2019-2020陕西师范大学附属中学分校数学高考模拟试题带答案
陕西师范大学附属中学2019届高三上学期第二次模拟考试数学(文)试题 Word版含答案

陕西师范大学附属中学2019届上学期第二次模拟考试高三数学(文)试题一、选择题(本题共12小题,每小题5分,共60分)1.设全集U =R ,集合{|1}M x x =>,2{|1}P x x =>,则下列关系中正确的是A.M P =B.M P ⊂≠C.P M ⊂≠D.()U M P =∅ð2.设复数21z i=+(其中i 为虚数单位),则z 等于 A.12i + B.12i - C.2i - D.2i 3.命题“对任意的x ∈R ,都有2240x x -+≤”的否定为A.存在x ∈R ,使2240x x -+≥B.对任意的x ∈R ,都有2240x x -+>C.存在x ∈R ,使2240x x -+>D.存在x ∉R ,使2240x x -+>4.已知{}n a 是等差数列,n S 是其前n 项和,若公差0d <且27S S =,则下列结论中不正确的是..... A.45S S = B.90S = C.50a = D.2745S S S S +=+5. 为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图), 已知图中从左到右的前3个小组的频率之比为1∶2∶3, 第1小组的频数为6,则报考飞行员的学生人数是 A.36 B.40 C.48 D.50 6.方程lg 0x x +=的根所在的区间是A.1(0,)4B.11(,)42C.31(,)24D.3(,1)47.“2a b c +>”的一个充分条件是A.a c >且b c >B.a c >且b c <C.a c >或b c >D.a c >或b c < 8.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为A.83π B.3C. D.323π9.已知(cos 23,cos67)AB =︒︒,(2cos68,2cos 22)BC =︒︒,则ABC ∆的面积为3π712πO 10.若函数()(01)x x f x ka a a a -=->≠且在(,)-∞+∞上既是奇函数又是增函数,则函数()log ()a g x x k =+的图象是A. B. C. D.11.若抛物线y =2x 2上两点()11,A x y 、()22,B x y 关于直线y =x +m 对称,且1212x x =-,则实数m 的值为 A.21 B.32 C.52 D.212.已知1a >,若函数()(),1121,13x a x f x f x a x -<≤=-+-<≤⎧⎨⎩,则()[]0f f x a -=的根的个数最多有A.1个B.2个C. 3个D. 4个二、填空题(本题共4小题,每小题5分,共20分.把答案填写在题中的横线上)13.已知函数22log (2),0(),026x x f x x x x +>⎧⎪=⎨≤⎪+⎩,()2f a =,则a =_______.14.函数()sin()f x A x ωϕ=+,(,,A ωϕ是常数,0,0A ω>>) 的部分图像如图,则(0)f =_______.15.若函数()f x 对于x ∈R 都有(1)(1)f x f x -=+和(1)(3)0f x f x -++=成立,当[0,1]x ∈时,()f x x =,则(2016)f =_______.16.已知矩形ABCD 中,2AB =,1AD =,E 、F 分别是BC 、CD 的中点,则()AE AF AC +⋅ 等于_______.三、解答题(解答应写出文字说明,证明过程或演算步骤)17. (本题满分12分) 为选拔选手参加“汉字听写大会”,某中学举行了一次“汉字听写竞赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n )进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据). (Ⅰ)求样本容量n 和频率分布直方图中的x 、y 的值;(Ⅱ)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生 参加“汉字听写大会”,求所抽取的2名学生中至少有一人得分在[90,100]内的概率.18.(本题满分12分)已知等差数列{}n a ,满足37a =,5726a a +=. (Ⅰ)求数列{}n a 的通项n a ; (Ⅱ)令211n n b a =-(*n ∈N ),求数列{}n b 的前n 项和n S . 19.(本小题满分12分)如图,四棱柱1111ABCD A B C D -中,底面ABCD 和侧面11BCC B 都是矩形,E 是CD 的中点,1D E CD ⊥,22AB BC ==. (Ⅰ)求证:1D E ⊥底面ABCD ;(Ⅱ)若直线1BD 与平面ABCD 所成的角为3π,求四棱锥1-D ABED 体积.20.(本题满分12分) 如图所示,点N 在圆O :228x y +=上,点D 是N 在x 轴上投影,M 为DN 上一点,且满足2DN DM =.(Ⅰ)当点N 在圆O 上运动时,求点M 的轨迹C 的方程. (Ⅱ)过(2,0)F 不与坐标轴垂直的直线交曲线C 于,P Q 两点, 线段PQ 的垂直平分线交x 轴于点E , 试判断EF PQ是否为定值?若是定值,求此定值;若不是定值,请说明理由.21.(本小题满分12分)已知函数21()ln 22f x x ax x =--.(Ⅰ)若函数()f x 在2x =处取得极值,求实数a 的值; (Ⅱ)若函数()f x 在定义域内单调递增,求实数a 的取值范围;(Ⅲ)当12a =-时,关于x 的方程1()2f x x b =-+在[1,4]上恰有两个不相等的实数根,求实数b 的取值范围.请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分. 并请考生务必将答题卡中对所选试题的题号进行涂写.22.(本小题满分10分)选修44-:坐标系与参数方程选讲A BCD1A 1B 1C 1D E在直角坐标系xoy 中,直线l的参数方程为322x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C的方程为ρθ=. (Ⅰ)求圆C 的圆心到直线l 的距离;(Ⅱ)设圆C 与直线l 交于点A B 、,若点P的坐标为(3,,求PA PB +. 23.(本小题满分10分)选修45-:不等式选讲已知函数2()log (12)f x x x m =++--. (Ⅰ)当7=m 时,求函数)(x f 的定义域;(Ⅱ)若关于x 的不等式2)(≥x f 的解集是R ,求m 的取值范围.陕西师范大学附属中学2019届上学期第二次模拟考试高三数学(文)试题参考答案一、选择题(本题共12小题,每小题5分,共60分)二、填空题(本题共4小题,每小题5分,共20分)三、解答题(本题共70分)17. (本题满分12分)解: (Ⅰ)由题意可知,样本容量8500.01610n ==⨯,20.0045010y ==⨯,0.1000.0040.0100.0160.0400.030x =----=.(Ⅱ)由题意可知,分数在[80,90)内的学生有5人,记这5人分别为1a ,2a ,3a ,4a ,5a ,分数在[90,100]内的学生有2人,记这2人分别为1b ,2b .抽取的2名学生的所有情况有21种,分别为:(1a ,2a ),(1a ,3a ),(1a ,4a ),(1a ,5a ),(1a ,1b ),(1a ,2b ),(2a ,3a ), (2a ,4a ),(2a ,5a ),(2a ,1b ),(2a ,2b ),(3a ,4a ),(3a ,5a ),(3a ,1b ), (3a ,2b ),(4a ,5a ),(4a ,1b ),(4a ,2b ),(5a ,1b ),(5a ,2b ),(1b ,2b ). 其中2名同学的分数都不在[90,100]内的情况有10种,分别为:(1a ,2a ),(1a ,3a ),(1a ,4a ),(1a ,5a ),(2a ,3a ),(2a ,4a ),(2a ,5a ), (3a ,4a ),(3a ,5a ),(4a ,5a ).∴ 所抽取的2名学生中至少有一人得分在[90,100]内的概率101112121P =-=. 18. (本题满分12分)解:(Ⅰ)设{}n a 的首项为1a ,公差为d ,5762613a a a +=⇒=,6323a a d -==, ∴ 21n a n =+.(Ⅱ)211111()14441n n b a n n n n ===--++, ∴ 1111111()4122314(1)n nS n n n =-+-++-=++. 19. (本题满分12分) 解:( Ⅰ)底面ABCD 和侧面11B BCC 都是矩形 ∴CD BC ⊥,1CC BC ⊥又∵C CC CD =1 ∴⊥BC 平面11D DCC 又∵1D E ≠⊂平面11D DCC ∴1BC D E ⊥,既1D E BC ⊥又∵1D E EB ⊥,BCEB B = ∴1D E ⊥底面ABCD(Ⅱ) 2V =20. (本题满分12分)【解析】(Ⅰ)设),(y x M 、00(,)N x y ,由于2DN DM =和ND ⊥x 轴,所以0x x y =⎧⎪⎨=⎪⎩ 代入圆方程得:22184x y += 所以,曲线C 的轨迹方程为 22184x y += (Ⅱ)EF PQ是定值,值为4。
2019-2020学年陕西省高考数学全真模拟文科试卷(四)(有答案)

陕西省高考数学全真模拟试卷(文科)(四)一、选择题(共12小题,每小题5分,满分60分)1.集合A={x|x≥1},B={x|x2<9},则A∩B=()A.(1,3)B.[1,3)C.[1,+∞)D.[e,3)2.若复数(1﹣ai)2(i为虚数单位,a∈R)是纯虚数,则a=()A.1 B.﹣1 C.0 D.±13.若tanα=1,则sin2α﹣cos2α的值为()A.1 B.C.D.4.设,不共线的两个向量,若命题p:>0,命题q:夹角是锐角,则命题p是命题q成立的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.直线l:x﹣ky﹣1=0与圆C:x2+y2=2的位置关系是()A.相切 B.相离C.相交 D.与k的取值有关6.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,87.一个体积为8的正三棱柱的三视图如图所示,则该三棱柱的俯视图的面积为()A.4 B.4 C.6 D.68.等差数列{an }和等比数列{bn}的首项都是1,公差公比都是2,则b b b=()A.64 B.32 C.256 D.40969.函数f(x)=lnx+e x的零点所在的区间是()A .()B .()C .(1,e )D .(e ,∞)10.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为( ) A .B .C .D .11.双曲线的一个焦点F 与抛物线C 2:y 2=2px (p >0)的焦点相同,它们交于A ,B 两点,且直线AB 过点F ,则双曲线C 1的离心率为( ) A .B .C .D .212.定义在[0,+∞)的函数f (x )的导函数为f′(x ),对于任意的x ≥0,恒有f′(x )>f (x ),a=,b=,则a ,b 的大小关系是( )A .a >bB .a <bC .a=bD .无法确定二、填空题(共4小题,每小题5分,满分20分)13.如图所示,当输入a ,b 分别为2,3时,最后输出的M 的值是______.14.已知实数x ,y 满足,若目标函数z=x ﹣y 的最大值为a ,最小值为b ,则a+b=______.15.某事业单位共公开招聘一名职员,从笔试成绩合格的6(编号分别为1﹣6)名应试者中通过面试选聘一名.甲、乙、丙、丁四人对入选者进行预测.甲:不可能是6号;乙:不是4号就是5号;丙:是1、2、3号中的一名;丁:不可能是1、2、3号.已知四人中只有一人预测正确,那么入选者是______号. 16.在△ABC 中,BC=,∠A=60°,则△ABC 周长的最大值______.三、解答题(共5小题,满分60分) 17.已知数列{a n }的前n 项和为S n ,S n =2a n ﹣2 (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设b n =log 2a n ,c n =,记数列{c n }的前n 项和T n ,求T n .18.如图,梯形ABEF 中,AF ∥BE ,AB ⊥AF ,且AB=BC=AD=DF=2CE=2,沿DC 将梯形CDFE 折起,使得平面CDFE ⊥平面ABCD .(1)证明:AC ∥平面BEF ; (2)求三棱锥D ﹣BEF 的体积.19.从某校高三1200名学生中随机抽取40名,将他们一次数学模拟成绩绘制成频率分布直方图(如图)(满分为150分,成绩均为不低于80分整数),分为7段:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150].(1)求图中的实数a 的值,并估计该高三学生这次成绩在120分以上的人数;(2)在随机抽取的40名学生中,从成绩在[90,100)与[140,150]两个分数段内随机抽取两名学生,求这两名学生的成绩之差的绝对值标不大于10的概率.20.已知椭圆C : +=1(a >b >0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为.(1)求椭圆C 的方程;(2)设F 1,F 2是椭圆C 的左右焦点,若椭圆C 的一个内接平行四边形的一组对边过点F 1和F 2,求这个平行四边形的面积最大值.21.已知函数f (x )=x ﹣a ﹣lnx (a ∈R ). (1)若f (x )≥0恒成立,求实数a 的取值范围; (2)证明:若0<x 1<x 2,则lnx 1﹣lnx 2>1﹣.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.如图,AB ,CD 是圆O 的两条互相垂直的直径,E 是圆O 上的点,过E 点作圆O 的切线交AB 的延长线于F ,连结CE 交AB 于G 点. (1)求证:FG 2=FA•FB; (2)若圆O 的半径为2,OB=OG ,求EG 的长.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 1的极坐标方程为:ρ2cos 2θ+3ρ2sin 2θ=3,曲线C 2的参数方程是(t 为参数).(1)求曲线C 1和C 2的直角坐标方程;(1)设曲线C 1和C 2交于两点A ,B ,求以线段AB 为直径的圆的直角坐标方程.[选修4-5:不等式选讲]24.已知函数f (x )=|x ﹣a|﹣|x ﹣4|(x ∈R ,a ∈R )的值域为[﹣2,2]. (1)求实数a 的值;(2)若存在x 0∈R ,使得f (x 0)≤m ﹣m 2,求实数m 的取值范围.陕西省高考数学全真模拟试卷(文科)(四)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.集合A={x|x≥1},B={x|x2<9},则A∩B=()A.(1,3)B.[1,3)C.[1,+∞)D.[e,3)【考点】交集及其运算.【分析】求出B中不等式的解集确定出B,找出A与B的交集即可.【解答】解:由B中不等式解得:﹣3<x<3,即B=(﹣3,3),∵A=[1,+∞),∴A∩B=[1,3).故选:B.2.若复数(1﹣ai)2(i为虚数单位,a∈R)是纯虚数,则a=()A.1 B.﹣1 C.0 D.±1【考点】复数代数形式的乘除运算.【分析】利用复数代数形式的乘法运算化简,再由实部为0且虚部不为0求得a值.【解答】解:∵(1﹣ai)2=(1﹣a2)﹣2ai为纯虚数,∴,解得a=±1.故选:D.3.若tanα=1,则sin2α﹣cos2α的值为()A.1 B.C.D.【考点】同角三角函数基本关系的运用.【分析】由条件利用同角三角函数的基本关系,求得sin2α﹣cos2α的值.【解答】解:tanα=1,则sin2α﹣cos2α===,故选:B.4.设,不共线的两个向量,若命题p:>0,命题q:夹角是锐角,则命题p是命题q成立的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】利用数量积运算性质、向量夹角公式、向量共线定理即可得出.【解答】解:,不共线的两个向量,若命题p:>0,则>0⇔夹角是锐角,因此命题p是命题q成立的充要条件.故选:C.5.直线l:x﹣ky﹣1=0与圆C:x2+y2=2的位置关系是()A.相切 B.相离C.相交 D.与k的取值有关【考点】直线与圆的位置关系.【分析】求出圆C:x2+y2=2的圆心C(0,0),半径r=,再求出圆心C(0,0)到直线l:x﹣ky﹣1=0的距离,从而得到直线l:x﹣ky﹣1=0与圆C:x2+y2=2相交.【解答】解:圆C:x2+y2=2的圆心C(0,0),半径r=,圆心C(0,0)到直线l:x﹣ky﹣1=0的距离d=,∴直线l:x﹣ky﹣1=0与圆C:x2+y2=2相交.故选:C.6.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,8【考点】茎叶图.【分析】求乙组数据的平均数就是把所有乙组数据加起来,再除以5.找甲组数据的中位数要把甲组数据按从小到大的顺序排列,位于最中间的一个数为中位数.据此列式求解即可.【解答】解:乙组数据平均数=(9+15+18+24+10+y)÷5=16.8;∴y=8;甲组数据可排列成:9,12,10+x,24,27.所以中位数为:10+x=15,∴x=5.故选:C.7.一个体积为8的正三棱柱的三视图如图所示,则该三棱柱的俯视图的面积为()A .4B .4C .6D .6【考点】由三视图求面积、体积.【分析】由侧视图可知:底面正三角形的高为2,可得底面边长a ,可得:该三棱柱的俯视图为边长为a的正三角形,即可得出面积.【解答】解:由侧视图可知:底面正三角形的高为2,可得底面边长=×2=4, ∴该三棱柱的俯视图为边长为4的正三角形,其面积===4.故选:A .8.等差数列{a n }和等比数列{b n }的首项都是1,公差公比都是2,则b bb=( )A .64B .32C .256D .4096 【考点】等差数列与等比数列的综合.【分析】由等差数列和等比数列的通项公式可得a n =2n ﹣1,b n =2n ﹣1.求得b bb=b 1•b 5•b 9,代入计算即可得到所求值.【解答】解:等差数列{a n }和等比数列{b n }的首项都是1,公差公比都是2, 可得a n =1+2(n ﹣1)=2n ﹣1,b n =1•2n ﹣1=2n ﹣1. 可得bbb=b 1•b 5•b 9=1•24•28=212=4096. 故选:D .9.函数f (x )=lnx+e x 的零点所在的区间是( ) A .() B .() C .(1,e ) D .(e ,∞)【考点】函数零点的判定定理.【分析】由于函数在(0,+∞)单调递增且连续,根据零点判定定理只要满足f (a )f (b )<0即为满足条件的区间【解答】解:由于函数在(0,+∞)单调递增且连续,,f (1)=e >0故满足条件的区间为(0,) 故选A .10.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为( ) A .B .C .D .【考点】列举法计算基本事件数及事件发生的概率.【分析】根据题意,设齐王的三匹马分别记为a 1,a 2,a 3,田忌的三匹马分别记为b 1,b 2,b 3,用列举法列举齐王与田忌赛马的情况,进而可得田忌胜出的情况数目,进而由等可能事件的概率计算可得答案 【解答】解:设齐王的三匹马分别记为a 1,a 2,a 3,田忌的三匹马分别记为b 1,b 2,b 3, 齐王与田忌赛马,其情况有:(a 1,b 1)、(a 2,b 2)、(a 3,b 3),齐王获胜; (a 1,b 1)、(a 2,b 3)、(a 3,b 2),齐王获胜; (a 2,b 1)、(a 1,b 2)、(a 3,b 3),齐王获胜; (a 2,b 1)、(a 1,b 3)、(a 3,b 2),田忌获胜; (a 3,b 1)、(a 1,b 2)、(a 2,b 3),齐王获胜; (a 3,b 1)、(a 1,b 3)、(a 2,b 2),齐王获胜;共6种; 其中田忌获胜的只有一种(a 2,b 1)、(a 1,b 3)、(a 3,b 2), 则田忌获胜的概率为, 故选:D 11.双曲线的一个焦点F 与抛物线C 2:y 2=2px (p >0)的焦点相同,它们交于A ,B 两点,且直线AB 过点F ,则双曲线C 1的离心率为( ) A .B .C .D .2【考点】双曲线的简单性质.【分析】求得抛物线的焦点,可得p=2c ,将x=c 代入双曲线的方程,可得=2p=4c ,由a ,b ,c 的关系和离心率公式,解方程即可得到所求.【解答】解:抛物线C:y2=2px(p>0)的焦点为(,0),2由题意可得c=,即p=2c,由直线AB过点F,结合对称性可得AB垂直于x轴,令x=c,代入双曲线的方程,可得y=±,即有=2p=4c,由b2=c2﹣a2,可得c2﹣2ac﹣a2=0,由e=,可得e2﹣2e﹣1=0,解得e=1+,(负的舍去),故选:C.12.定义在[0,+∞)的函数f(x)的导函数为f′(x),对于任意的x≥0,恒有f′(x)>f(x),a=,b=,则a,b的大小关系是()A.a>b B.a<b C.a=b D.无法确定【考点】利用导数研究函数的单调性.【分析】构造新函数g(x)=,研究其单调性即可.【解答】解:令g(x)=,则g′(x)==,∵对任意x≥0,恒有f(x)<f′(x),e x>0,∴g′(x)>0,即g(x)是在定义域上是增函数,所以g(3)>g(2),即b>a,故选:B二、填空题(共4小题,每小题5分,满分20分)13.如图所示,当输入a,b分别为2,3时,最后输出的M的值是 3 .【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数M=的值,代入a=2,b=3,即可得到答案.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数M=的值,∵a=2<b=3,∴M=3故答案为:3.14.已知实数x,y满足,若目标函数z=x﹣y的最大值为a,最小值为b,则a+b= 1 .【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,化目标函数z=x﹣y为y=x﹣z,由图可知,当直线y=x﹣z过A(2,0)时,直线在y轴上的截距最小,z有最大值为2;当直线y=x﹣z过B(0,1)时,直线在y轴上的截距最大,z有最小值为﹣1.∴a=2,b=﹣1,则a+b=1.故答案为:1.15.某事业单位共公开招聘一名职员,从笔试成绩合格的6(编号分别为1﹣6)名应试者中通过面试选聘一名.甲、乙、丙、丁四人对入选者进行预测.甲:不可能是6号;乙:不是4号就是5号;丙:是1、2、3号中的一名;丁:不可能是1、2、3号.已知四人中只有一人预测正确,那么入选者是 6 号.【考点】进行简单的合情推理.【分析】结合题意,进行假设,然后根据假设进行分析、推理,即可判断入选者.【解答】解:入选者不能是4号、5号,因为如果是4号或5号,则甲、乙、丁三个人的猜测都是正确的; 如果入选者是6号,那么甲、乙、丙的猜测是错的,只有丁的猜测是对的; 如果入选者是1、2、3中的一个,那么甲、丁的猜测是错的,乙、丙的猜测是对的; 根据题意“只有一人的猜测对的”, 所以入选者是6号. 故答案为:6.16.在△ABC 中,BC=,∠A=60°,则△ABC 周长的最大值.【考点】正弦定理. 【分析】由正弦定理可得: ====2,因此△ABC 周长=a+b+c=+2sinB+2sinC ,=2sinB+2sin+,利用和差公式展开化简整理,再利用三角函数的单调性即可得出.【解答】解:在△ABC 中,由正弦定理可得: ====2,∴b=2sinB ,c=2sinC , ∴△ABC 周长=a+b+c=+2sinB+2sinC ,=2sinB+2sin+=2sinB+2+=3sinB+cosB+=2+=2sin (B+30°)+,∵0°<B <120°,∴B+30°∈(30°,150°), ∴sin (B+30°)∈.∴△ABC 周长≤3.故答案为:3.三、解答题(共5小题,满分60分) 17.已知数列{a n }的前n 项和为S n ,S n =2a n ﹣2 (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设b n =log 2a n ,c n =,记数列{c n }的前n 项和T n ,求T n .【考点】数列的求和;数列递推式.【分析】(Ⅰ)求出a 1=2,利用当n ≥2时,a n =S n ﹣S n ﹣1,得到数列的递推关系式,判断新数列是等比数列,然后求解数列{a n }的通项公式; (Ⅱ)利用b n =log 2a n ,c n =,求出数列的通项公式,利用裂项法求解数列{c n }的前n 项和T n .【解答】(本小题满分13分) 解:(Ⅰ)当n=1时,a 1=2,…当n ≥2时,a n =S n ﹣S n ﹣1=2a n ﹣2﹣(2a n ﹣1﹣2)… 即:,…∴数列{a n }为以2为公比的等比数列, ∴a n =2n .…(Ⅱ)由b n =log 2a n 得b n =log 22n =n ,… 则c n ===,…T n =1﹣+﹣+…+=1﹣=.…18.如图,梯形ABEF 中,AF ∥BE ,AB ⊥AF ,且AB=BC=AD=DF=2CE=2,沿DC 将梯形CDFE 折起,使得平面CDFE ⊥平面ABCD .(1)证明:AC ∥平面BEF ; (2)求三棱锥D ﹣BEF 的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(1)取BF 中点为M ,AC 与BD 交点为O ,连结MO ,ME ,由已知结合三角形中位线定理可得四边形OCEM 为平行四边形,然后利用线面平行的判定得答案;(2)由线面垂直的性质定理可得BC ⊥平面DEF ,然后把三棱锥D ﹣BEF 的体积转化为三棱锥B ﹣DEF 的体积求解.【解答】(1)证明:如图,记BF 中点为M ,AC 与BD 交点为O , 连结MO ,ME , 由题设知,且CE ∥DF ,且MO=,即CE=MO且CE∥MO,知四边形OCEM为平行四边形,有EM∥CO,即EM∥AC,又AC⊄平面BEF,EM⊂平面BEF,∴AC∥平面BEF;(2)解:∵平面CDFE⊥平面ABCD,平面CDFE∩平面ABCD=DC,BC⊥DC,∴BC⊥平面DEF,三棱锥D﹣BEF的体积为=.19.从某校高三1200名学生中随机抽取40名,将他们一次数学模拟成绩绘制成频率分布直方图(如图)(满分为150分,成绩均为不低于80分整数),分为7段:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150].(1)求图中的实数a的值,并估计该高三学生这次成绩在120分以上的人数;(2)在随机抽取的40名学生中,从成绩在[90,100)与[140,150]两个分数段内随机抽取两名学生,求这两名学生的成绩之差的绝对值标不大于10的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(1)由频率分布直方图中频率之和为1,能求出a,估计该校成绩在120分以上人数即可;(2)根据概率公式计算即可.【解答】解:(1)由0.025+0.05+0.075+0.1+0.2+0.25+10a=1,得a=0.03成绩在120分以上的人频率为0.3+0.25+0.075=0.625,估计该校成绩在120分以上人数为1200×0.625=750人,(2)成绩在[90,100)与[140,150]两个分数段内学生人数分别为2人和3人,从中抽出2人的基本事件总数为10种,其中这两名学生的成绩之差的绝对值不大于10的事件数为4,所求概率为p==.20.已知椭圆C : +=1(a >b >0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为.(1)求椭圆C 的方程;(2)设F 1,F 2是椭圆C 的左右焦点,若椭圆C 的一个内接平行四边形的一组对边过点F 1和F 2,求这个平行四边形的面积最大值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(1)由椭圆的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为,列出方程组,求出a ,b ,由此能求出椭圆C 的方程.(2)设过椭圆右焦点F 2的直线l :x=ty+1与椭圆交于A ,B 两点,由,得:(3t 2+4)y 2+6ty﹣9=0,由此利用韦达定理、弦长公式、平行四边形面积、函数单调性,能求出平行四边形面积的最大值. 【解答】20.(本小题满分12分) 解:(1)∵椭圆C : +=1(a >b >0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为,∴依题意,解得a=2,b=,c=1,∴椭圆C 的方程为:.…(2)设过椭圆右焦点F 2的直线l :x=ty+1与椭圆交于A ,B 两点, 则,整理,得:(3t 2+4)y 2+6ty ﹣9=0,由韦达定理,得:,,∴|y 1﹣y 2|===,∴==,椭圆C 的内接平行四边形面积为S=4S △OAB =,令m=≥1,则S=f (m )==,注意到S=f (m )在[1,+∞)上单调递减,∴S max =f (1)=6,当且仅当m=1,即t=0时等号成立.故这个平行四边形面积的最大值为6.…21.已知函数f (x )=x ﹣a ﹣lnx (a ∈R ). (1)若f (x )≥0恒成立,求实数a 的取值范围; (2)证明:若0<x 1<x 2,则lnx 1﹣lnx 2>1﹣.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)法一:求出函数的导数,解关于导函数的不等式,求出函数的单调区间,得到函数的最小值,从而求出a 的范围即可;法二:分离参数,得到a ≤x ﹣lnx (x >0),令g (x )=x ﹣lnx (x >0),根据函数的单调性求出g (x )的最小值,从而求出a 的范围即可; (2)先求出lnx ≤x ﹣1,得到ln<﹣1,(0<x 1<x 2),整理即可.【解答】解:(1)解法1:f′(x )=(x >0),令f′(x )>0,得x >1;令f′(x )<0,得0<x <1, 即f (x )在(0,1)单调递减,在(1,+∞)上单调递增, 可知f (x )的最小值是f (1)=1﹣a ≥0,解得a ≤1; 解法2:f (x )≥0,即a ≤x ﹣lnx (x >0), 令g (x )=x ﹣lnx (x >0), 则g′(x )=,(x >0),令g′(x )>0,得x >1;令g′(x )<0,得0<x <1, 即g (x )在(0,1)单调递减,在(1,+∞)上单调递增, 可知g (x )的最小值是g (1)=1,可得a ≤1; (2)证明:取a=1,知f (x )=x ﹣1﹣lnx ,由(1)知lnx ﹣x+1≤0,即lnx ≤x ﹣1, ∴ln<﹣1,(0<x 1<x 2),整理得lnx 1﹣lnx 2>1﹣.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.如图,AB ,CD 是圆O 的两条互相垂直的直径,E 是圆O 上的点,过E 点作圆O 的切线交AB 的延长线于F ,连结CE 交AB 于G 点. (1)求证:FG 2=FA•FB; (2)若圆O 的半径为2,OB=OG ,求EG 的长.【考点】与圆有关的比例线段.【分析】(1)连接OE ,DE ,由弦切角定理知∠FEG=∠D ,证明FG=FE ,由切割线定理得FE 2=FA•FB,即可证明:FG 2=FA•FB;(2)由相交弦定理得:BG•AG=EG•CG,即可求EG 的长. 【解答】(1)证明:连接OE ,DE ,由弦切角定理知∠FEG=∠D . ∵∠C+∠D=90°, ∴∠C+∠FEG=90°又∠C+∠CGO=90°,∠CGO=∠FGE ∴∠C+∠FGE=90°, ∴∠FGE=∠FEG即FG=FE …由切割线定理得FE 2=FA•FB,所以FG 2=FA•FB; (Ⅱ)解:由OB=OG=2知,OG=2,∴AG=2+2,BG=2﹣2,在Rt △OCG 中,由OC=2,OG=2得,CG=4.由相交弦定理得:BG•AG=EG•CG, 即(2+2)(2﹣2)=4EG ,∴EG=2.…[选修4-4:坐标系与参数方程]23.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知曲线C 1的极坐标方程为:ρ2cos 2θ+3ρ2sin 2θ=3,曲线C 2的参数方程是(t 为参数).(1)求曲线C 1和C 2的直角坐标方程;(1)设曲线C 1和C 2交于两点A ,B ,求以线段AB 为直径的圆的直角坐标方程. 【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I )把x=ρcosθ,y=ρsinθ,代入曲线ρ2cos 2θ+3ρ2sin 2θ=3即可化为直角坐标方程.曲线C 2参数方程是(t 为参数) 消去参数化为直角坐标方程.(II )直线方程与椭圆方程联立可得交点坐标,利用中点坐标公式、圆的标准方程即可得出. 【解答】解:(I )曲线ρ2cos 2θ+3ρ2sin 2θ=3化为直角坐标方程为:x 2+3y 2=3,即=1;曲线C 2参数方程是(t 为参数) 化为直角坐标方程为:x=﹣(y ﹣1),即x+y ﹣=0.(II ),解得,即A (0,1),B (,0),线段AB 的中点为M ,则以线段AB 为直径的圆的直角坐标方程为=1.[选修4-5:不等式选讲]24.已知函数f (x )=|x ﹣a|﹣|x ﹣4|(x ∈R ,a ∈R )的值域为[﹣2,2]. (1)求实数a 的值;(2)若存在x 0∈R ,使得f (x 0)≤m ﹣m 2,求实数m 的取值范围. 【考点】绝对值不等式的解法.【分析】(1)问题转化为:|a ﹣4|=2,解出即可;(2)求出f (x )的最小值,得到﹣2≤m ﹣m 2,解出即可. 【解答】解:(1)对于任意x ∈R ,f (x )=|x ﹣a|﹣|x ﹣4|∈[﹣|a ﹣4|,|a ﹣4|], 可知|a ﹣4|=2,解得:a=2或a=6;(2)依题意有﹣2≤m﹣m2,即m2﹣m﹣2≤0,解得:m∈[﹣1,2].。
陕西省西安地区陕师大附中等八校2019届高三3月联考数学(理)试卷附答案解析

2019年陕西师大附中、西安高中、高新一中、铁一中学、西工大附中等八校高考数学模拟试卷(理科)(3月份)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,6,9},B={3x|x∈A},C={x∈N|3x∈A},则B∩C=()A. {1,2,3}B. {1,6,9}C. {1,6}D. {3}【答案】D【解析】【分析】先分别求出集合A,B,C,由此能求出.【详解】集合2,3,6,,6,9,18,,2,,.故选:D.【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.如图是甲乙两位同学某次考试各科成绩(转化为了标准分,满分900分)的条形统计图,设甲乙两位同学成绩的平均值分别为,,标准差分别为,则()A. B.C. D.【答案】A【解析】【分析】甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为,,从而得到,.【详解】由条形统计图得到:在这次考试各科成绩转化为了标准分,满分900分中,甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为,,则,.故选:A.【点睛】本题考查命题真假的判断,考查条形图、平均值、标准差等基础知识,考查运算求解能力,是基础题.3.1748年,瑞士著名数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式e ix=cosx+isinx,这个公式在复变论中占有非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,e2i表示的复数所对应的点在复平面中位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】由已知可得,再由三角函数的象限符号得答案.【详解】由题意可得,,,,,则表示的复数所对应的点在复平面中位于第二象限.故选:B.【点睛】本题考查复数的代数表示法及其几何意义,是基础题.4.设为所在平面内一点,若,则下列关系中正确的是()A. B.C. D.【答案】A【解析】∵∴−−=3(−−);∴=−−.故选:C.【此处有视频,请去附件查看】5.《张丘建筑经》卷上第22题为:“今有女善织,日益功疾,且从第二天起,每天比前一天多织相同量的布.若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织布的尺数为()A. 18B. 20C. 21D. 25【答案】C【解析】由题意设从第二天开始,每一天比前一天多织尺布,则,解得,所以,故选C.6.如果对定义在R上的奇函数y=f(x),对任意两个不相邻的实数x1,x2,所有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数y=f(x)为“H函数”,下列函数为H函数的是()A. f(x)=sinxB. f(x)=e xC. f(x)=x3﹣3xD. f(x)=x|x|【答案】D【解析】【分析】根据题意,不等式等价为,即满足条件的函数为单调递增函数,即可得“H函数”为奇函数且在R上为增函数,据此依次分析选项:综合可得答案.【详解】根据题意,对于所有的不相等实数,,则恒成立,则有恒成立,即函数是定义在R上的增函数,则“H函数”为奇函数且在R上为增函数,据此依次分析选项:对于A,,为正弦函数,为奇函数但不是增函数,不符合题意;对于B,,为指数函数,不是奇函数,不符合题意;对于C,,为奇函数,但在R上不是增函数,不符合题意;对于D,,为奇函数且在R上为增函数,符合题意;故选:D.【点睛】本题考查函数的奇偶性与单调性的判断,关键是分析“H函数”的含义,属于基础题.7.已知正三棱柱ABC﹣A1B1C1的三视图如图所示,一只蚂蚁从顶点A出发沿该正三棱柱的表面绕行两周到达顶点A1,则该蚂蚁走过的最短路径为()A. B. 25 C. D. 31【答案】B【解析】【分析】将三棱柱展开,得出最短距离是6个矩形对角线的连线,相当于绕三棱柱转2次的最短路径,由勾股定理求出对应的最小值.【详解】将正三棱柱沿侧棱展开,如图所示;在展开图中,最短距离是6个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得正三棱锥底面三角形的边长为,所以矩形的长等于,宽等于7,由勾股定理求得.故选:B.【点睛】本题考查了棱柱的结构特征与应用问题,也考查了几何体的展开与折叠,以及转化空间问题转化为平面问题,化曲为直的思想方法.8.将函数的图象向右平移个单位,在向上平移一个单位,得到g(x)的图象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],则x1﹣2x2的最大值为()A. B. C. D.【答案】A【解析】【分析】根据题意,不等式f()+f()>f()+f()等价为(﹣)[f()﹣f()]>0,即满足条件的函数为单调递增函数,即可得“H函数”为奇函数且在R上为增函数,据此依次分析选项:综合可得答案.【详解】将函数的图象向右平移个单位,再向上平移一个单位,得到g(x)=sin(2x﹣+)+1=﹣cos2x+1 的图象,故g(x)的最大值为2,最小值为0,若g()g()=4,则g()=g()=2,或g()=g()=﹣2(舍去).故有g()=g()=2,即cos2=cos2=﹣1,又,x2∈[﹣2π,2π],∴2,2∈[﹣4π,4π],要使﹣2取得最大值,则应有2=3π,2=﹣3π,故﹣2取得最大值为+3π=.故选:A.【点睛】本题考查函数的奇偶性与单调性的判断,关键是分析“H函数”的含义,属于基础题.9.已知圆C:x2+y2﹣2x﹣4y+3=0,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为()A. B. C. D.【答案】C【解析】试题分析:方法一:如图,连接AC,BC,设,连接PC与AB交于点D,,是等边三角形,∴D是AB的中点,,∴在圆C:中,圆C的半径为,,,∴在等边中,,,故选C.方法二:设,则,记,令,得,,故选C.考点:圆的性质、三角函数最值、利用导数求函数最值.【思路点睛】法一、先由为等腰三角形,得出D为中点,再由为等边三角形,得出,在中,将和用表示,从而求出的值,得到的表达式,用三角函数的有界性求最值;法二:设出边AD的长x,根据已知条件表示出,再利用导数求出函数的最值.10.抛物线x2= y在第一象限内图象上的一点(a i,2a i2)处的切线与x轴交点的横坐标记为a i+1,其中i∈N+,若a2=32,则a2+a4+a6等于()A. 64B. 42C. 32D. 21【答案】B【解析】试题分析:,∴,∴过点的切线方程为,令,得,可得,又,所以.考点:1.导数的几何性质;2.等比数列.11.已知双曲线的右焦点为F2,若C的左支上存在点M,使得直线bx﹣ay=0是线段MF2的垂直平分线,则C的离心率为()A. B. 2 C. D. 5【答案】C【解析】【分析】设P为直线与的交点,则OP为的中位线,求得到渐近线的距离为b,运用中位线定理和双曲线的定义,以及离心率的公式,计算可得所求值.【详解】,直线是线段的垂直平分线,可得到渐近线的距离为,且,,,可得,即为,即,可得.故选:C.【点睛】本题考查双曲线的定义、方程和性质,考查三角形的中位线定理,考查方程思想和运算能力,属于中档题.12.已知函数,则函数g(x)=xf(x)﹣1的零点的个数为()A. 2B. 3C. 4D. 5【答案】B【解析】【分析】由g(x)=xf(x)﹣1=0得f(x),根据条件作出函数f(x)与h(x)的图象,研究两个函数的交点个数即可得到结论.【详解】由g(x)=xf(x)﹣1=0得xf(x)=1,当x=0时,方程xf(x)=1不成立,即x≠0,则等价为f(x)=,当2<x≤4时,0<x﹣2≤2,此时f(x)=f(x﹣2)=(1﹣|x﹣2﹣1|)=﹣|x﹣3|,当4<x≤6时,2<x﹣2≤4,此时f(x)=f(x﹣2)=[﹣|x﹣2﹣3|]=﹣|x﹣5|,作出f(x)的图象如图,则f(1)=1,f(3)=f(1)=,f(5)=f(3)=,设h(x)=,则h(1)=1,h(3)=,h(5)=>f(5),作出h(x)的图象,由图象知两个函数图象有3个交点,即函数g(x)的零点个数为3个,故选:B.【点睛】本题主要考查函数与方程的应用,利用条件转化为两个函数图象的交点个数问题,利用数形结合是解决本题的关键.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知F是抛物线C:y=2x2的焦点,点P(x,y)在抛物线C上,且x=1,则|PF|=_____.【答案】【解析】【分析】利用抛物线方程求出p,利用抛物线的性质列出方程求解即可.【详解】由,得,则;由得,由抛物线的性质可得,故答案为:.【点睛】本题考查抛物线的定义的应用,属于基础题.14.已知实数x,y满足约束条件,则z=|﹣5x+y|的取值范围为_____.【答案】[0,11]【解析】【分析】作出约束条件表示的可行域,判断目标函数经过的点,然后求解目标函数的范围即可.【详解】作出实数x,y满足约束条件的可行域,如图所示:作直线l0:﹣5x+y=0,再作一组平行于l0的直线l:﹣5x+y=z,当直线l经过点A时,z=﹣5x+y取得最大值,由,得点A的坐标为(﹣2,0),所以z max=﹣5×(﹣2)+0=10.直线经过B时,目标函数取得最小值,由,解得B(2,﹣1)函数的最小值为:﹣10﹣1=﹣11.z=|﹣5x+y|的取值范围为:[0,11].故答案为:[0,11].【点睛】本题考查线性规划的简单应用,考查转化思想以及数形结合的综合应用,考查计算能力.15.在的展开式中,常数项为_____.【答案】-40【解析】【分析】根据,按照二项式定理展开,可得在的展开式中的常数项.【详解】解:∵(x﹣2)=(x6+6x4+15x2+20+15•6•)(x﹣2),∴常数项是20•(﹣2)=﹣40,故答案为:﹣40.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.16.如图,已知圆柱和半径为的半球O,圆柱的下底面在半球O底面所在平面上,圆柱的上底面内接于球O,则该圆柱的体积的最大值为_____.【答案】2π【解析】【分析】设圆柱的底面圆半径为r,高为h,求出r与h的关系,再计算圆柱的体积V,从而求出体积V的最大值.【详解】解:设圆柱的底面圆半径为r,高为h;则h2+r2=R2=3;所以圆柱的体积为V=πr2h=π(3﹣h2)h=π(3h﹣h3);则V′(h)=π(3﹣3h2),令V′(h)=0,解得h=1;所以h∈(0,1)时,V′(h)>0,V(h)单调递增;h∈(1,)时,V′(h)<0,V(h)单调递减;所以h=1时,V(h)取得最大值为V(1)=2π.故答案为:2π.【点睛】本题考查了半球与内接圆柱的结构特征与应用问题,也考查了圆柱的体积计算问题,是中档题.三、解答题(本大题共5小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)(一)必考题:共60分.17.△ABC的内角A,B,C的对边分别为,且.(1)求角A的大小;(2)求△ABC的面积的最大值.【答案】(1);(2).【解析】【分析】直接利用三角函数关系式的恒等变变换和余弦定理和正弦定理的应用求出结果.利用的结论和余弦定理及基本不等式的应用求出结果.【详解】在的内角A,B,C的对边分别为,且.整理得:,利用正弦定理得:,即:,由于:,解得:.由于,所以:,整理得:,所以:.当且仅当时,的面积有最小值.【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,正弦定理和余弦定理及三角形面积公式,基本不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.18.如图1,等边△ABC中,AC=4,D是边AC上的点(不与A,C重合),过点D作DE∥BC交AB于点E,沿DE 将△ADE向上折起,使得平面ADE⊥平面BCDE,如图2所示.(1)若异面直线BE与AC垂直,确定图1中点D的位置;(2)证明:无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值,并求出这个定值.【答案】(1)见解析;(2)【解析】【分析】(1)取DE中点O,BC中点F,连结OA,OF,以O为原点,OE、OF、OA所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出图1中点D在靠近点A的三等分点处;(2)求出平面ADE的法向量和平面ABE的法向量,利用向量法能证明无论点D的位置如何,二面角D﹣AE ﹣B的余弦值都为定值.【详解】解:(1)在图2中,取DE中点O,BC中点F,连结OA,OF,以O为原点,OE、OF、OA所在直线分别为x,y,z轴,建立空间直角坐标系,设OA=x,则OF=2x,OE,∴B(2,2x,0),E(,0,0),A(0,0,x),C(﹣2,2x,0),(﹣2,2x,﹣x),(2,x﹣2,0),∵异面直线BE与AC垂直,∴8=0,解得x(舍)或x,∴,∴图1中点D在靠近点A的三等分点处.证明:(2)平面ADE的法向量(0,1,0),(,0,﹣x),(2,x﹣2,0),设平面ABE的法向量(a,b,c),则,取a=1,得(1,,),设二面角D﹣AE﹣B的平面角为θ,则cosθ,∴无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值.【点睛】本题考查空间中点的位置的确定,考查二面角的余弦值为定值的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算能力,考查数形结合思想,是中档题.19.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.由测量表得到如下频率分布直方图(1)补全上面的频率分布直方图(用阴影表示);(2)统计方法中,同一组数据常用该组区间的中间值作为代表,据此估计这种产品质量指标值服从正态分布Z(μ,σ2),其中μ近似为样本平均值,σ2近似为样本方差s2(组数据取中间值);①利用该正态分布,求从该厂生产的产品中任取一件,该产品为合格品的概率;②该企业每年生产这种产品10万件,生产一件合格品利润10元,生产一件不合格品亏损20元,则该企业的年利润是多少?参考数据:=5.1,若Z~N(μ,σ2),则P(μ﹣σ,μ+σ)=0.6826,P(μ﹣2σ,μ+2σ)=0.9544.【答案】(1)见解析;(2)①0.9544,②863200.【解析】【分析】(1)由频率分布图求出[95,105)的频率,由此能作出补全频率分布直方图;(2)求出质量指标值的样本平均数、质量指标值的样本方差;(3)运用离散型随机变量的期望和方差公式,即可求出;①由(2)知Z~N(100,104),从而求出P(79.6<Z<120.4),注意运用所给数据;②设这种产品每件利润为随机变量E(X),即可求得EX.【详解】(1)由频率分布直方图得:[95,105)的频率为:1﹣(0.006+0.026+0.022+0.008)×10=0.038,补全上面的频率分布直方图(用阴影表示):质量指标值的样本平均数为:=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为S2=(﹣20)2×0.06+(﹣10)2×0.26+0×0.38+102×0.22+202×0.08=104.(2)①由(1)知Z~N(100,104),从而P(79.6<Z<120.4)=P(100﹣2×10.2<Z<100+2×10.2)=0.9544;②由①知一件产品的质量指标值位于区间(79.6,120.4)的概率为0.9544,该企业的年利润是EX=100000[0.9544×10﹣(1﹣0.9544)×20]=863200.【点睛】本题考查频率分布直方图的作法,考查平均数、方差的求法,以及正态分布的特点及概率求解,考查运算能力,属于中档题.20.已知椭圆C过点,两个焦点.(1)求椭圆C的标准方程;(2)设直线l交椭圆C于A,B两点,且|AB|=6,求△AOB面积的最大值.【答案】(1);(2)9【解析】【分析】(1)由已知可设椭圆方程为(a>b>0),且c,再由椭圆定义求得a,结合隐含条件求得b,则椭圆方程可求;(2)当直线AB的斜率不存在时,设直线方程为x=m,由弦长求得m,可得三角形AOB的面积;当直线AB 的斜率存在时,设直线方程为y=kx+m,联立直线方程与椭圆方程,结合根与系数的关系及弦长可得m与k的关系,再由点到直线的距离公式求出原点O到AB的距离,代入三角形面积公式,化简后利用二次函数求最值,则答案可求.【详解】解:(1)由题意,设椭圆方程为(a>b>0),且c,2a12,则a=6,∴b2=a2﹣c2=12.∴椭圆C的标准方程为;(2)当直线AB的斜率不存在时,设直线方程为x=m,得|AB|,由|AB|6,解得m=±3,此时;当直线AB的斜率存在时,设直线方程为y=kx+m,联立,得(3k2+1)x2+6kmx+3m2﹣36=0.△=36k2m2﹣4(3k2+1)(3m2﹣36)=432k2﹣12m2+144.设A(,),B(,),则,.由|AB|6,整理得:,原点O到AB的距离d.∴.当时,△AOB面积有最大值为9.综上,△AOB面积的最大值为9.【点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.21.已知函数f(x)=e x﹣有两个极值点.(1)求实数a的取值范围;(2)若函数f(x)的两个极值点分别为x1,x2,求证:x1+x2>2.【答案】(1)(e,+∞);(2)见解析【解析】【分析】(1)f′(x)=e x﹣ax.函数f(x)=e x有两个极值点⇔f′(x)=e x﹣ax=0有两个实数根.x =0时不满足上述方程,方程化为:a,令g(x),(x≠0).利用导数已经其单调性即可得出.(2)由(1)可知:a>e时,函数f(x)有两个极值点分别为,x2,不妨设<,+>2⇔>2﹣>1⇔,由,因此即证明:.构造函数h(x),0<x<1,2﹣x>1.利用导数已经其单调性即可得出.【详解】(1)解:f′(x)=e x﹣ax.∵函数f(x)=e x有两个极值点.∴f′(x)=e x﹣ax=0有两个实数根.x=0时不满足上述方程,方程化为:a,令g(x),(x≠0).g′(x),可得:x<0时,g′(x)<0,函数g(x)单调递减;0<x<1时,g′(x)<0,函数g(x)单调递减;x >1时,g′(x)>0,函数g(x)单调递增.a>e时,方程f′(x)=e x﹣ax=0有两个实数根.∴实数a的取值范围是(e,+∞).(2)证明:由(1)可知:a>e时,函数f(x)有两个极值点分别为x1,x2,不妨设x1<x2.证明:+>2⇔>2﹣>1⇔,由,因此即证明:.构造函数h(x),0<x<1,2﹣x>1.h′(x)(x﹣1),令函数u(x),(0<x).u′(x).可得函数u(x)在(0,1)内单调递减,于是函数v(x)在(0,1)内单调递减.v(x)≥v(1)=0.∴x=1时,函数h(x)取得极小值即最小值,h(1)=0.∴h(x)>h(1)=0.∴.因此+>2成立.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于难题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.已知曲线C的极坐标方程为ρ=,直线l的参数方程为(t为参数,0≤α<π).(1)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;(2)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.【答案】(1)曲线C:y2=4x,顶点为O(0,0),焦点为F(1,0)的抛物线;(2)8【解析】【分析】(1)利用即可得出直角坐标方程;(2)直线l的参数方程(t为参数,0≤α<π).可得l经过点(0,1);若直线l经过点(1,0),得到,得到直线l新的参数方程为(t为参数).代入抛物线方程可得t+2=0,设A、B对应的参数分别为t1,t2,利用|AB|即可得出.【详解】(1)曲线C的极坐标方程ρ=化为ρ2sin2θ=4ρcosθ,得到曲线C的直角坐标方程为y2=4x,故曲线C是顶点为O(0,0),焦点为F(1,0)的抛物线;(2)直线l的参数方程为(t为参数,0≤α<π).故l经过点(0,1);若直线l经过点(1,0),则,∴直线l的参数方程为(t为参数).代入y2=4x,得t+2=0设A、B对应的参数分别为t1,t2,则t1+t2=﹣6,t1t2=2.|AB|=|t1﹣t2|===8.【点睛】本题考查了极坐标方程和直角坐标方程的转换、直线的参数方程及其应用,考查了计算能力,属于中档题..23.已知函数f(x)=的定义域为R.(Ⅰ)求实数m的取值范围.(Ⅱ)若m的最大值为n,当正数a、b满足时,求7a+4b的最小值.【答案】(Ⅰ) m≤4(Ⅱ)【解析】试题分析:(1)由函数定义域为R,可得|x+1|+|x﹣3|﹣m≥0恒成立,设函数g(x)=|x+1|+|x﹣3|,利用绝对值不等式的性质求出其最小值即可;(2)由(1)知n=4,变形7a+4b=,利用基本不等式的性质即可得出.试题解析:(Ⅰ)由题意可知:+-m≥0对任意实数恒成立.设函数g(x)=+,则m不大于函数g(x)的最小值.又+≥=4.即g(x)的最小值为4,所以m≤4(Ⅱ)由(Ⅰ)知n=4,∴7a+4b===≥=.当且仅当a+2b=3a+b,即b=2a=时,等号成立.所以7a+4b的最小值为.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.【此处有视频,请去附件查看】21。
陕西师范大学附属中学2024届高三下学期第十次模考数学(理)试卷

陕西师范大学附属中学2024届高三下学期第十次模考数学(理)试卷一、单选题1.已知集合{}{}212,30A xx B x x x =-≤≤=-+>∣∣,则A B ⋃=( ) A .RB .(]0,2C .[)1,0-D .[)1,3-2.定义运算a b ad bc c d=-,则满足i01i 2iz-=--(i 为虚数单位)的复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.已知菱形ABCD 的边长为1,60,,,A AB a BC b AC c ∠=︒===r r u u u r u u u r u u u r r ,则|2|a b c ++=r r r( )A B C D 4.黄地绿彩云龙纹盘是收藏于中国国家博物馆的一件明代国宝级瓷器.该龙纹盘敞口,弧壁,广底,圈足.器内施白釉,外壁以黄釉为地,刻云龙纹并填绿彩,美不胜收.黄地绿彩云龙纹盘可近似看作是圆台和圆柱的组合体,其口径22.5cm ,足径14.4cm ,高3.8cm ,其中底部圆柱高0.8cm ,则黄地绿彩云龙纹盘的侧面积约为( )(附:π的值取35≈)A .2300.88cmB .2311.31cmC .2322.24cmD .2332.52cm5.已知函数2()(0)21x x bf x a ab +=+≠-是奇函数,则( )A .21a b +=B .21a b -=-C .1a b +=D .1a b -=-6.2024年中国足球乙级联赛陕西联合的主场火爆,一票难求,主办方设定了三种不同的票价分别对应球场三个不同的区域,五位球迷相约看球赛,则五人中恰有三人在同一区域的不同座位方式共有( ) A .30种B .60种C .120种D .240种7.设O 是坐标原点,在区域(){},1x y x y +≤内随机取一点,记该点为P ,则直线OP 的倾斜角不大于3π4的概率为( ) A .34B .58C .12D .148.一个几何体的三视图如图所示,如果该几何体的顶点都在球O 的球面上,那么球O 的表面积是( ).A .2πB .4πC .8πD .16π9.在平面直角坐标系xOy 中,圆C 的方程为2240x y y +-=,若直线1y kx =-上存在一点P ,使过点P 所作的圆的两条切线相互垂直,则实数k 的值不可能是( )A .1-B .14-C .12D 10.2024年1月九省联考的数学试卷出现新结构,其中多选题计分标准如下:①本题共3小题,每小题6分,满分18分;②每道小题的四个选项中有两个或三个正确选项,全部选对得6分,有选错的得0分;③部分选对得部分分(若某小题正确选项为两个,漏选一个正确选项得3分;若某小题正确选项为三个,漏选一个正确选项得4分,漏选两个正确选项得2分).已知在某次新结构数学试题的考试中,小明同学三个多选题中第一小题确定得满分,第二小题随机地选了两个选项,第三小题随机地选了一个选项,则小明同学多选题所有可能总得分(相同总分只记录一次)的中位数为( )A .9B .10C .11D .1211.已知抛物线()2:20C y px p =>的焦点为F ,准线为l ,过F C 交于,A B 两点,D 为AB 的中点,且DM l ⊥于点,M AB 的垂直平分线交x 轴于点N ,四边形DMFN 的面积为p =( )A .B .C .D .12.已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,对于任意的x ∈R ,ππ1212f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,()π02f x f x ⎛⎫+-= ⎪⎝⎭,且函数()f x 在π,010⎛⎫- ⎪⎝⎭上单调递增,则ω的值为( )A .3或9B .3C .9D .6二、填空题13.已知双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为1F 、2F ,曲线C 上的点M 满足,120F M F M ⋅=u u u u r u u u u r ,12π6MF F =∠,则双曲线的离心率为.14.如图,四边形ABCD 是圆柱的轴截面,E 是底面圆周上异于,A B 的一点,则下面结论中正确的序号是.(填序号)①AE CE ⊥;②BE DE ⊥;③DE ⊥平面BCE ;④平面ADE ⊥平面BCE .15.已知大屏幕下端B 离地面3.5米,大屏幕高3米,若某位观众眼睛离地面1.5米,则这位观众在距离大屏幕所在的平面多远,可以获得观看的最佳视野?(最佳视野是指看到屏幕上下夹角的最大值)米.16.已知函数2()(1)ln 2x f x mx x mx =-+-,函数()()g x f x '=有两个极值点12,x x .若110,e x ⎛⎤∈ ⎥⎝⎦,则()()12g x g x -的最小值是.三、解答题17.“村超”是贵州省榕江县举办的“和美乡村足球超级联赛”的简称.在2023年火爆“出圈”后,“村超”热度不减.2024年1月6日,万众瞩目的2024年“村超”新赛季在“村味”十足的热闹中拉开帷幕,一场由乡村足球发起的“乐子”正转化为乡村振兴的“路子”,为了解不同年龄的游客对“村超”的满意度,某组织进行了一次抽样调查,分别抽取年龄超过35周岁和年龄不超过35周岁各200人作为样本,每位参与调查的游客都对“村超”给出满意或不满意的评价.设事件A =“游客对“村超”满意”,事件B =“游客年龄不超过35周岁”,据统计,()()48,515P A B P B A ==∣∣.(1)根据已知条件,填写下列22⨯列联表并说明理由;(2)由(1)中22⨯列联表数据,分析是否有99%的把握认为游客对“村超”的满意度与年龄有关联?附:()()()()()22,n ad bc K n a b c d a b c d a c b d -==+++++++.参考数据:18.如图,已知正方体1111ABCD A B C D -的棱长为2,,E F 分别为1,AD CC 的中点.(1)已知点G 满足14DD DG =u u u u r u u u r,求证,,,B E G F 四点共面;(2)求平面11BAC 与平面BEF 所成的锐二面角的余弦值.19.数列{}n a 的前n 项的最大值记为n M ,即{}12max ,,,n n M a a a =⋅⋅⋅;前n 项的最小值记为n m ,即{}12min ,,,n n m a a a =⋅⋅⋅,令n n n p M m =-,并将数列{}n p 称为{}n a 的“生成数列”. (1)设数列{}n p 的“生成数列”为{}n q ,求证:n n p q =; (2)若23n n a n =-,求其生成数列{}n p 的前n 项和.20.已知椭圆 2222:1(0)x y a b b α+=>>的离心率为其左右焦点分别为 F F ₁、₂,下顶点为A ,右顶点为B ,1ABF V 的面积为1 (1)求椭圆 C 的方程;(2)设不过原点O 的直线交C 于M 、N 两点,且直线,,OM MN ON 的斜率依次成等比数列,求MON △面积的取值范围.21.已知函数π())e ,0,2xf x x a ϕϕ-⎛⎫=+-+∈ ⎪⎝⎭,曲线()y f x =在点(0,(0))f 处的切线与x 轴平行或重合. (1)求ϕ的值;(2)若对0,()0x f x ∀≥≤恒成立,求a 的取值范围; (3)利用下表数据证明:157πsin103314k <∑.22.在直角坐标系xOy 中,曲线1C 的参数方程为244x ty t=⎧⎨=⎩,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2sin )2ρθθ-=.(1)写出曲线1C 的极坐标方程和曲线2C 的直角坐标方程;(2)若射线:0,02OA πθααρ⎛⎫=<< ⎪⎝⎭…与曲线2C 相交于点A ,将OA 逆时针旋转90︒后,与曲线1C 相交于点B ,且|||OB OA =,求α的值.23.已知函数()1f x x a x =-+-的最小值为3,其中0a >. (1)求不等式()5f x ≤的解集;(2)若关于x 的方程()1f x bx =+有实数根,求实数b 的取值范围.。
2019-2020陕西师范大学附属中学分校数学中考模拟试题带答案

标为( )
A.(6,4)
B. (6,2)
C.(4,4)
D.(8,4)
3.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑
步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中 x 表示时
故选 A. 点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是 一组数据中各数据与它们的平均数的差的平方的平均数.
(1)等奖所占的百分比是________;三等奖的人数是________人; (2)据统计,在获得一等奖的学生中,男生与女生的人数比为1:1 ,学校计划选派 1 名男 生和 1 名女生参加市手抄报比赛,请求出所选 2 位同学恰是 1 名男生和 1 名女生的概率; (3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得 一等奖的人数不少于二等奖人数的 2 倍,那么至少选取多少人进行集训? 25.如图,一艘巡逻艇航行至海面 B 处时,得知正北方向上距 B 处 20 海里的 C 处有一渔 船发生故障,就立即指挥港口 A 处的救援艇前往 C 处营救.已知 C 处位于 A 处的北偏东 45°的方向上,港口 A 位于 B 的北偏西 30°的方向上.求 A、C 之间的距离.(结果精确到
故选 A. 【点睛】 此题主要考查了位似变换以及相似三角形的判定与性质,正确得出 AO 的长是解题关键.
3.C
解析:C 【解析】 【分析】 从图中可得信息:体育场离文具店 1000m,所用时间是(45﹣30)分钟,可算出速度. 【详解】
解:从图中可知:体育场离文具店的距离是: 2.5 1.5 1km 1000m ,
【20套精选试卷合集】陕西省陕西师大附中2019-2020学年高考数学模拟试卷含答案

高考模拟数学试卷第Ⅰ卷一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知i 是虚数单位,若(13)z i i +=,则z 的虚部为A .10iB .10i -C .110D .110- 2、已知集合22{|1},{|1log }A x x B x y x =≥==-,则R A C B =IA .(2,)+∞B .(,1](2,)-∞-+∞UC .(,1)(2,)-∞-+∞UD .[1,0][2,)-+∞U3、通过随机询问100名性别不同的小学生是否爱吃零食,得到如下的列联表:参考右上附表,得到的正确结论是A .在犯错误的概率不超过5%的前提下,认为“是否爱吃零食与性别有关”B .在犯错误的概率不超过5%的前提下,认为“是否爱吃零食与性别无关”C .有97.5%以上的把握认为“是否此零食与性别有关”D .有97.5%以上的把握认为“是否此零食与性别无关”4、已知,αβ表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的A .充分不必要条件B .必要不充分条件C .常用条件D .既不充分也不必要条件按5、已知向量a r 与b r 的夹角为120o ,3,13a a b =+=r r r ,则b =rA .1B .3C .4D .56、函数()2tan f x x x =-在(,)22ππ-上的图象大致是7、执行如图所示的程序框图(其中[]x 表示不超过x 的最大整数),则输出的S 值为A .4B .5C .D .78、平面上画了一些彼此相距2a 的平行线,把一枚半径r a <的硬币任意投掷在这个平面上,则硬币不u 任何一条平行线相碰的概率是A .a r a -B .2a r a- C .22a r a - D .22a r a + 9、已知双曲线22221(0,0)x y a b a b-=>>与抛物线28y x =有一个共同的交点F ,两曲线的一个交点为P ,若5PF =,则点F 到双曲线的渐近线的距离为A 3.2 C 6 D .310、已知函数(1)y f x =-是定义在R 上的奇函数,若对于任意两个实数12x x ≠,不等式1212()()0f x f x x x ->-恒成立,则不等式()30f x +<的解集为A .(,3)-∞-B .(4,)+∞C .(,1)-∞D .(,4)-∞-第Ⅱ卷二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。
陕西省师大附中高三数学上学期第一次模拟考试试题 理(含解析)北师大版

第Ⅰ卷 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数2(23)(1)z x x x i =+-+-为纯虚数,则实数x 的值为 A .3 B .1 C .-3 D .1或-3 【答案】C【解析】因为复数2(23)(1)z x x x i =+-+-为纯虚数,所以2230,310x x x x ⎧+-==-⎨-≠⎩解得,因此选C 。
2.已知{}n a 为等差数列,若1598a a a π++=,则28cos()a a +的值为 A .21-B .23-C .21D .23【答案】A【解析】因为1598a a a π++=,所以55838,3a a ππ==即,所以285161cos()cos 2coscos 332a a a ππ+===-=-,因此选A 。
3.若椭圆22221(0)x y ab a b +=>>的离心率为32,则双曲线12222=-bx a y 的离心率为A .3B .5C .7 D .2【答案】B【解析】因为若椭圆22221(0)x y a b a b+=>>的离心率为3,所以22222222314c a b b e a a a -===-=,所以2214b a =,所以双曲线12222=-b x a y 的离心率为222551,42b e e a =+==所以。
4.函数()sin()f x A x ωϕ=+(其中0,||2A πϕ><)的图象如图所示,为了得到x x g 2sin )(=的图像,则只需将()f x 的图像 A .向右平移6π个长度单位B .向右平移12π个长度单位C .向左平移6π个长度单位 D .向左平移12π个长度单位【答案】A【解析】法一:由图像易知:721,4,2123A T T ππππω⎛⎫==-===⎪⎝⎭所以,所以()sin(2)f x x ϕ=+,把点7,112π⎛⎫- ⎪⎝⎭代入, 得7sin(2)1,,1223πππϕϕϕ⨯+=-<=因为所以,所以()sin(2)3f x x π=+,把函数 ()sin(2)3f x x π=+向右平移6π个长度单位得到函数sin 2sin 263y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦的图像,因此选A 。
陕西省师大附中2020届高三数学第五次模拟考试理试题

陕西省师大附中2020届高三第五次模拟考试数学理试题本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第I 卷 (选择题,共60分)一、选择题:本大题共12小题 每小题5分,共60分 在每小题给出的四个选项中,只有一项是符合题目要求的 1.集合},3{2R x x y x A ∈-==,},1{2R x x y y B ∈-==,则A B I =A.{(2,1),(2,1)}B.{13}z z ≤≤C.{13}z z -≤≤D.{03}z z ≤≤ 2. 函数y =8sin4x cos4x 的最小正周期是A.2πB.4πC. π4D. π23. 3(1-i )2=A. 32iB.-32i C.i D.-i 4. 下列函数中,在其定义域内既是奇函数又是减函数的是A.3 ,y x x R =-∈B. sin ,y x x R =∈C. ,y x x R =∈D. x 1() ,2y x R =∈5. 若9987.0)3(=Φ,则标准正态总体在区间(—3,3)内取值的概率为A .0.9987B .0.9974C .0.9944D .0.84136. 已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖7. =---+++∞→12)12(31lim2n n n n Λ A. 21 B.2 C.23 D. 328.若双曲线)0,0(12222>>=-b a b y a x 的离心率为2,则双曲线12222=-ax b y 的离心率为A .223 B .2 C .2 D .332 9. 设10<<<a b ,则下列不等式中成立的是A .12<<ab aB .0log log 2121<<a bC .12<<b ab D .222<<a b10.设P 为ABC ∆所在平面内一点,且025=--AC AB AP ,则PAB ∆的面积与ABC ∆的面积之比为A .15 B .25 C .14 D .53 11. 从圆222210x x y y -+-+=外一点()3,2P 向这个圆作两条切线,则两切线夹角的余弦值为A .12 B .35C 3.012. 已知)(x f 为定义在),(+∞-∞上的可导函数,且)()(x f x f '<对于R x ∈恒成立,则A. )0()2(2f e f ⋅>, )0()2009(2009f ef ⋅> B. )0()2(2f e f ⋅<, )0()2009(2009f e f ⋅> C. )0()2(2f e f ⋅>, )0()2009(2009f ef ⋅<D.)0()2(2f e f ⋅<, )0()2009(2009f ef ⋅<第II 卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分 把答案填在题中横线上 13.已知正数x 、y 满足⎩⎨⎧≥+-≤-05302y x y x ,则11()()42x yz =⋅的最小值为________.14. 表面积为23的正八面体的各个顶点都在同一个球面上,则此球的体积为 . 15. 二项式6(x x+的展开式中的常数项为________.(结果用数值作答). 16. 如果一个函数的图象关于直线0x y -=对称,则称此函数为自反函数. 使得函数23x byx a+=-为自反函数的一组..实数,a b的取值为________三、解答题:本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤17.(本题满分12分)已知函数()2sin()184f x xππ=++.(Ⅰ)在所给的坐标纸上作出函数(),[2,14]y f x x=∈-的图象(不要求写出作图过程).(Ⅱ)令)()()(xfxfxg-+=,x R∈.求函数)(xgy=的图象与x轴交点的横坐标.18. (本题满分12分) 按照新课程的要求, 高中学生在每学期都要至少参加一次社会实践活动(以下简称活动).该校高2020级一班50名学生在上学期参加活动的次数统计如图所示.(I)求该班学生参加活动的人均次数x;(II)从该班中任意选两名学生,求他们参加活动次数恰好相等的概率P.(III)从该班中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.(要求:答案用最简分数表示)19.(本题满分12分)如图所示,在矩形ABCD中,22==ABAD,点E是AD的中点,将DEC∆沿CE折起到ECD'∆的位置,使二面角BECD--'是直二面角.(Ⅰ)证明:DCBE'⊥;(Ⅱ)求二面角EBCD--'的正切值.21. (本题满分12分)已知椭圆Γ的中心在原点,焦点在x轴上,它的一个顶点B恰好是1 2 3510152025参加人数活动次数抛物线y =41x 2的焦点,离心率等于22.直线l 与椭圆Γ交于N M ,两点. (Ⅰ)求椭圆Γ的方程;(Ⅱ) 椭圆Γ的右焦点F 是否可以为BMN ∆的垂心?若可以,求出直线l 的方程;若不可以,请说明理由.21.(本题满分12分)设函数a t at t f -+=221)(的定义域为]2,2[,记函数)(t f 的最大值为)(a g .(Ⅰ)求)(a g 的解析式;(Ⅱ)已知1()()g a g a>,试求实数a 的取值范围.22. (本题满分14分)已知正项数列{}n a 满足对一切*∈N n ,有233231n n S a a a =+++Λ,其中n n a a a S +++=Λ21. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ) 求证: 当*N n ∈时, 3ln )11ln(<+nn a a .数学答题纸理科一、选择题:(本大题共12小题,每小题5分,共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案13. , 14. . 15. . 16. .三、解答题:(本大题共6小题,共74分)17.(Ⅰ)(Ⅱ)18. (Ⅰ)(Ⅱ)19. (Ⅰ)(Ⅱ)20. (Ⅰ)(Ⅱ)21. (I)(II)22. (Ⅰ)(Ⅱ)陕西省师大附中2020届高三第五次模拟考试数学理答案题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C C A A B D A D D A B A二.填空题13.161.; 14.2π; 15. 15; 16. 2a=,b可以填写任意实数三、解答题17.(Ⅰ)(Ⅱ)1)48sin(21)48sin(2)()()(++-+++=-+=ππππxxxfxfxg28cos222)48sin(2)48sin(2+=+--+=xxxπππππ由028cos22)(=+=xxgπ得228cos-=xπ,从而πππkx2438+±=,即Zkkx∈±=,616.所以,函数)(xgy=与x轴交点的横坐标为Zkk∈±,616. 12分18.由图可知,参加活动1次、2次和3次的学生人数分别为5、25和20.(I)该班学生参加活动的人均次数为x=1023501155020325251==⨯+⨯+⨯. 3分(II)从该班中任选两名学生,他们参加活动次数恰好相等的概率为492025022022525=++=CCCCP. 6分(III)从该班中任选两名学生,记“这两人中一人参加1次活动,另一人参加2次活动”为事件A,“这两人中一人参加2次活动,另一人参加3次活动”为事件B,“这两人中一人参加1次活动,另一人参加3次活动”为事件C.易知4925)()()1(25012012525012515=+=+==C C C C C C B P A P P ξ; 8分 494)()2(25012015====C C C C P P ξ. 10分 ξ的分布列:ξ12P49204925 494 ξ的数学期望:49492491490=⨯+⨯+⨯=ξE . 12分19.(Ⅰ)∵AD=2AB=2,E 是AD 的中点,∴△BAE ,△CDE 是等腰直角三角形, 易知,∠BEC=90°,即BE ⊥EC又∵平面D ′EC ⊥平面BEC ,面D ′EC ∩面BEC=EC , ∴BE ⊥面D ′EC ,又CD ′⊂面D ′EC ,∴BE ⊥CD ′ 6分 (Ⅱ)法一:设M 是线段EC 的中点,过M 作MF ⊥BC 垂足为F ,连接D ′M ,D ′F ,则D ′M ⊥EC ∵平面D ′EC ⊥平面BEC ,∴D ′M ⊥平面EBC , ∴MF 是D ′F 在平面BEC 上的射影,由三垂线定理得:D ′F ⊥BC ,∴∠D ′FM 是二面D ′—BC —E 的平面角.在Rt △D ′MF 中,2121,2221===='AB MF EC M D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.已知二面角 的大小为60°, 和 是两条异面直线,且 ,则 与 所成的角的大小为()
A.120°B.90°C.60°D.30°
2.从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是( )
24.随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。某运营公司为了了解某地区用户对其所提供的服务的满意度,随机调查了40个用户,得到用户的满意度评分如下:
用户编号
评分
用户编号
评分
用户编号
评分
用户编号
评分
1
2
3
4
5
6
7
8
9
10
78
73
81
92
95
85
79
ห้องสมุดไป่ตู้84
63
86
11
12
13
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
11.下列函数中,最小正周期为 ,且图象关于直线 对称的函数是()
A. B.
C. D.
12.一个几何体的三视图如图所示,其中正视图是一个正三角形,俯视图是一个等腰直角三角形,则该几何体的外接球的表面积为
A. B. C. D.
A. B. C. D.
3.给出下列说法:
①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;
②有一个面是多边形,其余各面都是三角形的几何体是棱锥;
③棱台的上、下底面可以不相似,但侧棱长一定相等.
其中正确说法的个数是( )
A.0B.1C.2D.3
4.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入 分别为14,18,则输出的 ()
10.A
解析:A
【解析】
【分析】
根据充分条件和必要条件的定义,结合祖暅原理进行判断即可.
【详解】
根据祖暅原理,当 总相等时, 相等,所以充分性成立;
当两个完全相同的四棱台,一正一反的放在两个平面之间时,此时体积固然相等但截得的面积未必相等,所以必要性不成立.
所以“ 总相等”是“ 相等”的充分不必要条件.
故选:C.
【点睛】
本题主要考查了循环结构,以及茎叶图的认识,解题的关键是弄清算法流程图的含义,属于基础题.
7.D
解析:D
【解析】
分析:先求出 的值,再把 变形为 ,再利用差角的余弦公式展开化简即得 的值.
详解:∵ ,
∴90°< <180°,
∴ =- ,
∵c = ,
∴c =- × ,
故选D.
点睛:三角恒等变形要注意“三看(看角看名看式)”和“三变(变角变名变式)”,本题主要利用了看角变角, ,把未知的角向已知的角转化,从而完成解题目标.
A. B. C. D.
8. 的内角 的对边分别是 ,若 , , ,则 ( )
A. B. C. D.
9.已知函数 是R上的增函数,则 的取值范围是( )
A. B.
C. D.
10.南北朝时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为 ,被平行于这两个平面的任意平面截得的两个截面的面积分别为 ,则“ 总相等”是“ 相等”的()
{-2,0,2},故选D.
考点:1、一元二次方程求根;2、集合并集的运算.
6.C
解析:C
【解析】
【分析】
根据流程图可知该算法表示统计14次考试成绩中大于等于90的人数,结合茎叶图可得答案.
【详解】
根据流程图所示的顺序,可知该程序的作用是累计14次考试成绩超过90分的次数.根据茎叶图可得超过90分的次数为9.
故答案为:A
【点睛】
(1)要想真正把握几何体的结构特征,必须多角度、全面地去分析,多观察实物,提高空间想象能力;
(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定;
(3)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.
(1)请你列出抽到的10个样本的评分数据;
(2)计算所抽到的10个样本的均值 和方差 ;
(3)在(2)条件下,若用户的满意度评分在 之间,则满意度等级为“ 级”。试应用样本估计总体的思想,根据所抽到的10个样本,估计该地区满意度等级为“ 级”的用户所占的百分比是多少?
(参考数据: )
25.选修4-5:不等式选讲:设函数 .
个数
1
1,2,3,4,5
5
2
2,3,4,5
4
3
3,4,5
3
4
4,5
2
5
5
1
,故本题选C.
【点睛】
本题考查用列举法求概率,本问题可以看成有放回取球问题.
3.A
解析:A
【解析】
【分析】
①②③根据定义得结论不一定正确.④画图举出反例说明题目是错误的.
【详解】
解:①不一定,只有这两点的连线平行于轴时才是母线;
【解析】
【分析】
根据分段函数的单调性特点,两段函数在各自的定义域内均单调递增,同时要考虑端点处的函数值.
【详解】
要使函数在R上为增函数,须有 在 上递增,在 上递增,
所以 ,解得 .
故选D.
【点睛】
本题考查利用分段函数的单调性求参数的取值范围,考查数形结合思想、函数与方程思想的灵活运用,求解时不漏掉端点处函数值的考虑.
A.0B.2C.4D.14
5.设集合 , ,则 ()
A. B. C. D.
6.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为 ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是()
A.7B.8
C.9D.10
7.已知 ,则 为( )
22.已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线 的焦点,离心率为 .
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若 , ,求 的值.
23.如图,矩形 和菱形 所在的平面相互垂直, , 为 的中点.
(Ⅰ)求证: 平面 ;
(Ⅱ)求 , ,求二面角 的余弦值.
②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图(1)所示;
③不一定.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图(2)所示,它是由两个同底圆锥组成的几何体;
④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.
二、填空题
13.【解析】【分析】【详解】由题意或或或则实数的取值范围是故答案为
解析:
【解析】
【分析】
【详解】
由题意 或 或 或 ,则实数 的取值范围是 ,故答案为 .
14.【解析】【分析】由已知利用三角形面积公式可求c进而利用余弦定理可求a的值根据正弦定理即可计算求解【详解】面积为解得由余弦定理可得:所以故答案为:【点睛】本题主要考查了三角形面积公式余弦定理正弦定理在
14
15
16
17
18
19
20
88
86
95
76
97
78
88
82
76
89
21
22
23
24
25
26
27
28
29
30
79
83
72
74
91
66
80
83
74
82
31
32
33
34
35
36
37
38
39
40
93
78
75
81
84
77
81
76
85
89
用系统抽样法从40名用户中抽取容量为10的样本,且在第一分段里随机抽到的评分数据为92.
其外接球的球心在SO上,设球心为M, ,根据SM=MB得到:在三角形MOB中,MB= , ,
解得 ,
外接球的半径为 ;
三棱锥外接球的表面积为 .
故选:C.
【点睛】
本题考查了三视图复原几何体形状的判断问题,也考查了三棱锥外接球的表面积计算问题,是中档题.一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.
(1)当 时,解不等式 ;
(2)若关于 的不等式 有解,求实数 的取值范围.
26.已知函数
(1)求不等式 的解集
(2)设 ,证明: .
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C