北师大版七年级上册 第四章 基本平面图形 教案 学案

合集下载

北师大版2024新版七年级数学上册《第4章 基本平面图形》学案:4.2 课时1 角

北师大版2024新版七年级数学上册《第4章 基本平面图形》学案:4.2 课时1 角

4.2 课时1 角【学习目标】1.通过丰富的实例,进一步理解角的有关概念,认识角的表示.;2.认识角的常用度量:度、分、秒,并能进行简单换算.3.进一步认识锐角、直角、钝角、平角、周角以及它们的大小关系.【学习导航】预习课本.一、角的概念1.在角的概念中强调了“角”由哪几部分构成:(1)(2)2.根据课本总结角有几种表示方法?(1) (2)(3) (4)思考:(1)如右图,∠AOB 能表示为∠O 吗?为什么?(2)如右图,∠AOC 能表示为∠O 吗?为什么?你从中得到什么启示?(3)如右图,∠AOB ,∠BOC 还有其他表示方式吗?请写出来.(4)完成课本知识技能,写在课本上.二、角的分类3. 什么叫锐角?什么叫直角?什么叫钝角?4. 写出直角、平角与周角的关系.O A B三、角的度量5. 根据课本例题写出度、分、秒的换算方法.6. 完成课本随堂练习2(1) (2)7. 完成课本问题解决3写在下面(1)巴黎: 伦敦: 北京: 东京:(2)(3)【反思小结】通过预习你有哪些收获,还有哪些疑惑,赶紧写下来吧!【基础过关】正答率1. 如图1,∠CAB 还可以表示为_________,∠CBA 还可以表示为________2. 如图2,锐角的个数共有_______个.3. 请将下图中的角用不同方法表示出来,并填写下表:4. 21.5_____________'''︒==;5()_______12''︒=. 5. 钟表时针三小时转过的角度为_______,分针三分钟转过的角度为_______.∠ABE∠1 ∠2 ∠3 β α C B A 图1 A20°O D CB30°50° 图26. 如图4,AB 为一条直线,把一根小棒OC 一端钉在点O ,旋转小 木棒,使它落在不同的位置上形成不同的角,其中∠AOC 为_______,∠AOD 为_______,∠AOE 为________,木棒转到OB 时形成的角为_______.(填钝角或锐角或直角或平角)【拓展提升】得分7. (1分)∠AOB 的度数与时钟4:30整时时针与分针所成的角度相同,那么∠AOB =_____°, 21∠AOB =_______°,90°-31∠AOB =90°-_______°=_______°. 8. (1分) 78.36°=______°______′______″. 18.3°+26°34′=_______°_____′9. (2分)小亮利用星期天搞社会调查活动,早晨8:00出发,中午12:00到家,问小亮出发时和到家时时针和分针的夹角分别为______度、______度.【反思梳理】将本节课你的收获记录下来.图4。

北师大版七年级数学上册第4章教案

北师大版七年级数学上册第4章教案

观察并思考:你们能从中找出我们小学学过所熟知的几何图形吗?2.学生自由发言后,教师展示这一组图片分别看做什么.3.教师点明课题,板书课题.“同学们从图片中发现了大量的几何图形,我们今天的研究和学习就从其2.判断下列说法是否正确:(3)直线AB和直线AC表示的不是同一条直线;)过两点A、B 可以画几条直线?怎样比较两棵树的高矮?怎样比较两根铅笔的长短?怎样比较窗框相邻两边的长?教师点明课题:把两棵树的高度、两根铅笔的长、窗框相邻两边的长教师利用多媒体演示,1图 2图 3图五检测评学2、说一说你身边的角。

你能描述这些角的共同特征吗?感知静态定义(1)定义:角是由两条具有公共端点的射线所组成的图形①请用字母表示图中的每个城市.②请用字母分别表示以北京为中心的每两个城市之间的夹角.③请用量角器测量出上述夹角的度数.④哈尔滨在北京的北偏东大约多少度?四引导学生感受角的动态定义(1)教师演示木圆规得出角的运动定义:角也可以看成是由一条射线绕着它的端点旋转而成的。

(2)一条射线绕它的端点旋转,当终边和始边成一条直线时,3.右图中,小于平角的角有()A.5个B.6个C.7个D.8个学习目标会比较角的大小,能估计一个角大小。

认识角的平分线,能画出一个角的平分线。

角的大小比较的三种方法说明和总结方法一(度量法):用量角器度量他们的度数(1) (2) (3)①图(1)∠AOB和∠CO′D相等,记作∠AOB=∠CO′D;②图(2)∠AOB大于∠CO′D, 记作∠AOB>∠CO′D;③图(3)∠AOB小于∠CO′D,记作∠AOB<∠CO′D.请你说出角的平分线的概念。

从一个角的顶点引出的一条射线,把这个角分成两个相等的角, 检测评学在方格纸上有三个角,试确定每个角的大小及各角之间的等量关如图,OC 是∠AOB 31∠COD ,∠BOD=15°,,∠AOB=________2.在我们生活的周围和上组图片中,我们很容易找到三角形、长方形、正方形、五边形、六边形、扇形、圆等.这节课我们就来学习——多边形和圆的初步认识(1)图 (2)图(1)三角形有几个顶点?几条边几个内角?四边形有几个顶点?几条边?几个在平面内,各边相等、各角各边也都相等的多边形叫做正多边形。

最新北师大版七年级数学上册《基本平面图形》教学设计(精品教案)

最新北师大版七年级数学上册《基本平面图形》教学设计(精品教案)

第四章基本平面图形回顾与思考一、学生起点状况分析本节课是第四章的复习课。

学生在本章的各小节中学习了线段,射线,直线和角的基本概念,学习了如何比较线段的大小,如何比较角的大小,对于一些基本的几何图形有了初步的认识。

二、教学任务分析本章以线段,直线,射线,角等简单的图形为主要研究对象,使学生在活动中体会这些平面图形的性质及其位置关系,丰富了学生的数学活动经历。

它是学习了第一章《丰富的图形世界》以后学生再次接触几何图形,为以后学习几何图形打下了基础。

本节复习课可以使学生对本章所研究的基本元素和基本关系有进一步的认识。

根据以上分析,本节课的教学目标确定如下:1.知识与技能:让学生在自我回顾及小组交流活动中,构建本章的基本知识框架,从而对本章的基本知识有更进一步的认识;2.数学思考:在数学活动中积累活动经验,发展有条理的思考与表达;3.解决问题:通过本节课的学习,进一步增强学生对所学知识的应用意识;4.情感与态度:培养学生自主学习,主动参与,主动交流合作的意识和能力。

本节课的重点是引导学生对本章的知识进行总结,构建本章知识网络。

三、教学过程设计本节课由六个教学环节组成,它们是:①自我回顾;②合作交流;③对比归纳;④互动复习;⑤自我检测;⑥布置作业第一环节自我回顾内容:请学生自我回顾本章所学知识,并绘制本章知识结构图,教师要适当加以指导,特别要加强对学困生的指导。

目的:让学生在回顾本章的知识过程中,构建本章的知识框架,提高总结,归纳的能力。

效果:学生在回顾,归纳,总结本章知识的过程中,特别是绘制本章知识结构图的过程中,可能有一些困难,教师要有耐心,不要因为学生做起来困难就放弃,毕竟学生刚刚步入初中,这样做可以为学生走出学校后的学习打下基础,教师可以多加引导,并进行鼓励。

第二环节合作交流内容:请学生将绘制的知识结构图先和同伴进行交流,教师可选择一些画得比较好的进行展示,并在学生所画图形的基础上进行完善。

以下图形供参考。

第4章基本平面图形(教案)2023-2024学年七年级上册数学(教案)(北师大版)

第4章基本平面图形(教案)2023-2024学年七年级上册数学(教案)(北师大版)
三、教学难点与重点
1.教学重点
-线段、射线与直线的定义及性质:这是基础几何概念,需要学生熟练掌握,并能应用于实际问题中。例如,理解线段的两个端点、射线的起点和延伸方向、直线的无限延伸等特性。
-角的分类及性质:重点在于区分不同类型的角,并了解它们的基本性质。如锐角、直角、钝角、周角的定义及特征。
-三角形的分类:强调三角形按角的大小分类,以及各类三角形的性质和特点。
-空间想象能力的培养:对于一些空间想象能力较弱的学生,理解图形的旋转、翻折等变换是难点,需要通过实物模型或多媒体辅助教学来帮助理解。
本章节的教学难点与重点紧密联系课本内容,教师在教学过程中应针对这些核心知识进行深入讲解,通过实例分析、图形操作、逻辑推理等教学策略,帮助学生理解难点,掌握重点,提高几何学科素养。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解线段、射线与直线的基本概念。线段是有限长度的,有两个端点;射线有一个起点,向一个方向无限延伸;直线则是无限制地延伸。它们是构成复杂图形的基础。这些基本图形在建筑、设计等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过分析一个简单的房屋设计图,我们可以看到线段、射线和直线是如何被用来表示墙壁和屋顶的。
-平行线的性质与判定:掌握平行线的定义、性质以及判定方法,如同位角、内错角、同旁内角等。
-四边形的定义及性质:掌握矩形、菱形、平行四边形的定义及性质,如对边平行、对角相等、对角线互相平分等。
-图形的全等:理解全等图形的概念,掌握SSS、SAS、ASA、AAS全等三角形的判定方法。
2.教学难点
-平行线的判定:对于初中生来说,理解并熟练运用平行线的判定方法是一个难点,特别是同位角、内错角等概念的运用。

七年级数学上册(北师版)第四章 基本平面图形 教案

七年级数学上册(北师版)第四章 基本平面图形 教案

第四章基本平面图形4.1 线段、射线、直线1.在现实情境中进一步理解线段、射线、直线,并会用不同的方式表示.(重点)2.通过操作活动,了解“两点确定一条直线”的几何事实.阅读教材P106~107,完成预习内容.(一)知识探究1图形表示方法端点个数延伸情况线段线段AB或线段a 2个不向任何一方延伸射线射线AB或射线a 1个向一方无限延伸直线直线AB或直线a 0 向两方无限延伸2.直线的几何事实:两点确定一条直线.(1)表示线段、射线、直线的时候,都要在字母前注明“线段”“射线”“直线”.(2)用两个大写字母表示直线或线段时,两个字母可以交换位置,表示射线的两个大写字母不能交换位置,必须把端点字母放在前面.(二)自学反馈1.如图,在直线l上有A、B、C三点,则图中线段共有(C)A.1条B.2条C.3条D.4条2.下列图形中的线段和射线,能够相交的是(D)活动1 小组讨论例1 如图,已知平面上三点A,B,C.(1)画线段AB;(2)画直线BC;(3)画射线CA;(4)如何由线段AB得到射线AB和直线AB呢?(5)直线AB与直线BC有几个公共点?解:(1)(2)(3)题解答如图①所示.(4)将线段AB向AB方向延伸得到射线AB,将线段AB向两个方向延伸得到直线AB,如图②所示.(5)直线AB与直线BC有一个公共点,如图③所示.例2(1)过一点A可以画几条直线?(2)过两点A,B可以画几条直线?(3)如果你想将一根细木条固定在墙上,至少需要几个钉子?解:(1)无数条.(2)1条.(3)2个.活动2 跟踪训练1.用两个钉子把直木条钉在墙上,木条就固定了,这说明(B) A.一条直线上只有两点B.两点确定一条直线C.过一点可画无数条直线D.直线可向两端无限延伸2.如图,在平面内有A、B、C三点.(1)画直线AC,线段BC,射线AB;(2)在线段BC上任取一点D(不同于B、C),连接线段AD;(3)数数看,此时图中线段共有6条.解:(1)(2)如图.(3)图中有线段6条.活动3 课堂小结1.掌握线段、射线、直线的表示方法.2.理解线段、射线、直线的联系和区别.3.经过两点有且只有一条直线.4.2 比较线段的长短1.借助具体情境,了解“两点之间的所有连线中,线段最短”的性质.(重点) 2.能借助直尺、圆规等工具比较两条线段的长短. 3.能用尺规作一条线段等于已知线段.阅读教材P110~111,完成预习内容. (一)知识探究1.两点之间的所有连线中,线段最短.2.我们把两点之间线段的长度,叫做这两点之间的距离.3.如图,点M 把线段AB 分成相等的两条线段AM 与BM ,点M 叫做线段AB 的中点.这时AM =BM =12AB(或AB =2AM=2BM).(二)自学反馈1.把弯曲的河道改直,这样能缩短航程,这样做的道理是(B) A .两点确定一条直线 B .两点之间线段最短 C .线段有两个端点 D .线段可以比较大小2.线段AB =6厘米,点C 在直线AB 上,且BC =3厘米,则线段AC 的长为(C) A .3厘米 B .9厘米 C .3厘米或9厘米 D .6厘米 3.M 是线段AB 上的一点,其中不能判定点M 是线段AB 中点的是(A) A .AM +BM =AB B .AM =BM C .AB =2BM D .AB =2AM活动1 小组讨论例1 如图,已知线段AB ,用尺规作一条线段等于已知线段AB.解:作图步骤如下: (1)作射线A ′C ′;(2)用圆规在射线A ′C ′上截取A ′B ′=AB. 线段A ′B ′就是所求作的线段.例2 在直线l 上顺次取A ,B ,C 三点,使得AB =4 cm ,BC =3 cm.如果点O 是线段AC 的中点,那么线段OB 的长度是多少? 解:如图:∵AB =4 cm ,BC =3 cm ,∴AC =AB +BC =7 cm. ∵O 是线段AC 的中点,∴AO =12AC =12×7=3.5(cm).∴OB =AB -AO =4-3.5=0.5(cm).活动2 跟踪训练1.如图,已知点C 是线段AB 的中点,点D 是线段AC 的中点,完成下列填空.(1)AB =2BC ,BC =2AD ; (2)BD =3AD ,AB =4AD.2.如图是A 、B 两地之间的公路,在公路工程改造计划时,为使A 、B 两地行程最短,应如何设计线路?在图中画出.你的理由是两点之间线段最短.解:图略.3.如图,已知线段a 、b ,求作线段AB ,使AB =2a +b.解:如图,线段AB 为所作.4.如图,点C 是线段AB 上一点,点M 、N 、P 分别是线段AC ,BC ,AB 的中点. (1)若AB =10 cm ,则MN =5cm ;(2)若AC =3 cm ,CP =1 cm ,求线段PN 的长.解:∵AC =3,CP =1, ∴AP =AC +CP =4, ∵P 是线段AB 的中点, ∴AB =2AP =8. ∴CB =AB -AC =5.∵N 是线段CB 的中点,∴CN =12CB =52.∴PN =CN -CP =52-1=32.活动3 课堂小结1.本节课学习了线段的性质和两点之间的距离的定义.2.本节课学会了画一条线段等于已知线段,学会了比较线段的长短.4.3 角1.通过丰富的实例,进一步理解角的有关概念和角的表示方法,能在具体情境中进行角的表示.(重点)2.认识角的常用度量单位:度、分、秒,并会进行简单的计算.(难点)阅读教材P114~115,完成预习内容.(一)知识探究1.角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点.角也可以看成是由一条射线绕它的端点旋转而成的.2.一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角.终边继续旋转,当终边旋转到与始边再次重合时,所成的角叫做周角.3.角的表示方法:角用“∠”表示,读做“角”.(1)用三个大写字母表示.(2)用表示角的顶点的字母表示.(3)用一个数字或一个希腊字母(α、β、γ、θ)表示.3.1平角=180°,1周角=360°.4.1°=60′,1′=60″.(二)自学反馈1.下列图形中,能用∠ABC,∠B,∠1表示同一个角的是(D)2.2 700″=45′=0.75度.活动1 小组讨论例1 计算:(1)1.45°等于多少分?等于多少秒?(2)1 800″等于多少分?等于多少度?解:(1)60′×1.45=87′,60″×87=5 220″即 1.45°=87′=5 220″.(2)1 800″×160=30′,30′×160=0.5°.例2 如图所示,OA表示什么方向的一条射线?并画出表示下列方向的射线.(1)北偏西60°;(2)南偏东30°;(3)西南方向.解:OA表示北偏东30°的射线.(1)如图中的射线OB.(2)如图中的射线OC.(3)如图中的射线OD. 活动2 跟踪训练1∠1 ∠3 ∠3 ∠4 ∠5∠BCE ∠BAC ∠BAE、∠BAC∠DAB ∠ABC2.8时30分,时针与分针所成的角是75°.3.计算:180°-(45°17′+52°57′).解:81°46′.活动3 课堂小结1.角的表示方法.2.度、分、秒之间的换算.4.4 角的比较1.会比较角的大小.(重点)3.在操作活动中认识角的平分线,并运算角平分线的定义解决角的计算.(难点)阅读教材P118~119,完成预习内容. (一)知识探究1.比较两个角的大小,我们可以用量角器量出角的度数,然后比较它们的大小,也可以把两个角的顶点及一条边重合,另一条边放在重合边的同侧,然后比较它们的大小,这两种方法分别叫度量法和叠合法.2.角平分线定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线. (二)自学反馈1.将∠1、∠2的顶点和其中一边重合,另一边都落在重合边的同侧,且∠1>∠2,那么∠1的另一边落在∠2的(C) A .另一边上 B .内部 C .外部 D .无法判断 2.细心想一想,看谁做得最快.(1)如图1,若OB 是∠AOC 的平分线,则∠AOC =2∠AOB =2∠BOC ,∠AOB =∠BOC =12∠AOC .(2)如图2,若OB 是∠AOC 的平分线,OC 是∠BOD 的平分线,你能从中找出哪些相等的角? 解:∠AOB =∠BOC =∠COD ,∠AOC =∠BOD.活动1 小组讨论例 如图,已知点O 为直线AB 上一点,OM ,ON 分别是∠AOC ,∠BOC 的平分线,求∠MON 的度数.解:∵点A ,O ,B 在一条直线上, ∴∠AOB =180°.∵∠AOC +∠BOC =∠AOB , ∴∠AOC +∠BOC =180°.又∵OM ,ON 分别是∠AOC 和∠BOC 的平分线, ∴∠MOC =12∠AOC ,∠CON =12∠BOC.∴∠MOC +∠CON =12(∠AOC +∠BOC)=12×180°=90°.又∵∠MON =∠MOC +∠CON ,∴∠MON =90°.活动2 跟踪训练如图,点A 、O 、B 在一直线上,∠AOC =80°,∠COE =50°,OD 是∠AOC 的平分线. (1)试比较∠DOE 与∠AOE ,∠AOC 与∠BOC 的大小;(2)求∠DOE的度数;(3)OE是∠BOC的平分线吗?为什么?解:(1)∠DOE<∠AOE,∠AOC<∠BOC.(2)90°.(3)是,因为∠COE=∠BOE=50°活动3 课堂小结1.会用量角器度量角,并会比较两个角的大小.2.记住角平分线的定义.4.5 多边形和圆的初步认识1.在具体情境中认识多边形、正多边形、圆、扇形.(重点) 2.能根据扇形和圆的关系求扇形的圆心角的度数.(难点)阅读教材P122~124,完成预习内容. (一)知识探究1.三角形、四边形、五边形、六边形等都是多边形.它们都是由若干条不在同一直线上的线段首尾顺次相连组成的封闭平面图形.连接多边形不相邻两个顶点的线段叫做多边形的对角线. 2.各边相等,各角也相等的多边形叫做正多边形.3.平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆.固定的端点称为圆心.圆上任意两点间的部分叫做圆弧.由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.顶点在圆心的角叫做圆心角. (二)自学反馈1.如图所示的图形中,属于多边形的有(A)A .3个B .4个C .5个D .6个2.若一个多边形有12个内角,则这个多边形为12边形,若一个多边形有20个顶点,则这个多边形为20边形. 3.画一个半径是2 cm 的圆,并在其中画一个圆心角为90°的扇形,你会计算这个扇形的面积吗?解:半径是2 cm 的圆的面积为4π cm 2,因为一个周角是360°,所以圆心角为90°的扇形面积是圆面积的14.所以这个扇形的面积是π cm 2.活动1 小组讨论例1 如图,从一个多边形的同一个顶点出发,分别连接这个顶点与其不相邻的各顶点,这种线段叫多边形的对角线.多边形的边数 4 5 6 7 … 从一个顶点引 对角线的条数1234…经过n 边形的一个顶点可以画(n -3)条对角线.例2 将一个圆分割成三个扇形,它们的圆心角的度数比为1∶2∶3,求这三个扇形的圆心角的度数. 解:因为一个周角为360°,所以分成的三个扇形的圆心角分别是: 360°×11+2+3=60°,360°×21+2+3=120°,360°×31+2+3=180°.活动2 跟踪训练1.观察如图所示图形,回答下列问题:(1)从八边形ABCDEFGH 的顶点A 出发,可以画出多少条对角线?分别用字母表示出来;(2)这些对角线将八边形分割成多少个三角形?解:(1)5条,它们分别是线段AC ,AD ,AE ,AF ,AG.(2)6个三角形.事实上,经过多边形的一个顶点有(n -3)条对角线,并将多边形分成(n -2)个三角形.2.半径为1的圆中,扇形AOB 的圆心角为120°,请在圆内画出这个扇形并求它的面积. 解:画图略,面积是π3.活动3 课堂小结1.了解多边形、正多边形、圆的相关概念.2.知道多边形的内角、顶点、对角线和边数之间的数量关系. 3.学会根据扇和圆的关系求扇形圆心角的度数.。

新北师大版数学七上第四章基本平面图形整章教案

新北师大版数学七上第四章基本平面图形整章教案

第四章 基本平面图形 第1节 线段、射线、直线教学目标:1、在现实情境中理解线段、射线、直线等简单图形,并会用不同的方式表示。

2、通过操作活动,了解“两点确定一条直线”的几何事实,积累数学活动经验。

3、能够用几何事实解释和解决具体情境中的实际问题。

4、通过从事观察、比较、概括等活动,发展抽像思维能力和有条理的数学表达能力。

教学重点:线段、射线与直线的概念及表示方法 教学难点:了解“两点确定一条直线”等事实,并应用它解决一些实际问题. 教学过程:1个课时教学内容一、生活中的线 1、曲线与直线2、如竖琴的弦、手电筒光、铁轨个小写字母表示。

射线:可以用两个大写字母表示,表示端点的字母只能写在前面,也可以用一个小写字母表示。

直线:可以用两个大写字母表示,两个大写字母表示直线上任意两点,没有顺序,也可以用一个小写字母表示。

三、例:如图,回答下列问题(1)直线AC 与直线AB 是同一条直线吗? (2)线段AC 与线段BC 是同一条线段吗? (3)射线AC 与射线AB 是同一条射线吗?射线AC 与射线CA 呢?射线CB 与射线CA 呢? (4)直线AB 与线段AC 还可以怎么表示?四、生活中哪些线类似上面的图形?五、做一做:P107(1)过一点A 可以画几条直线?• • •C A B m(2)过两点A 、B 可以画几条直线?(3)如果你想将一根细木条固定在墙上,至少需要几个钉子?六、归纳:经过两点有且只有一条直线。

简述为:两点确定一条直线。

如:木匠弹墨线、植树、砌墙九、练习:P107-108十、作业:(下节课带好圆规)1、如图:表示下图中的直线、射线、线段。

2、读句画图(如图示) ①连BC 、AD ②画射线AD③画直线AB 、CD 相交于E④延长线段BC ,反向延长线段DA 相交与F ⑤连结AC 、BD 相交于O第二课时 拓展一、在同一平面内:(1)过1个点能画几条直线? (2)过2个点能画几条直线?(3)过3个点能画几条直线?过3个点最多能画几条直线? (4)过4个点可以画几条直线?过4个点最多能画几条直线? (6)过n 个点最多可以画几条直线? (答案:2)1( n n )二、数线段条数:1、在一条线段上有n 个点,则有几条线段?2、在一条直线上有n 个点,则有几条线段?3、中国地域辽阔,有很多纵横交错的铁路线。

北师大版2024新版七年级数学上册《第4章 基本平面图形》学案:4.3 多边形和圆的初步认识

北师大版2024新版七年级数学上册《第4章 基本平面图形》学案:4.3 多边形和圆的初步认识

4.3 多边形和圆的初步认识班级: 姓名:学习目标:①能够说出多边形的概念,能通过图形识别多边形的边、角、顶点、对角线; ②在探索得到多边形边、角、对角线间数量关系的过程中,发展合情推理能力; ③经历正多边形的概念形成过程,发展几何意识;④理解圆、圆弧、扇形、圆心角概念。

能根据简单的条件,求圆心角的度数及扇形的面积。

一.自主学习、储备知识1、三角形、四边形、五边形、六边形等都是多边形, 它们都是由若干条不在同一直线上的线段首尾顺次相连组成的封闭平面图形。

2、多边形的元素你认识五边形ABCDE 的这些元素吗?(1)点A ,点B ,点C ,点D ,点E 是五边形的 ;(2)线段AB ,线段BC ,线段CD ,线段DE ,线段EA 是五边形的 ; (3)EAB ∠,ABC ∠,BCD ∠,CDE ∠,DEA ∠是五边形的 ; (4)像线段AC ,线段AD ,线段EB 这样连接 两个顶点的线段,叫做多边形的 。

二.自主探索,深度学习 1.画一画,探一探观察这个六边形ABCDE ,与点A 不相邻的点有 个,从点A 出发,能画出 条对角线; 与点B 不相邻的点有 个,从点B 出发,能画出 条对角线; 与点C 不相邻的点有 个,从点C 出发,能画出 条对角线;从点D 、点E 、点F 出发呢?由此,你能发现从一点出发的对角线条数与顶点数有什么关系吗?ABEDC2.观察下面图形,填表.…总结:n 边形有 个顶点; 条边; 个内角;从一个顶点出发,有 条对角线,这些对角线将n 边形分成 个三角形。

三、动手操作、探究真知通过动手操作与观察多边形纸片,发现下列多边形有什么共同特征?同一个多边形的各边是否相等?各角是否相等?如上图所示 , 叫做正多边形。

判断各角相等的多边形是正多边形。

( ) 各边相等的多边形是正多边形;( )B四、联系实际,拓展提升1、平面上,一条线段绕着它 的一个端点旋转一周, 形成的图形叫做圆。

2023-2024学年北师大版七年级数学上册《第四章基本平面图形4.3角》教案

2023-2024学年北师大版七年级数学上册《第四章基本平面图形4.3角》教案

2023-2024学年北师大版七年级数学上册《第四章基本平面图形4.3角》教案一. 教材分析《第四章基本平面图形4.3角》这一节主要让学生了解角的定义、分类和性质。

通过本节课的学习,学生能够理解角的概念,掌握角的分类,了解角的性质,并能运用角的性质解决一些实际问题。

本节课的内容是学生学习几何的基础,对于学生来说非常重要。

二. 学情分析七年级的学生已经学习了初步的图形知识,对于图形的认知有一定的基础。

但是,对于角的概念和性质,他们可能还比较陌生。

因此,在教学过程中,需要通过具体的例子和实际操作,让学生理解和掌握角的概念和性质。

三. 教学目标1.让学生了解角的定义,掌握角的分类,了解角的性质。

2.培养学生观察、思考、动手操作的能力,提高学生解决问题的能力。

3.培养学生合作学习的精神,提高学生的团队协作能力。

四. 教学重难点1.角的定义和分类2.角的性质五. 教学方法1.采用直观演示法,通过实物和图形,让学生直观地理解角的概念和性质。

2.采用自主探究法,让学生通过观察、思考、操作,自己发现角的性质。

3.采用合作学习法,让学生通过小组讨论,共同解决问题。

六. 教学准备1.准备一些角模型,如三角板、四边形等。

2.准备一些图片,如角的示意图、角的分类图等。

3.准备一些练习题,如判断题、填空题等。

七. 教学过程1.导入(5分钟)通过展示一些角模型和图片,让学生观察并说出它们的名称。

引导学生思考:角是由哪两个点确定的?角有哪些分类?2.呈现(10分钟)介绍角的定义和分类。

给出角的定义:由一个点引出的两条射线所围成的图形,这个点叫做角的顶点,这两条射线叫做角的边。

介绍角的分类:锐角、直角、钝角、平角、周角。

3.操练(10分钟)让学生自己动手操作,用量角器测量一些角的度数,并判断它们的类型。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)让学生完成一些判断题和填空题,巩固所学的内容。

教师及时批改,给予反馈。

5.拓展(10分钟)介绍一些角的性质,如:角的度数与边的长短无关;角的度数与两边叉开的大小有关等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章:基本平面图形
知识点:
一、线段、射线、直线
1、线段、射线、直线的定义
(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。

线段可以量出长度。

(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。

射线无法量出长度。

(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。

直线无法量出长度。

2、线段、射线、直线的表示方法
(1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。

(2)射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。

(3)直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。

3、直线公理:过两点有且只有一条直线。

简称两点确定一条直线。

4、线段的比较
(1)叠合比较法;(2)度量比较法。

5、线段公理:“两点之间,线段最短”。

连接两点的线段的长度,叫做这两点的距离。

6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。

1AB或AB=2AC=2BC。

若C是线段AB的中点,则:AC=BC=
2
二、角
1、角的概念:
(1)角可以看成是由两条有共同端点的射线组成的图形。

两条射线叫角的边,共同的端点叫角的顶点。

(2)角还可以看成是一条射线绕着他的端点旋转所成的图形。

2、角的表示方法:角用“∠”符号表示
(1)分别用两条边上的两个点和顶点来表示。

(顶点必须在中间)
(2)在角的内部写上阿拉伯数字,然后用这个阿拉伯数字来表示角。

(3)在角的内部写上小写的希腊字母,然后用这个希腊字母来表示角。

(4)直接用一个大写英文字母来表示。

3、角的度量:会用量角器来度量角的大小。

4、角的单位:角的单位有度、分、秒,用°、′、″表示,角的单位是60进制与时间单位是类似的。

度、分、秒的换算:1°=60′,1′=60″。

5、锐角、直角、钝角、平角、周角的概念和大小
(1)平角:角的两边成一条直线时,这个角叫平角。

(2)周角:角的一边旋转一周,与另一边重合时,这个角叫周角。

(3)0°<锐角<90°,直角=90°,90°<钝角<180°,平角=180°,周角=360°。

6、画两个角的和,以及画两个角的差
(1)用量角器量出要画的两个角的大小,再用量角器来画。

(2)三角板的每个角的度数,30°、60°、90°、45°。

7、角的平分线
从角的顶点出发将一个角分成两个相等的角的射线叫角的平分线。

若BD 是∠ABC 的平分线,则有:∠ABD=∠CBD=
21∠ABC ;∠ABC=2∠ABD=2∠CBD 8、角的计算。

练习题:
一、选择题
1、如图,以O 为端点的射线有( )条
A 、3
B 、4
C 、5
D 、6
2、平面上有任意三点,经过其中两点画一条直线,可以画( )直线
A 、1条
B 、2条
C 、3条
D 、1条或者3条
3、点C 在线段AB 上,不能判断点C 是线段AB 中点的式子是( )
A 、AB=2AC
B 、AC+BC=AB
C 、BC=
AB 2
1 D 、AC=BC 4、下列画图语句中,正确的是( )
A 、画射线OP=3cm
B 、连结A 、B 两点
C 、画出A 、B 两点的中点
D 、画出A 、B 两点的距离
5、下列说法中正确的是( )
A 、角是由两条射线组成的图形
B 、一条射线就是一个周角
C 、两条直线相交,只有一个交点
D 、如果线段AB=BC ,那么B 叫做线段AB 的中点
6、如图,∠AOB=90°,以O 为顶点的锐角共有( )个
A 、6
B 、5
C 、4
D 、3
7、按下列线段的长度,点A 、B 、C 一定在同一直线上的是( )
A 、AB=2cm ,BC=2cm ,AC=2cm
B 、AB=1cm ,BC=1cm ,AC=2cm
C 、AB=2cm ,BC=1cm ,AC=2cm B 、AB=3cm ,BC=1cm ,AC=1cm
8、8点30分时,时钟的时针与分针所夹的锐角是( )
A、70°
B、75°
C、80°
D、60°
9、直线l上有两点A、B,直线l外两点C、D,过其中两点画直线,共可以画()
A、4条直线
B、6条直线
C、4条或6条直线
D、无数条直线
10、或∠1和∠2为锐角,则∠1+∠2满足()
A、0°<∠1+∠2<90°
B、0°<∠1+∠2<180°
C、∠1+∠2<90°
D、90°<∠1+∠2<180°
二、填空题
11、如图,点A、B、C、D在直线l上
(1)AC=_______-CD;AB + _______ + CD=AD;
(2)图中共有________条线段,共有_______条射线,以点C为端点的射线是________。

12、45°=______直角=_______平角。

13、(1)23°30′=________°;(2)78.36°= ______°____′________″。

14、如图,∠AOD=∠AOC+_______=∠DOB+_______。

三、解答题
15、如图,M是线段AC的中点,N是线段BC的中点。

(1)如果AC=8cm,BC=6cm,求MN的长
(2)如果AM=5cm,CN=2cm,求线段AB的长
16、如图,∠AOC和∠BOD都是直角,且∠AOB=150°,求∠COD的度数。

相关文档
最新文档