已知二次函数c bx ax y ++=2 ,当x =2时,函数值是3;当x =-2时,函数值是2.求这个二次函数的解析式.例2、如图,一张正方形纸板的边长为2cm ,将它剪去4个全等的直角三角形(图中阴影部分).设AE =BF =CG =DH =x (cm ),四边形EFGH 的面积为y (cm 2),求:①y 关于x 的函数解析式和自变量x 的取值范围.②当x 分别为0.25,0.5,1.5,1.75时,对应的四边形EFGH 的面积,并列表表示.方法:(1)学生独立分析思考,尝试写出y 关于x 的函数解析式,教师巡回辅导,适时点拨.(2)对于第一个问题可以用多种方法解答,比如:求差法:四边形EFGH 的面积=正方形ABCD 的面积-直角三角形AEH 的面积DE 4倍. 直接法:先证明四边形EFGH 是正方形,再由勾股定理求出EH 2(3)对于自变量的取值范围,要求学生要根据实际问题中自变量的实际意义来确定.(4)对于第(2)小题,在求解并列表表示后,重点让学生看清x 与y 之间数值的对应关系和内在的规律性:随着x 的取值的增大,y 的值先减后增;y 的值具有对称性. 练习:用20米的篱笆围一个矩形的花圃(如图),设连墙的一边为x ,矩形的面积为y ,求:(1)写出y 关于x 的函数关系式.(2)当x =3时,矩形的面积为多少?归纳小结本节课你有什么收获? ABE F C G D H x。
九年级数学上册二次函数教案模板优秀8篇

九年级数学上册二次函数教案模板优秀8篇二次函数教案篇一一、由实际问题探索二次函数某果园有100棵橙子树,每一棵树平均结600个橙子,现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。
根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。
(1) 问题中有哪些变量?其中哪些是自变量?哪些因变量(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式。
果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子,因此果园橙子的总产量y=(100+z)(6005x)=-5x2+100x+ 60000.二、想一想在上述问题中,种多少棵橙子树,可以使果园橙子的产量最多?我们可以列表表示橙子的总产量随橙子树的增加而变化情况。
你能根据表格中的数据作出猜测吗 ?自己试一试。
x/棵y/个三。
做一做银行的储蓄利率是随时间的变化而变化的。
也就是说,利率是一个变量。
在我国利率的调整是由中国人民银行根据国民经济发展的情况而决定的。
设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。
如果存款额是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税).四、二次函数的定义一般地,形如y=ax2+bx+c(a,b,c是常数,a0)的函数叫做x的二次函数(quadratic function)注意:定义中只要求二次项系数不为零,一次项系数、常数项可以为零。
例如,y=一5x2+100x+60000和y=100x2+200x+100都是二次函数。
我们以前学过的正方形面积A与边长a的关系A=a2,圆面积s与半径r的关系s=Try2等也都是二次函数的例子。
随堂练习1.下列函数中(x,t是自变量),哪些是二次函数?y=- +3x.y= x-x+25,y=2 + 2x,s=1+t+5t2.圆的半径是l㎝,假设半径增加x㎝时,圆的面积增加y㎝.(1)写出y与x之间的关系表达式;(2)当圆的半径分别增加lcm、㎝、2㎝时,圆的面积增加多少?五、课时小结1. 经历探索和表示二次函数关系的过程,猜想并归纳二次函数的定义及一般形式。
数学《二次函数》教案(4篇)

数学《二次函数》教案(4篇)数学《二次函数》教案篇一教学目标(一)教学学问点1、经受探究二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
(二)力量训练要求1、经受探究二次函数与一元二次方程的关系的过程,培育学生的探究力量和创新精神。
2、通过观看二次函数图象与x轴的交点个数,争论一元二次方程的根的状况,进一步培育学生的数形结合思想。
3、通过学生共同观看和争论,培育大家的合作沟通意识。
(三)情感与价值观要求1、经受探究二次函数与一元二次方程的关系的过程,体验数学活动布满着探究与制造,感受数学的严谨性以及数学结论确实定性。
2、具有初步的创新精神和实践力量。
教学重点1、体会方程与函数之间的联系。
2、理解何时方程有两个不等的实根,两个相等的实数和没有实根。
3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
教学难点1、探究方程与函数之间的联系的过程。
2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
教学方法争论探究法。
教具预备投影片二张第一张:(记作§2.8.1A)其次张:(记作§2.8.1B)教学过程Ⅰ。
创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,争论了它们之间的关系。
当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。
数学《二次函数》教案篇二教学目标(一)教学学问点1、能够利用二次函数的图象求一元二次方程的近似根。
2、进一步进展估算力量。
(二)力量训练要求1、经受用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。
人教版九年级数学上册(教案):22.1.1二次函数

一、教学内容
人教版九年级数学上册(教案):22.1.1二次函数。本节内容主要包括以下三个方面:
1.二次函数的定义:引导学生了解二次函数的一般形式,即f(x) = ax^2 + bx + c(a≠0),理解各系数对函数图像的影响。
2.二次函数的图像:探讨a、b、c的取值对二次函数图像的开口方向、对称轴、顶点、最值等性质的影响,并学会绘制二次函数图像。
-二次函数图像的绘制:如何根据函数解析式准确绘制出二次函数图像,特别是当系数变化时图像的调整。
-二次函数性质的应用:将二次函数的性质应用于解决具体问题,如求解最值、判断单调性等。
-二次函数与实际问题的结合:如何将现实生活中的问题转化为二次函数模型,并利用所学知识解决问题。
举例:在讲解a、b、c对图像影响时,难点在于如何让学生理解当a变化时,图像开口的大小和方向变化;当b变化时,对称轴的位置如何移动;当c变化时,图像与y轴的交点如何变化。可以通过动态演示或实物操作来帮助学生形象化理解。
-二次函数的图像性质:掌握开口方向、对称轴(x=-b/2a)、顶点((-b/2a, f(-b/2a)))、最值(最大值或最小值)等关键特征。
-二次函数的解析式与图像之间的关系:理解系数变化对图像的具体影响,如a>0时图像开口向上,a<0时开口向下;b影响对称轴的位置;c影响图像与y轴的交点。
-二次函数的实际应用:解决生活中的实际问题,如物体抛射、面积计算等。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数的基本概念、图像性质和实际应用。通过实践活动和小组讨论,我们加深了对二次函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
《二次函数》教案(优秀7篇)

《二次函数》教案(优秀7篇)《二次函数》教案篇一教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。
2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y =ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。
教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b 与抛物线y=ax2的关系。
教学过程:一、提出问题导入新课1.二次函数y=2x2的图象具有哪些性质?2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、学习新知1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?同学试一试,教师点评。
问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。
师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?小组相互说说(一人记录,其余组员补充)2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。
3、做一做在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?三、小结 1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系? 2.你能说出函数y=ax2+k具有哪些性质?四、作业:在同一直角坐标系中,画出 (1)y=-2x2与y=-2x2-2;的图像五:板书《二次函数》教案篇二1、会用描点法画二次函数=ax2+bx+c的图象。
二次函数教学教案参考

二次函数教学教案参考一、教学目标:1. 让学生理解二次函数的概念,掌握二次函数的定义和标准形式。
2. 能够运用二次函数解决实际问题,提高学生的数学应用能力。
3. 培养学生的逻辑思维能力和团队合作能力。
二、教学内容:1. 二次函数的概念和定义。
2. 二次函数的标准形式及其性质。
3. 二次函数的图像及其特点。
4. 二次函数的顶点公式及其应用。
5. 二次函数与实际问题的结合。
三、教学方法:1. 采用问题驱动法,引导学生主动探究二次函数的性质和特点。
2. 利用多媒体辅助教学,展示二次函数的图像和实际应用案例。
3. 组织小组讨论,培养学生的团队合作能力和表达能力。
4. 进行课堂练习和课后作业,巩固学生的学习成果。
四、教学准备:1. 多媒体教学设备。
2. 二次函数教学课件。
3. 练习题和课后作业。
4. 教学参考书籍和资料。
五、教学过程:1. 导入新课:通过一个实际问题,引入二次函数的概念。
2. 讲解概念:讲解二次函数的定义和标准形式。
3. 探究性质:引导学生探究二次函数的性质和特点。
4. 展示图像:利用多媒体展示二次函数的图像。
5. 应用案例:讲解二次函数在实际问题中的应用。
6. 课堂练习:进行课堂练习,巩固学生的学习成果。
7. 小组讨论:组织学生进行小组讨论,分享学习心得。
8. 课后作业:布置课后作业,让学生进一步巩固知识。
9. 总结课堂:对本节课的内容进行总结,强调重点和难点。
10. 布置课后任务:让学生预习下一节课的内容,准备课堂讨论。
六、教学评估:1. 课堂练习和课后作业的完成情况,评估学生对二次函数知识的掌握程度。
2. 小组讨论的参与度和表达能力,评估学生的团队合作和交流能力。
3. 课后任务的完成情况,评估学生的自主学习能力。
七、教学拓展:1. 引导学生在课后深入研究二次函数的图像,探索其在不同参数下的变化规律。
2. 鼓励学生尝试解决更复杂的实际问题,提高学生的数学应用能力。
3. 向学生推荐相关的数学竞赛或研究项目,激发学生的学习兴趣和挑战精神。
九年级数学上册《二次函数》教案、教学设计

2.培养学生运用二次函数解决实际问题的能力,如最优化问题、几何图形问题等,并通过实际问题进一步理解二次函数的性质。
讨论过程中,我会巡回指导,关注学生的讨论进展,适时给予提示和引导,确保每个学生都能积极参与讨论。
(四)课堂练习
课堂练习环节,我会设计以下几类题目:
1.基础题目:主要考察学生对二次函数定义、图像、性质的掌握,以及基本的求解方法。
2.提高题目:涉及二次函数在实际问题中的应用,如最值问题、几何图形问题等,提高学生的应用能力。
5.写作任务:要求学生撰写一篇关于二次函数在实际问题中应用的小论文,字数在500字左右。论文可以围绕二次函数在生活中的应用、二次函数与其他数学知识的联系等方面展开,旨在培养学生的数学表达能力和逻辑思维。
1.完成教材课后练习题:第1题、第3题、第5题,巩固二次函数的基础知识。
2.解决实际问题:根据课堂所学,选择一个实际问题,建立二次函数模型并求解,将解题过程和结果写在作业本上。
三、教学重难点和教学设想
(一)教学重难点
1.重点:二次函数的定义、图像特征、性质以及在实际问题中的应用。
2.难点:
(1)理解并掌握二次函数的图像与性质之间的关系,如开口方向、顶点、对称轴等。
(2)灵活运用二次函数求解最值问题,特别是顶点公式的运用。
(3)将二次函数的知识应用于解决实际问题,提高学生的数学建模能力。
3.学生在讨论、练习过程中遇到的困难和问题,以及如何克服这些困难。
五、作业布置
为了巩固学生对二次函数知识的掌握,提高他们的应用能力,我将在课后布置以下几类作业:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
义务教育基础课程初中教学资料
22.1.1 二次函数
一、教学目标
1.知识与技能目标:
(1).使学生理解并掌握二次例函数的概念
(2).能判断一个给定的函数是否为二次例函数,并会用待定系数法求函数解析式
(3).能根据实际问题中的条件确定二次例函数的解析式,体会函数的模型思想
2.过程与方法目标;
通过“探究----感悟----练习”,采用探究、讨论等方法进行。
3.情感态度与价值观:
通过对几个特殊的二次函数的讲解,向学生进行一般与特殊的辩证唯物主义教育
二、教学重、难点
1.重点:理解二次例函数的概念,能根据已知条件写出函数解析式
2.难点:理解二次例函数的概念.
三、教学过程
1、知识回顾
(1).一元二次方程的一般形式是什么?
(2).回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的
2、合作学习,探索新知:
问题1: 正方体的六个面是全等的正方形,如果正方形的棱长为x,表面积为y,那么y与x的关系可表示为?
y=6x2
问题2:n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队数n有什么关系?
m=21122
n n - 问题3: 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的数量y 将随计划所定的x 的值而定,y 与x 之间的关系怎样表示?
y=20x 2+40x+20
观察以上三个问题所写出来的三个函数关系式有什么特点?
经化简后都具有y=ax²+bx+c 的形式,(a,b,c 是常数, a≠0 ).
❖我们把形如y=ax²+bx+c(其中a,b,c 是常数,a≠0)的函数叫做二次函数 称:a 为二次项系数,ax 2叫做二次项;b 为一次项系数,bx 叫做一次项;c 为常数项.
又例:y=x² + 2x – 3
满足什么条件时
当,是常数其中函数c b,a,)c b,a,c(bx ax y 2++= (1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?
3、巩固练习:
1.下列函数中,哪些是二次函数?
(1)y=3x-1 ; (2)y=3x 2+2; (3)y=3x 3+2x 2; (4)y=2x 2-2x+1;
(5)y=x 2-x(1+x); (6)y=x -2+x.
2.做一做:
(1)正方形边长为x (cm ),它的面积y (cm2)是多少?
(2)矩形的长是4厘米,宽是3厘米,如果将其长增加x 厘米,宽增加2x 厘米,则面积增加到y 平方厘米,试写出y 与x 的关系式.
4、例题讲解:
例1: 关于x 的函数m
m x m y -+=2)1(是二次函数, 求m 的值.
解: 由题意可得
012
2≠+=-m m m
时,函数为二次函数。
当解得,22
=∴=m m
注意:二次函数的二次项系数不能为零
例2:已知关于x 的二次函数,当x=-1时,函数值为10,当x=1时,函数值为4,当x=2时,函数值为7,求这个二次函数的解析式.(待定系数法)
由题意得:为解:设所求的二次函数,2c bx ax y ++=
7244
10
=++=++=+-c b a c b a c b a
5,3,2=-==c b a 解得,
5322+-=∴x x y 所求的二次函数是
四、随堂练习:
1、P 29练习1,2;
2、若函数 为二次函数,求m 的值。
3、已知二次函数y=x²+px+q,当x=1时,函数值为4,当x=2时,函数值为- 5, 求这个二次函数的解析式.
五、课堂小结:
作业
m m 221)x (m y --=。