七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)(1)

合集下载

(完整word版)七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)(2)

(完整word版)七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)(2)

一元一次方程应用题专题讲解一、列方程解应用题的一般步骤(解题思路)(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设——设出未知数:根据提问,巧设未知数.(3)列——列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答——检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。

(一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

2.多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

增长量=原有量×增长率现在量=原有量+增长量例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?(二)等积变形问题等积变形是以形状改变而体积不变为前提。

常用等量关系为:原料体积=成品体积。

常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h=2r h②长方体的体积V=长×宽×高=abc例3.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?(三)数字问题1.要搞清楚数的表示方法:一个三位数,一般可设百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9),则这个三位数表示为:100a+10b+c.2.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n—1表示。

人教版七年级数学上第三章一元一次方程知识点总结及应用题详细解析

人教版七年级数学上第三章一元一次方程知识点总结及应用题详细解析

人教版七年级数学上第三章一元一次方程知识点总结及应用题详细解析系数化为1---------未知数细数是几就除以几知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=×100%商品利润商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?解:设这种皮鞋标价是x元8/10x=60×(1+40%)解得:x=105105×8/10=84(元)答:这种皮鞋标价是105元,优惠价是84元3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为( B )A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 50解析: 因为自行车按进价提高45%后标价,已经设过自行车进价是X元了所以X(1+45%)=145%X ——也就是标价因为(标价)又以八折优惠卖出所以标价×八折=销售价145%X × 0.8 = 1.16 X 因为结果每辆获利50元(获益= 销售价- 进价)所以获利的50元= 销售价1.16X元- 进价X元上为解题思路,得到方程:145%X • 0.8 - X =504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.解析:按最少利润为800*5%=40,则出售价为800+40=840,则打折为840/1200=70%,最低可以打七折5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.解:设每台彩电零售价为x.[(1+40%)×80%]x-x=2700÷10x=2250答:每台彩电零售价为2250元.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?方案三获利多方案一:140*4500=630000方案二:15*6=90 90*7500=675000 (140-90)*1000=50000 675000+50000=725000方案三:设粗加工x天16*x+6*(15-x)=140 x=5天精加工15-5=10天5*16*4500+10*6*7500=360000+450000=8100007.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?(1)全球通:50+0.2*X神州行:0.4X(2) 50+0.2X=0.4X 得X=250(3)50+0.2*120=740.4*120=48选择神州行更优惠!8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。

七年级数学上册---一元一次方程应用题归类解题思路PPT课件

七年级数学上册---一元一次方程应用题归类解题思路PPT课件

1.市场经济问题 【例题】某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、 2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供 2280名学生就餐. 〔1〕求1个大餐厅、1个小餐厅分别可供多少名学生就餐; 解:设1个小餐厅可供名学生就餐,那么1个大餐厅可供〔1680-2y〕名学生就 餐,根据题意,得2〔1680-2y〕+y=2280解得:y=360〔名〕所以16802y=960〔名〕 〔2〕假设7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由. 解:因为960x5+360x2=5520>5300, 所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.
【例题】两列火车分别行驶在平行的轨道上,其中快车车长为100米,慢车 车长150米,当两车相向而行时,快车驶过慢车某个窗口所用的时间为5秒。 ⑴ 两车的速度之和与两车相向而行时慢车经过快车某一窗口所用的时间各是 多少? 解:两车的速度之和=100÷5=20〔米/秒〕 慢车经过快车某一窗口所用的时间=150÷20=7.5〔秒〕 ⑵ 如果两车同向而行,慢车速度为8米/秒,快车从后面追赶慢车,那么从快 车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需的时间至少 是多少秒? 解:设至少是x秒,〔快车车速为20-8〕 那么〔20-8〕x-8x=100+150 x=62.5 答:至少62.5秒快车从后面追赶上并全部超过慢车。
【例题】与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。 行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。如果一 列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时 间是26秒。 ⑴ 行人的速度为每秒多少米? 行人的速度是:3.6km/时=3600米÷3600秒=1米/秒 骑自行车的人的速度是: 10.8km/时=10800米÷3600秒=3米/秒 ⑵ 这列火车的车长是多少米?

2024年秋季新人教版七年级上册数学教学课件 第五章 一元一次方程 综合专题

2024年秋季新人教版七年级上册数学教学课件 第五章 一元一次方程 综合专题

海起飞,9 天到南海,现野鸭从南海、大雁从北海同
时起飞,问经过多少天相遇 ? 设经过 x 天相遇,根据
题意可列方程为
(A )
A.(17
+1 9
)x=1
C.(9-7)=1
B.(17
-1 9
)x=1
D.(9+7)=1
例2 (连云港)元朝朱世杰所著的《算学启蒙》中,记载
了这样一道题:良马日行二百四十里,驽马日行一百
五十里,驽马先行一十一日,问良马几何日追及之?其
大意是:快马每天行 240 里,慢马每天行 150 里,慢
马先行 12 天,快马几天可追上慢马?若设快马 x 天可
追上慢马,由题意得
( D)
A.
x =x+2 240 150
B.24x0
=x 150
-12
C.240(x-12)=150x D.240x=150(x+12)
例3 (荔湾区期末)爸爸与小明在足球场上进行耐力训练, 他们在 400 米的环形跑道上从同一起点沿同一方向同时 出发进行绕圈跑,爸爸跑完一圈时,小明才跑完半圈, 4 分钟时爸爸第一次追上小明.请问: (1) 小明与爸爸的速度各是多少? (2) 再过多少分钟后,爸爸在第二次追上小明前两人相距 50 米?
5x-5-1=4x-4+1 解得 x=3.
(2) 将 x=3+2=5 代入第一个方程得 12-m=-m-2. 解得 m=22. 2
类型三:求含字母参数的方程的解
例4 (汉阳区期末)已知关于 x 的一元一次方程 x+1=
2x+a 的解为 x=-1,那么关于 y 的一元一次方程
(y+2)+1=2(y+2)+a 的解是
解:45÷3=15(人). 设从甲处调往乙处 x 人,则从甲处调往丙处 (15-x) 人. 依题意,得:15+x=1.5×(15+15-x), 解得:x=12. 所以 15-x=3.

七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)(1)

七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)(1)

七年级上册应用题专题讲解一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解—解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。

(一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套,, ”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率 ,, ”来体现。

2.多少关系:通过关键词语“多、少、和、差、不足、剩余,, ”来体现。

增长量=原有量×增长率现在量=原有量+增长量例 1.某单位今年为灾区捐款 2 万 5 千元,比去年的 2 倍还多 1000 元,去年该单位为灾区捐款多少元?解:设去年该单位为灾区捐款x 元,则2x+1000=25000 2x=24000 x=12000答:去年该单位为灾区捐款12000 元.例 2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的 40%,这样油箱中剩的汽油比两次所用的汽油少 1 公斤,求油箱里原有汽油多少公斤?解:设油箱里原有汽油x 公斤 ,则x-[25%x+40% ×(1-25%)x]+1=25%x+40% ×(1-25%)x即10%x=1 x=10答:油箱里原有汽油10公斤.(二)等积变形问题等积变形是以形状改变而体积不变为前提。

七年级数学上册第三章一元一次方程3.1.1一元一次方程(图文详解)

七年级数学上册第三章一元一次方程3.1.1一元一次方程(图文详解)

人教版七年级数学上册第三章一元一次方程
请你判断下列给定的t的值中,哪个是方程2t+1=7-t 的解?
(1)t=-2 (2)t=2 (3)t=1 根据方程的解的定义,我们得到t=2是方程2t+1=7-t 的解.
人教版七年级数学上册第三章一元一次方程
1.方程x=3是下列哪个方程的解?( C )
(A)3x+9=0
人教版七年级数学上册第三章一元一次方程
你知道什么 叫方程吗?
含有未知数的等式—方程
你能举出一些 方程的例子?
练习:
判断下列式子是不是方程,正确的打“√”,错误的打”×”:
(1) 1+2=3 (2) 1+2x=4 (3) x+1-3
(×) (4) x 2 1 (×)
(√) (5) x+y=2
4.已知数x-5与2x-4的值互为相反数,列出关于x的方程. 解:由题意得:(x-5)+(2x-4)=0.
人教版七年级数学上册第三章一元一次方程
1.方程、方程的解、一元一次方程的概念. 2.根据实际问题中的等量关系,用一元一次方程表示问 题中的数量关系. 注:分析实际问题中的数量关系,利用其中的相等关系 列出方程,是用数学解决实际问题的一种方法.
秀水两地之间,距青山50千米,距秀水70千米,
王家庄到翠湖的路程有多远?
回顾:路程=速度×时间 速度=路程÷时间
时间=路程÷速度
人教版七年级数学上册第三章一元一次方程
分析:若知道王家庄到翠湖的路程(比如x千米), 用含x的式子表示关于路程的数量: 那么王家庄距青山_(__x_-_5_0_)_千米,王家庄距秀水(_x_+_7_0_)_千米. 有关时间的数量: 从王家庄到青山行车___3__小时,王家庄 到秀水行车__5__小时.

七上一元一次方程应用题全部解法ppt课件

七上一元一次方程应用题全部解法ppt课件
3
专题一、和差倍分问题:
此问题中常用“多、少、大、小、几分之几”或 “增加、减少、缩小”等等词语体现等量关系。审 题时要抓住关键词,确定标准量与比校量,并注意 每个词的细微差别。类似于:甲乙两数之和56,甲 比乙多3(乙是甲的1/3),求甲乙各多少?这样的 问题就是和倍问题。问题的特点是,已知两个量之 间存在合倍差关系,可以求这两个量的多少。基本 方法是:以和倍差中的一种关系设未知数并表示其 他量,选用余下的关系列出方程。
10
练习2 某城市按以下规定收取每月的煤气 费:用煤气如果不超过60立方米, 按每立方米0.8元收费,如果超过60 立方米,超出部分按每立方米1.2元 收费,已知,某用户4月份的煤气费 平均每立方米0.88元,求该用户4月 份应交的煤气费。
11
练习3 我国很多城市水资源缺乏,为了加
强居民的节水意识,合理利用水资 源,很多城市制定了用水标准,A 城市规定每户每月的标准用水量, 不超过标准用水量的部分按每立方 米1.2元收费,超过标准用水量的部 分按每立方米3元收费。该市张大爷 家5月份用水9立方米,需交费16.2元, A城市规定的每户每月标准用水量 是多少立方米?
8.5折优惠; 某 人 去 商 场 购 物 两 次 , 分 别 付 款 168 元 和
430元,如果他合起来一次购买同样的 商品,他可以节约多少钱?
24
练习2 学校准备添置一批课桌椅, 原订购60套,每套100元。店方表示 :如果多购可以优惠,结果校方购 了72套,每套减价3元,但商店获得 同样 多的利润,求每套课桌椅的成 本是多少?
8
例5、本市中学生足球赛中,某队共参 加了8场比赛,保持不败的记录,积18 分.记分规则是:胜一场得3分,平一场 得1分,负一场得0分。你知道这个胜了 几场?又平了几场吗?

(完整版)七年级上数学第1讲一元一次方程的解法及应用

(完整版)七年级上数学第1讲一元一次方程的解法及应用

七秋第1讲一元一次方程的解法及应用11一、 知识要点一元一次方程:只含有一个未知数,并且未知数的最高次数是 1,系数不等于0的整式方程叫做一元一次方程,这里的“元” 是指未知数,"次”是指含未知数的项的最高次数.解一元一次方程的一般步骤:⑴去分母;⑵去括号;⑶移项;⑷合并同类项;⑸未知数的系数化为 1.这五个步骤在解一元一次方程中,有时可能用不到,有时可能重复用,也不一定按从上到下的顺序进行,要根 据方程的特点灵活运用.二、 例题精选一元一次方程的概念:【例1】(1)若(a 1)x 冋a 5是关于x 的一元一次方程,则 a 的值是 ____________________________ .【巩固1】⑴若kx 3 2k 2k 3是关于x 的一元一次方程,则k2⑵ 若(m 2)x m 3 5是关于x 的一元一次方程,则 (3)关于 x 的方程(m-1 ) x 2- (m-1) x+1=0 是一元 元一次方程的解:k -3x有相同的解,求k 的值.【例2】若关于x 的方程2x-3=1和【巩固2】若关于x 的一元一次方程 2x313 x 3k =1的解为x=-1,则k 的值为() 2(2)已知(2 m 3)x 2 (2 3m)x 1是关于x 的一元一次方程,则 m(3)方程(m 1)x lm| 1 A.—4 2n 是关于x 的一元 B . 54 次方程,若 n 是它的解,贝U n m ().D. ? 4 C. 3 4 m 的值是次方程,则 2m-1 =七秋第1讲一元一次方程的解法及应用11解一元一次方程:【例3】⑴ 方程(3x 2) 2(2 x 1)0去括号正 1确的是 ( )A . 3x 22x 1 0 B . 3x 2 4x 1 0C. 3x 24x 2 0 D . 3x 2 4x 2 0⑵ 方程x 32 x 1 x 去分母正确 的是( )5 2 A . 2(x 3) 2 x 5(x :1) B . 2x 3 20 10x 5x 1C . 2(x 3) 20 10x 5(x 1)D . (x 3) 20 10x (x 1) x 14 x 【巩固3】①解方程 =1时,去分母正确的是( )32 A. 2 (x-1 ) -3 (4x-1 ) =1 B . 2x-1-12+x=1 C . 2 (x-1 ) -3 (4-x ) =6 D . 2x-2-12-3x=6②解方程2 4x 3 5 6 3x 22 x 1时,去完括号之后得到的是:【巩固4】解方程5【例5】解方程:1丄丄y ? 33 1 2 24 2【例4】⑴解方程y 口 2 口23⑵解方程专1专 2x 1 5解一元一次方程:1 12 【例6】解方程:一(2x 3) (3 2x) x11 19 133 13三、回家作业【练习1】(1)下列选项是一元一次方程的是( )A. x 0B. m 3nC. x 1D. x 2(2)关于x的方程(n 1)x2 nx x 8 0是一元一次方程,则n的值是___________________________⑶若关于x的方程(2 |m|)x2 (m 2)x (5 2m) 0是一元一次方程,求m的解.【练习2] 解方程:2 4x 3 5 6 3x 2 2 x 1【练习3] 解方程:△4— 14 6 18【练习4] 解方程:1) 6] 2 03 4 3【练习5] 解方程:3(x 1) [(x 1) 2(x 1) -(x 1)3 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册应用题专题讲解一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解—解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。

(一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

2.多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

增长量=原有量×增长率现在量=原有量+增长量例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?解:设去年该单位为灾区捐款x元,则2x+1000=25000 2x=24000 x=12000答:去年该单位为灾区捐款12000元.例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?解:设油箱里原有汽油x公斤,则x-[25%x+40%×(1-25%)x]+1=25%x+40%×(1-25%)x即10%x=1 x=10答:油箱里原有汽油10公斤.(二)等积变形问题等积变形是以形状改变而体积不变为前提。

常用等量关系为:原料体积=成品体积。

常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S ·h =2r h π ②长方体的体积 V =长×宽×高=abc例3.现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?解:设可足够锻造直径为0.4米,长为3米的圆柱形机轴x 根,则 3.14×2)24.0(÷×3x=3.14×2)28.0(÷×300.12x=4.8 x=40答:可足够锻造直径为0.4米,长为3米的圆柱形机轴40根。

(三)数字问题1.要搞清楚数的表示方法:一个三位数,一般可设百位数字为a ,十位数字是b ,个位数字为c (其中a 、b 、c 均为整数,且1≤a ≤9, 0≤b ≤9, 0≤c ≤9),则这个三位数表示为:100a+10b+c .2.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n —1表示。

例4.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。

解:设原数百位数为x,则十位数为10(x+1),个位数为2x ,于是 100× 2x +10×(x+1)+x+49=2×[100x+10(x+1)+2x] 即 211x+59=224x+2013x=39 x=3 故原数为:100×2+10×4+2×3=246 答:原数为246.例5.一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数 是十位上的数的3倍,求这个三位数.[分析]由已知条件给出了百位和个位上的数的关系,若设十位上的数为x ,则百位上的数为x+7,个位上的数是3x ,等量关系为三个数位上的数字和为17。

解:设这个三位数十位上的数为x ,则百位上的数为x+7,个位上的数是3x ,则x+x+7+3x=17 解得 x=2 x+7=9,3x=6 答:这个三位数是926。

(四)商品利润问题(市场经济问题或利润赢亏问题)(1)销售问题中常出现的量有:进价(或成本)、售价、标价(或定价)、利润等。

(2)利润问题常用等量关系:商品利润=商品售价-商品进价=商品标价×折扣率-商品进价%100⨯=商品进价商品利润商品利润率%100-⨯=商品进价商品进价商品售价(3)商品销售额=商品销售价×商品销售量商品的销售利润=(销售价-成本价)× 销售量(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.即商品售价=商品标价×折扣率.例6:一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获 利15元,这种服装每件的进价是多少?[分析]探究题目中隐含的条件是关键,可直接设出成本为x 元,进价 折扣率 标价 优惠价 利润 x 元8折(1+40%)X 元80%(1+40%)X15元等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15 解:设这种服装每件的进价为x 元,则 80%x (1+40%)—x=15, 解得x=125 答:这种服装每件的进价是125元。

例6*:某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折? 解:设至多打x 折,则根据题意有1200800800x -×100%=5%解得 x=0.7=70% 答:至多打7折出售.(五)行程问题——画图分析法利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.1.行程问题中的三个基本量及其关系:路程=速度×时间 时间=路程÷速度 速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷2(4)环路问题甲乙同时同地背向而行:甲路程—乙路程=环路一周的距离甲乙同时同地同向而行:快者的路程—慢者的路程=环路一周的距离抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程.常见的还有:相背而行;行船问题;环形跑道问题。

例7:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

)解析:(1)分析:相遇问题,画图表示为:等量关系是:慢车走的路程+快车走的路程=480公里。

解:设快车开出x小时后两车相遇,由题意得,140x+90(x+1)=480 解这个方程,230x=390 ,23161x答:快车开出23161小时两车相遇(2)分析:相背而行,画图表示为:等量关系是:两车所走的路程和+480公里=600公里。

解:设x小时后两车相距600公里,由题意得,(140+90)x+480=600解这个方程,230x=120 ∴x=2312答:2312小时后两车相距600公里。

(3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。

解:设x小时后两车相距600公里,由题意得,(140-90)x+480=60050x=120∴x=2.4 答:2.4小时后两车相距600公里。

(4)分析:追及问题,画图表示为:等量关系为:快车的路程=慢车走的路程+480公里。

甲乙600甲乙解:设x 小时后快车追上慢车。

由题意得,140x=90x+480 解这个方程,50x=480 ∴ x=9.6 答:9.6小时后快车追上慢车。

(5)分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。

解:设快车开出x 小时后追上慢车。

由题意得,140x=90(x+1)+480 50x=570 ∴ x=11.4 答:快车开出11.4小时后追上慢车。

例8:一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/时,求甲、乙两码头之间的距离。

解:设甲、乙两码头之间的距离为x 千米,则454+=x x x=80答:甲、乙两码头之间的距离为80千米.(六)工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间=工作总量工作效率工作时间 =工作总量工作时间工作效率2.经常在题目中未给出工作总量时,设工作总量为单位1。

即完成某项任务的各工作量的和=总工作量=1.工程问题常用等量关系:先做的+后做的=完成量.例9:将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?解:设甲、乙一起做还需x 小时才能完成工作.根据题意,得16×12+(16+14)x=1 解这个方程,得x=115115=2小时12分答:甲、乙一起做还需2小时12分才能完成工作.例10:一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?[分析]等量关系为:甲注水量+乙注水量-丙排水量=1。

解:设打开丙管后x 小时可注满水池, 则 由题意得,1342133019)2()8161(===-++x x x 解这个方程得答:打开丙管后1342小时可注满水池。

相关文档
最新文档