2013年中考数学较难典型选择题模拟(4)
2013年泰州市中考数学模拟试卷4含答案

泰兴市 张桥初级中学 初三数学第四次模拟试题2013.6(考试时间120分钟 满分150分)第一部分 选择题(共24分)一、选择题(每题3分,共24分)1. 2-的绝对值是 A .2B .2-C .21D .±22. 下列运算正确的是 A .6332a a a =+ B .3-36a aa =÷C .336a a 2a ∙=D .6328a )2a (--=3.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为 A .51025.0-⨯B .61025.0-⨯C .5105.2-⨯D .6105.2-⨯4.如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图, 那么他所画的三视图中的俯视图应该是 A .两个相交的圆 B .两个内切的圆 C .两个外切的圆 D .两个外离的圆5. 掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得朝上一面的点数为偶数的概率为A . 61B . 31 C . 41 D . 216. 下列说法中正确的是A .4是一个无理数B .函数y=11-x 的自变量x 的取值范围是x >C .8的立方根是±2 D .点P(2,3)和点Q(2,-3)关于y 轴对称 7.如图,⊙O 是△ABC 的外接圆,已知∠ABO=40°,则∠ACB 的大小为 A .40°B . 30°C . 50°D . 60°8.如图,两个反比例函数xy 1=和x y 2-=的图象分别为l 1和l 2.设点P 在l 1上,过点P 作PC ⊥x 轴交l 2于点A ,垂足为C , 过点P 作PD ⊥y 轴交l 2于点B ,垂足为D ,则△PAB 的面积为 A . 4 B . 92 C . 5 D . 211第二部分 非选择题(共126分)二、填空题(每题3分,共30分)9.若代数式64x y -与2n x y 是同类项,则常数n 的值为 ▲ 10.分解因式 28a 2-= ▲11.一组数据2,2,4,1,0中位数 ▲ 12.已知∠A 的余角为50°,则∠A= ▲ 度13 如图,直线l 1∥l 2, ∠1=40°,∠2=75°,则∠3= ▲ °14.已知:x 2+3x-1=0,则2x 2+6x-7= ▲15.如图,在梯形ABCD 中,AD//BC , ∠B=70°,DE//AB 交BC 于点E .若AD=3 cm ,BC=10 cm ,CD=7cm ,则∠C= ▲ cm .16.已知扇形的圆心角为120°,半径为15cm ,则扇形的弧长为 ▲ cm(结果保留π) 17.如图,在△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于D ,点E 为AC 中点,连结DE ,则△CDE 的周长为 ▲ . 18.如图,直线1y x 1=-与双曲线2k y x =(x>0)交于点P(a, 2),则关于x 的不等式kx>x 1-≥0的解集为 ▲ . 三、解答题(共96分)19.(8分)(1)计算9-2sin30°+(2013)0-(21)-2; (2) 解方程1-x x +x2 =120.(8分)先化简,再求值121()a a a a a--÷-,其中a=3+tan45°.21.(8分)如图,在菱形ABCD 中,对角线AC 、BD 相交于点O . (1)通过平移△AOB ,使得点A 移动到点D ,画出平移后的△DO ′B ′ (不写画法);(2)在第(1)题画好的图形中,不再添加任何辅助线,除了菱形ABCD 外, 还有哪种特殊的平行四边形?请给予证明.ABCD OA l 2l 1321第13题 第15题第17题22.(8分)自古以来,钓鱼岛及其附属岛屿都是我国固有领土。
2013年数学中考模拟试题及答案

2013年中考数学模拟试题一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.- 13的倒数是A .-3B .3C .- 13D .132.下列各式运算中,正确的是A .222()a b a b +=+ B3=C .3412a a a ⋅=D .)0(6)3(22≠=a a a3.下列几何体中,主视图、左视图、俯视图完全相同的是 A. 圆柱 B. 圆锥 C. 球 D. 棱锥 4.下列说法正确的是A .买一张福利彩票一定中奖,是必然事件.B .买一张福利彩票一定中奖,是不可能事件.C .抛掷一个正方体骰子,点数为奇数的概率是13. D .一组数据:1,7,3,5,3的众数是3. 5.函数y =中自变量的取值范围在数轴上表示为6.在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则=CFAFA .1:2B .1:3C .2:3D .2:5第7题图7.如图,在△ABC 中,AB = AC ,AB = 8,BC = 12以AB 、AC 为直径作半圆,则图中阴影部分的面积是A.64π-B .1632π-C.16π-.16π-8.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点。
设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 9.我国公安部交管局公布的数据显示,截至2012年初,全国机动私家车保有量达0.195亿辆,将0.195亿辆用科学记数法表示应是 辆(结果保留2个有效数字) 10.分解因式:=+-y xy y x 22 。
11.= . 12.如果圆锥的底面周长为20πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是___________.(结果保留π) 13.如图,直线a ∥b ,l 与a 、b 交于E 、F 点,PF 平分∠EFD 交a 于P 点,若∠1 = 70︒,则∠2 = . 14.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,21F E DblPa2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________;15.如图,在等边△ABC 中,9=AC ,点O 在AC 上,且3=AO ,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D , 连接PD ,如果PD PO =,那么AP 的长是 .16.如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,……,1n n n B D C +∆的面积为n S ,则n S = (用含n 的式子表示).三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.17.化简求值 (本题满分6分) 。
江岸区2013年中考数学模拟试题(四)

武汉市江岸区中考数学模拟试题(4)考试时间:120分钟 试卷满分:120分 编辑人:丁济亮祝考试顺利!一、选择题(每小题3分,共30分) 1在 -2、 0、 -1 ,3中,最大的数是( ).A. 3B.0 C .-2 D.-12.函数y =x 的取值范围是A.3x ≥B.3x ≥-C.3x >D.3x >-3.不等式组⎩⎨⎧>+<-31,31x x 的解集表示在数轴上正确的是4下列事件是必然事件的是( ).A .随意掷两个均匀的骰子,朝上面的点数之和为6B .抛一枚硬币,正面朝上C .两直线平行,同位角相等D .两个加数的和一定大于每一个加数5已知x 1、x 2是方程x 2+4x-3=0的两根,则x 1+ x 2的值是( ). A . -4 B . 4 C . 3 D . -36. 两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是A.两个外离的圆B.两个外切的圆C.两个相交的圆D.两个内切的圆7. 如图,将矩形纸片ABCD 中折叠,使顶点B 落在边AD 的E 点上折痕FG 交BC 于G ,交AB 于F ,若∠AEF =20°,则∠FGB 的度数为A. 25°B. 30°C. 35°D. 40°-2 4 2 0 D -2 4 2 0 C -2 4 2 0 A -2 4 2 0 B8.按一定规律排列的一组数:12,16,112,120,……,1x ,190,1y,…… (其中x ,y 为整数),则x + y =( )A .172B .182C .200D .2429. 《长江日报》2月26日报道,2011年武汉市建设“两型(环境友好型、资源节约型)”社会共投资48亿元,由四项建设工程组成,即:园林建设投资、水环境建设投资、环卫基础建设投资、城市建设投资.如图1、图2分别反映的是2011年四项建设工程投资分配比例和2008年以来每年总投资折线统计图.根据以上信息,下列判断:①2011年园林建设投资48×20%=9.6亿元;②2011年总投资的增长率与2009年持平;③若2012年四项建设工程投资占总投资分配比例不变,那么按2011年总投资的增长率计算,预计2012年环卫基础建设投资为484048(1)10%40-⨯+⨯亿元.其中正确结论的个数是( ). A .0个 B .1个C .2个D .3个10.如图, Rt ABC ∆中, 90ACB ∠=︒, 点O 、I 分别为ABC ∆的外心和内心, 6AC =, 8BC =, 则OI 的值为( )A .2 BCD .1二、填空题(每小题3分,共18分)11.计算:tan30°=12.2010年上海世博会共接待参观者约7310万人,7310万用科学记数法表示为 13.在湖南卫视“我是歌手”比赛中,评委组的各位评委给某歌手演唱打分情况(满分10014. 已知一列慢车与一列快车相继从武汉开往南京,慢车先出发, 一小时后快车出发,设慢车行驶的时间为x (h),两车之间的距离为y (km),图中的折线表示y 与x 之间的函数关系, 如果二车都配有对讲机,并且二车相距不超过15km 时,能相互通话, 则二车均在行驶过程中.......能通话的时间为 小时;OBA45ACBC=, 且S△A O C=4,则k点.点O是BC中点,AB2,2)、B(1,3),求不等平分∠BCD,CD=CE,求证:AD=BE.20.(7分) 有2个信封A、B, 信封A装有四张卡片上分别写有1、2、3、4, 信封B装有三张卡片分别写有5、6、7, 每张卡片除了数字没有任何区别. 规定:从这两个信封中随机抽取两张卡片, 然后把卡片上的两个数相加, 如果得到的和是3的倍数, 则获胜, 否则失败. 小明设计了两种方案:甲方案:从信封A、B中各抽取一张卡片;乙方案:一次从信封A中抽取两张卡片.(1)请你用列表法或画树状图的方法描述所有可能的结果;(2)并求出甲乙两个方案小明胜的概率, 并判断哪种方案对小明更有利.AD EBC12321.(7分)已知△ABC ,AB = 3,BC ,AC =81个边长为1的小正方形组成的9×9的正方形网格,将顶点在这些小正方形顶点的三角形称为格点三角形.(1)请你在所给的网格中画出一格点△A 1B 1C 1与△ABC 全等.(2)画出格点△A 2B 2C 2与△A 1B 1C 1全等,且△A 2B 2C 2的三边与△A 1B 1C 1的三边对应垂直.(3)直接写出所给的网格中与△A 1B 1C 1相似,与△A 1B 1C 1的三边对应垂直的最大网格三角形的面积S = .22.(8分)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,BP ⊥AB ,OP ∥AC ,交BP 于点P 连PC ,且 PC = 20.(1)求证:PC 是⊙O 的切线;(2)将 BC沿弦BC 对折后交直径AB 于D ,若23AD BD ,求弦BC 的长.23.(10分)武汉某中学科学兴趣小组的同学把一种珍贵药用植物分别放在不同的环境同学们从科学网中查到这种植物高度的增长量y 与温度t 之间满足二次函数的关系. (1)求出y 与t 之间的函数关系.(2)求这种植物高度最大可以增长多少mm.(3)若该种植物的增长高度在14 ~ 25mm 之间药用价值最为理想,问应如何控制植物适合生长的温度.24.(10分)在等腰△ABC 中,CA = CB ,点D 、E 在射线AB 上,不与A 、B 重合(D 在E 的左边),且∠DCE =12∠ACB .(1)如图①,若∠ACB = 90°,将△CAD 沿CD 翻折,点A 与M 重合,求证:△MCE ≌△BCE .(2)如图②,若∠ACB = 120°,且以AD 、DE 、EB 为边的三角形是直角三角形,求ADEB的值.(3)∠ACB = 120°,点D 在射线AB 上运动,AC = 3,则AD 的取值范围为 .25.(12分)抛物线2(3)3(0)y mx m x m =+-->与x 轴交于A 、B 两点,且点A 在点B 的左侧,与y 轴交于点C ,OB=OC . (1)求这条抛物线的解析式;(2)若点P 1(,)x b 与点Q 2(,)x b 在(1)中的抛物线上,且12x x <,PQ=n . 求2124263x x n n -++的值;(3)在(2)的条件下,将抛物线在PQ 下方的部分沿PQ 翻折,抛物线的其它部分保持不变,得到一个新图象.当这个新图象与x 轴恰好只有两个公共点时,求b 的取值范围.。
2013年中考数学模拟试卷四及答案(含答题卡)A3

A
D
(2)已知 1 + 1 = 5 (a≠b),求 a b 的值.
O
ab
b(a b) a(a b)
17. (9 分)如图,四边形 ABCD 是矩形,对角线 AC,BD 相交于点
B
C
O,BE∥AC 交 DC 的延长线于点 E.
(1)求证:BD=BE;
(2)若DBC=30,BO=4,求四边形 ABED 的面积.
8. 已知二次函数 yax2bxc 的图象如图所示,它与 x 轴的两个
y
交点分别为(1,0),(3,0).对于下列命题:
①b2a0;②abc<0;③a2b4c<0;④8ac>0.其中正确的 有【 】
1 O
3x
A.3 个
B.2 个
C.1 个
D.0 个
二、填空题(每小题 3 分,共 21 分)
E
18. (9 分)某市把中学生学习情绪的自我控制能力分为四个等级,即 A 级:自我控制能力
很强;B 级:自我控制能力较好;C 级:自我控制能力一般;D 级:自我控制能力较
差.通过对该市的初中学生学习情绪的自我控制能力的随机抽样调查,得到下面两幅
不完整的统计图,请根据图中的信息解决下面的问题.
(1)在这次随机抽样调查中,共抽查了多少名学生?
14. 如图,∠MON=30°,点 A1,A2,A3,…在射线 ON 上,点 B1,B2,B3,…在射线 OM
上,△ A1B1A2 ,△ A2B2 A3 ,△ A3B3 A4 …均为等边三角形.若 OA1 1 ,则△ AnBn An1 的边
长为_____________.
1
15. 如图,已知 Rt△ABC≌Rt△DEF,∠C=∠F=90°,AC=DF=3,BC=EF=4,△DEF 绕着
2013中考数学模拟试卷

2013年中考数学模拟试卷四一、选择题(本大题共10小题,每小题4分,共40分) 1.—3的绝对值的倒数是( )A .3B .—3C .13D .— 132.计算422()a a ÷的结果是( )A .2aB .5aC .6aD .7a3.若)(n m +∶n =5∶2,则m ∶n 的值是( )A .5∶2B .2∶3C . 2∶5D .3∶24.如图所示,下列选项中,正六棱柱的左视图是( )第3题图 A . B . C . D .5.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获得20%,则这种电子产品的标价为( )A .26元B .27元C .28元D .29元 6.分式方程131x x x x +=--的解为( ) A .1x = B .1x =- C .3x = D .3x =-7.如图,BD 是⊙O 的直径,∠CBD =30°,则∠A 的度数为( ) A .30° B .45° C .60° D .75° 8.估计2103112÷+⨯的运算结果应在( ) 第7题图 A .2到3之间 B .3到4之间 C .4到5之间 D .5到6之间 9.某游泳池的横截面如图所示,用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水区水深h 与注水时间t 关系的是( )A .B .C .D .10.已知二次函数2y ax bx c =++中,其函数y 与自变量x 之间的部分对应值如下表所示: … 0 1 2 3 … …5212…点A (1x ,1y )、B (2x ,2y )在函数的图象上,则当101x <<,223x <<时,1y 与2y 的大小关系正确的是A .1y ≥2yB .12y y >C .12y y <D .1y ≤2y 二、填空题(本大题共4小题,每小题5分,共20分) 11.因式分解:a a 823-= .12.有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 . 13.已知直线y =2x +k 和双曲线y =xk的一个交点的纵坐标为-4,则k 的值为 . 14.如图,菱形ABCD 中,AB =2 ,∠C =60°,菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过36次这样的操作菱形中心O 所经过的路径总长为(结果保留π) .t h Ot h Ot h O h t O 第9题图 深 水区浅水区A CB60º 30º三、(本大题共2小题,每小题8分,满分16分)15.解不等式组:331213(1)8x x x x-⎧+>+⎪⎨⎪---⎩,≤并在数轴上把解集表示出来.16.已知一等腰三角形的两边长x ,y 满足方程组⎩⎨⎧=+=-,823,32y x y x 求这个等腰三角形的周长.四、(本大题共2小题,每小题8分,满分16分)17.某地震救援队探测出某建筑物废墟下方点C 处有生命迹象,已知废墟一侧地面上探测点 A 、B 相距4m ,探测线与地面的夹角分别是30º和60º,试确定生命所在点C 的深度(结果精确到0.1m ,参考数据:2≈1.414,3≈1.732).18.如图,在网格中、建立了平面直角坐标系,每个小正方形的边长均为1个单位长度,将四边形ABCD 绕坐标原点O 按顺时针方向旋转180°后得到四边形A 1B 1C 1D 1. (1)写出点D 1的坐标_________,点D 旋转到点D 1所经过的路线长__________; (2)请你在△ACD 的三个内角中任选二个锐角,若你所选的锐角..是________,则它所对应的正弦函数值是_________;(3)将四边形A 1B 1C 1D 1平移,得到四边形A 2B 2C 2D 2,若点D 2(4,5),画出平移后的图形.(友情提示:画图时请不要涂错阴影的位置哦!)五、(本大题共2小题,每小题10分,满分20分)19.A 市与B 市之间的城际铁路正在紧张有序地建设中.在建成通车前,进行了社会需求调查,得到一列火车一天往返次数m 与该列车每次拖挂车厢节数n 的部分数据如下:车厢节数n 4 7 10 往返次数m 16 10 4(1)请你根据上表数据,在三个函数模型:①y =kx +b (k 、b 为常数,k ≠0);②y = kx (k为常数,k ≠0);③y =ax 2+bx +c (a 、b 、c 为常数,a ≠0)中,选取一个适合的函数模型, 求出的m 关于n 的函数关系式是m = (不写n 的取值范围);(2)结合你求出的函数,探究一列火车每次挂多少节车厢,一天往返多少次时,一天的设计运营人数Q 最多(每节车厢载客量设定为常数p ).20.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.(1)从口袋中随机取出一个球(不放回),接着再取出一个球.请用树形图或列表的方法求取出的两个都是黄色球的概率;(2)小明往该口袋中又放入红色球和黄色球若干个,一段时间后他记不清具体放入红色球和黄色球的个数,只记得一种球的个数比另一种球的个数多l ,且从口袋中取出一个黄色球的概率为23,请问小明又放人该口袋中红色球和黄色球各多少个?六、(本题满分12分)第14题图DC BA 21O O DCB A E P DCB A21.已知:正方形ABCD 的边长为1,点P 为对角线BD 上一点,连接CP . (1)如图1,当BP =BC 时,作PE ⊥PC ,交AB 边于E ,求BE 的长; (2)如图2,当DP =DC 时,作PE ⊥PC ,交BC 边于E ,求BE 的长.七、(本题满分12分)22.如图,一面利用墙,用篱笆围成的矩形花圃ABCD 的面积为S m 2,平行于墙的BC 边长为x m .(1)若墙可利用的最大长度为10m ,篱笆长为24m ,花圃中间用一道篱笆隔成两个小矩形,求S 与x 之间的函数关系式.(2)在(1)的条件下,围成的花圃的面积为45m 2时,求AB 的长.能否围成面积比45m 2更大的花圃?如果能,应该怎样围?如果不能,请说明理由.(3)若墙可利用最大长度为40m ,篱笆长77m ,中间用n 道篱笆隔成小矩形,且当这些小矩形为正方形和x 为正整数时,请直接写出一组满足条件的x 、n 的值.八、(本题满分14分)23.我们把既有外接圆又有内切圆的四边形称为双圆四边形,如图1,四边形ABCD 是双圆四边形,其外心为O 1,内心为O 2. 图1 图2 图3(1)在平行四边形、矩形、菱形、正方形、等腰梯形中,双圆四边形有 个; (2)如图2,在四边形ABCD 中,已知:∠B =∠D =90°,AB =AD ,问:这个四边形是否是双圆四边形?如果是,请给出证明;如果不是,请说明理由; (3)如图3,如果双圆四边形ABCD 的外心与内心重合于点O ,试判定这个四边形的形状,并说明理由; 参一、选择题(本大题共10小题,每小题4分,共40分) 1.A 2.C 3.D 4.B 5.C 6.D 7.C 8.C 9.A 10.B 二、填空题(本大题共4小题,每小题5分,共20分) 11.)2)(2(2-+a a a 12.2 13.-8 14.π)438(+ 三、(本大题共2小题,每小题8分,满分16分) 15.解不等式23-x >x +1,得x <1, ……………………………………2分 解不等式)1(31--x ≤x -8,得x ≥-2, …………………………4分 所以,原不等式组的解集是-2≤x <1. …………………………………6分 它的解集在数轴上表示为:………………8分16.解方程组⎩⎨⎧=+=-,823,32y x y x 得⎩⎨⎧==.1,2y x所以,等腰三角形的两边长为2,1. ……………………………………4分A D BCx A BD C …图1图2x x 3 2 10 0-1 -3 -2若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在. …………6分 若腰长为2,底边长为1,则三角形的周长为5.所以,这个等腰三角形的周长为5. ……………………………………8分 四、(本大题共2小题,每小题8分,满分16分)17.过点C 作CD ⊥AB ,垂足为D . …………………………1分∵∠CAB =30°,∠CBD =60°,∴∠BCA =30°=∠CAB , ………………………………………………3分 ∴CB =AB =4. ……………………………………………4分 在Rt △CBD 中,CD =BCsin60°=45.33223≈=⨯(米). ………………………………7分 答:生命所在点C 的深度约为3.5米. ……………………………………8分 18.解:(1)(3,-l ),10π; ………………………………………………3分(2)∠ACD ,22 (或∠DAC ,55) ………………………………………6分 (3)画出正确图形 …………………………………………………………8分 五、(本大题共2小题,每小题10分,满分20分)19.(1)242+-=n m ; …………………………………………………………4分 (2)根据题意,一列火车载客人数为np ,则Q 与n 的函数关系式为Q =mnp =pn pn np n 242)242(2+-=⨯+-, ………………………6分 配方,得Q =p n p 72)6(22+--. ∵ -2p <0,∴ 当n =6时,Q 的值最大, ……………………………………8分 此时m =-2×6+24=12.答:一列火车每次挂6节车厢,一天往返12次时,一天设计运营人数Q最多.……………………………………10分 20.(1)画图略,……………………………………………………………………2分P (两个都是黄色球)=12; …………………………………………4分 (2)∵一种球的个数比另一种球的个数多l 。
2013年中考模拟数学试卷数学答案

∴∠DBC=∠BAO,∵BD是直径,∴∠BCD=∠ABO=90°,
∴△BDC∽△AOB,(6分)∴ , (7分)
22.(1)设A组的频数是x,那么B组的频数为5x,那么x+5x=12,x=2,(2分)
12÷(1-40%-28%-8%)=50(4分)
(2) (7分)(3)(28%+8%)×500=180(户)(9分)
(2)S1=4m-4(m-4)=16,(5分)
S2=S梯形AECD-S△CEEF= =16,∴S1=S2(8分)
(求S2时也可以将两个三角形的面积一一求出,再求差)
.(3)∵△AEG与△FDG面积和为24,差为16,∴△AEG的面积=20(10分)
∴ ,∴AG=10,∵△FDG∽△FCE,∴ ,
m1=12,m2=6(舍去),∴tan∠BAE= (12分)
∴ ,即
∴ 或 .(14分)
19.解:原式= (4分)= (6分)
20. → (2分)→
→ (5分)→经检验,原方程的解是 (7分)
21.解:(1)证明:连结OC,
∵OB=OC,AB=AC,OA=OA,∴△ABO≌△ACO,(2分)
∴∠ABO=∠ACO,∵AC是切线,∴∠ACO=90°,
∴∠ABO=90°,∴AB是⊙O的切线.(4分)
26.(1)第一条抛物线的解析式是 (3分)
(2)第n个三角形的面积是 ,当n=1,2,5时为整数(6分)
(3)设第n条抛物线的解析式为 ,(7分)
又∵过点 ∴ ,设 ,∴
= ,∴
,n=2.(10分)
(4)作第m个三角形和第n个三角形底边上的高AmC和AnD,
∵顶角互补,∴底角互余.即△AmCBm-1∽△AnDBn-1.
2013年数学中考模拟试题及参考答案
2013年数学中考模拟试题一、选择题:(本大题共12个小题,满分36分).1.方程x(x-2)+ x-2 = 0的解是()A.x=2 B.x=-2或1 C.x=-1 D.x=2或-12.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则CDOC的值为()A.21B.31C.22D.333.如图,⊙O的半径为2,弦AB=23,点C在弦AB上,AC=41AB,则OC的长为()A.2B.3C.332D.274.如果一个扇形的半径是1,弧长是3π,那么此扇形的圆心角的大小为()A.30° B.45° C.60° D.90°5.圆心距为2的两圆相切,其中一个圆的半径为1,则另一个圆的半径为()A.1 B.3 C.1或2 D.1或36.下列事件为必然事件的是()A.小王参加本次数学考试,成绩是150分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球7.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.-1<x<5 B.x<-1或x>5C.x<-1且x>5 D. x>58.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2-4ac与反比例函数y=xcba++在同一坐标系内的图象大致为()A.B.C.D.9.一个钢筋三角架三边长分别为20cm,50cm,60cm,现在要做一个和它相似的钢筋三角架,而只有长为30cm和50cm的两根钢筋,要求以其中的一根为一边,从另一根上截两段(允许有余料)作为另两边,则不同的截法有()A.一种B.两种C.三种D.四种或四种以上10.如图,在△ABC中,EF∥BC,EBAE=21,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.1311.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A的坐标为(1,0),则E点的坐标为()A.(2,0) B.(23,23)C.(2,2)D.(2,2)12.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A.3 B.311C.310D.4二、填空题:(本大题共5小题,满分20分).13.关于x的两个方程x2-x-2=0与11+x=ax+2有一个解相同,则a= ________________14.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为____________15.如图,将等边△ABC沿BC方向平移得到△A1B1C1.若BC=3,S△PB1C= 3,则BB1=______________16.圆内接正n边形的每个内角都等于135°,则n=________17.如图,点A1、A2、A3、…、An在抛物线y=x2图象上,点B1、B2、B3、…、B n在y轴上,若△A1B0B1、△A2B1B2、…、△A n B n-1B n都为等腰直角三角形(点B0是坐标原点),则△A2013B2012B2013的腰长= _________________三、解答题:(本大题共7小题,共64分).18.(本题满分6分)计算:(-1)2013+(π-3)0+(21)1--2)21(-2题图3题图7题图8题图10题图11题图12题图数学试题第1 页共4 页数学试题 第 2 页 共 4 页19. (本题满分10分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC=∠D=60°. (1)求证:AE 是⊙O 的切线; (2)当BC=4时,求劣弧AC 的长20、(本题满分8分)某学校课程安排中,各班每天下午只安排三节课,初一(1)班星期二下午安排了数学、英语、生物课各一节,通过画树状图求出把数学课安排在最后一节的概率; .21.(本题满分10分)如图,二次函数y=ax 2-4x+c 的图象经过坐标原点,与x 轴交于点A (-4,0). (1)求二次函数的解析式;(2)在抛物线上存在点P ,满足S △AOP =8,请直接写出点P 的坐标.22.(本题满分10分)⌒ ⌒如图所示,在⊙O 中,AD= AC ,弦AB 与弦AC 交于点A ,弦CD 与AB 交于点F ,连接BC .(1)求证:AC 2=A B•AF ;(2)若⊙O 的半径长为2cm ,∠B=60°,求图中阴影部分面积.23.(本题满分8分)24. (本题满分12分)如图,一次函数122y x =-+分别交y 轴、x 轴于 A 、B 两点,抛物线2y x bx c =-++过A 、B 两点。
2013年中考数学较难典型选择题模拟4
顶点 A 处,一只小昆虫在顶点 B 处,则蜘蛛接近小昆虫时
所爬行的最短路线的长是
()
B
A
B
A . 6 B . 2+ 2 2 C . 2 3 D . 2 5 17.如图 1,是用边长为 2cm 的正方形和边长为 2cm正三角形硬纸片拼成的五边形
A ABCDE.在桌面上由图 1
起始位置将图片沿直线 l 不滑行地翻滚,翻滚一周后到图
()
2 的位置 . 则由点 A 到点 A4 所走路径的长度为
10
A.
cm
3
B. 8 3 2 3
cm
C
. 12 2
cm
13
D.
cm
3
3
18. 如图,每个小正方形的边长为 1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新
正方形的边长是(
)
A
3 B2 C
5D 6
-4-
参考答案 1. A 2. A 3. D 4. A 5. C 6. A 7. B 8. A 9. B 10. A 11. B 12. C 13. C 14. B 15. C 16. D 17. B 18. C
A(D )
A( D)
A( D )
B( C)
B(C)
A
B
C
B(C )
DLeabharlann -3-A(D ) B(C)
14.任何一个正整数 n 都可以进行这样的分解: n p q ( p、 q A
D
是正整数,且 p q ),如果 p q 在 n 的所有这种分解中两因数之
差的绝对值最小,我们就称
p q 是 n 的最佳分解,并规定:
则 a、 b、m、n 的大小关系是(
2013年中考数学模拟试题和答案
数 学 试 卷(一)*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分) 1.|65-|=( ) A .65+B .65-C .-65-D .56-2.如果一个四边形ABCD 是中心对称图形,那么这个四边形一定是( ) A .等腰梯形 B .矩形 C .菱形 D .平行四边形 3. 下面四个数中,最大的是( )A .35-B .sin88°C .tan46°D .215- 4.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是( ) A .4 B .5 C .6 D .10 5.二次函数y=(2x-1)2+2的顶点的坐标是( ) A .(1,2) B .(1,-2) C .(21,2) D .(-21,-2)6.足球比赛中,胜一场可以积3分,平一场可以积1分,负一场得0分,某足球队最后的积分是17分,他获胜的场次最多是( ) A .3场 B .4场 C .5场 D .6场 7. 如图,四边形ABCD 的对角线AC 和BD 相交于点E ,如果△CDE 的面积为3,△BCE 的面积为4,△AED 的面积为6,那么△ABE 的面积为( ) A .7 B .8 C .9 D .108. 如图,△ABC 内接于⊙O,AD 为⊙O 的直径,交BC 于点E ,若DE =2,OE =3,则tanC·tanB = ( )A .2B .3C .4D .5 二、填空题(每小题3分,共24分)9.写出一条经过第一、二、四象限,且过点(1-,3)的直线解析式 . 10.一元二次方程x2=5x的解为 .11. 凯恩数据是按照某一规律排列的一组数据,它的前五个数是:269,177,21,53,31,按照这样的规律,这个数列的第8项应该是 . 12.一个四边形中,它的最大的内角不能小于 . 13.二次函数x x y 2212+-=,当x 时,0<y ;且y 随x 的增大而减小.14. 如图,△ABC 中,BD 和CE 是两条高,如果∠A =45°,则BC DE= . 15.如图,已知A 、B 、C 、D 、E 均在⊙O 上,且AC 为⊙O 的直径,则∠A +∠B +∠C =__________度. 16.如图,矩形ABCD 的长AB =6cm ,宽AD =3cm. O 是AB 的中点,OP ⊥AB ,两半圆的直径分别为AO 与OB .抛物线y=ax2经过C 、D 两点,则图中阴影部分 的面积是 cm 2.三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.计算:01)32009(221245cos 4)21(8--⨯÷-︒-+-18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭19.已知:如图,梯形ABCD 中,A B ∥CD ,E 是BC 的中点,直线AE 交DC 的延长线于点F .(1)求证:△ABE ≌△FCE ; (2)若BC ⊥AB ,且BC =16,AB =17,求AF 的长.CA20.观察下面方程的解法x4-13x2+36=0解:原方程可化为(x2-4)(x2-9)=0∴(x+2)(x-2)(x+3)(x-3)=0∴x+2=0或x-2=0或x+3=0或x-3=0∴x1=2,x2=-2,x3=3,x4=-3你能否求出方程x2-3|x|+2=0的解?四、(每小题10分,共20分)21.(1)顺次连接菱形的四条边的中点,得到的四边形是.(2)顺次连接矩形的四条边的中点,得到的四边形是.(3)顺次连接正方形的四条边的中点,得到的四边形是.(4)小青说:顺次连接一个四边形的各边的中点,得到的一个四边形如果是正方形,那么原来的四边形一定是正方形,这句话对吗?请说明理由.22.下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题(1)李刚同学6次成绩的极差是.(2)李刚同学6次成绩的中位数是.(3)李刚同学平时成绩的平均数是.(4)如果用右图的权重给李刚打分,他应该得多少分?(满分100分,写出解题过程)23.(本题12分)某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1~10中的正整数).(1)如果他要打破记录,第7次射击不能少于多少环?(2)如果他第7次射击成绩为8环,那么最后3次射击中要有几次命中10环才能打破记录?(3)如果他第7次射击成绩为10环,那么最后3次射击中是否必须至少有一次命中10环才有可能打破记录?24.(本题12分)甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会和,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C 处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离(2)甲轮船后来的速度.25.(本题12分)如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒. (1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似?(3) 当t 为何值时,△APQ 的面积为524个平方单位?26.(本题14分)如图,直线y= -x+3与x轴,y轴分别相交于点B、C,经过B、C两点的抛物线与x轴的另一交点为A,顶点为P,且对称轴为直线x=2.(1)求A点的坐标;(2)求该抛物线的函数表达式;(3)连结AC.请问在x轴上是否存在点Q,使得以点P、B、Q为顶点的三角形与△ABC 相似,若存在,请求出点Q的坐标;若不存在,请说明理由.2009年中考模拟题 数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.D; 2.D ; 3.C ;4.C;5.C; 6.C ;7.B;8.C . 二、填空题(每小题3分,共24分)9.y=-x+2等; 10.x1=0,x2=5; 11.133; 12.90°; 13.227; 14.2115.90;16.π49三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.解:原式=222224222⨯⨯-⨯-+ -1 ...............4分 =822222--+ -1=-7 .............................6分18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭解:原式=)1(])1()1)(1(1[2-⨯--++x x x x ).............................4分 xx x x x x 211)1(]111[=++-=-⨯-++................................8分19.(1)证明: ∵E 为BC 的中点 ∴BE =CE ∵AB ∥CD∴∠BAE =∠F ∠B =∠FCE∴△ABE ≌△FCE .............................4分解:由(1)可得:△ABE≌△FCE∴CE=AB=15,CE=BE=8,AE=EF∵∠B=∠BCF=90°根据勾股定理得AE=17∴AF=34.............................8分20.解:原方程可化为|x|2-3|x|+2=0.............................3分∴(|x|-1)(|x|-2)=0∴|x|=1或|x|=2∴x=1,x=-1,x=2,x=-2 .............................10分四.(每小题10分,共20分)21.解:(1)矩形;(2)菱形,(3)正方形.............................6分(4)小青说的不正确如图,四边形ABCD中AC⊥BD,AC=BD,BO≠DO,E、F、G、H分别为AD、AB、BC、CD的中点显然四边形ABCD不是正方形但我们可以证明四边形ABCD是正方形(证明略)所以,小青的说法是错误的..............................10分22.解:(1)10分.............................2分(2)90分.............................4分(3)89分.............................6分(4)89×10%+90×30%+96×60%=93.5李刚的总评分应该是93.5分..............................10分23.小强和小亮的说法是错误的,小明的说法是正确的....................2分不妨设小明首先抽签,由树状图可知,共出现6种等可能的结果,其中小明、小亮、小强抽到A 签的情况都有两种,概率为31,同样,无论谁先抽签,他们三人抽到A 签的概率都是31.所以,小明的说法是正确的..............................12分24.解:(1)作BD ⊥AC 于点D由题意可知:AB =30×1=30,∠BAC =30°,∠BCA =45° 在Rt △ABD 中∵AB =30,∠BAC =30°∴BD =15,AD =ABcos30°=153 在Rt △BCD 中, ∵BD =15,∠BCD =45° ∴CD =15,BC =152 ∴AC =AD +CD =153+15即A 、C 间的距离为(153+15)海里.............................6分 (2)∵AC =153+15轮船乙从A 到C 的时间为1515315 =3+1由B 到C 的时间为3+1-1=3 ∵BC =152∴轮船甲从B 到C 的速度为3215=56(海里/小时)答:轮船甲从B到C的速度为56海里/小时..............................12分七、25.解:(1)老师说,三个同学中,只有一个同学的三句话都是错的,所以丙的第一句话和老师的话相矛盾,因此丙的第一句话是错的,同时也说明甲、乙两人中有一个人是全对的;............................2分(2)如果丙的第二句话是正确的,那么根据抛物线的对称性可知,此抛物线的对称轴是直线x=2,这样甲的第一句和乙的第一句就都错了,这样又和(1)中的判断相矛盾,所以乙的第二句话也是错的;根据老师的意见,丙的第三句也就是错的.也就是说,这条抛物线一定过点(-1,0);.............................6分(3)由甲乙的第一句话可以断定,抛物线的对称轴是直线x=1,抛物线经过(-1,0),那么抛物线与x轴的两个交点间的距离为4,所以乙的第三句话是错的;由上面的判断可知,此抛物线的顶点为(1,-8),且经过点(-1,0)设抛物线的解析式为:y=a(x-1)2-8∵抛物线过点(-1,0)∴0=a(-1-1)2-8解得:a=2∴抛物线的解析式为y=2(x-1)2-8即:y=2x2-4x-6.............................12分八、(本题14分)26.【探究】证明:过点F作GH∥AD,交AB于H,交DC的延长线于点G∵AH∥EF∥DG,AD∥GH∴四边形AHFE和四边形DEFG都是平行四边形∴FH=AE,FG=DE∵AE=DE∴FG=FH∵AB∥DG∴∠G=∠FHB,∠GCF=∠B∴△CFG≌△BFH2013年中考数学模拟试题和答案- 11 - / 11 ∴FC =FB .............................4分【知识应用】过点C 作CM ⊥x轴于点M ,过点A 作AN ⊥x轴于点N ,过点B 作BP ⊥x轴于点P则点P 的坐标为(x2,0),点N 的坐标为(x1,0)由探究的结论可知,MN =MP∴点M 的坐标为(221x x +,0) ∴点C 的横坐标为221x x + 同理可求点C 的纵坐标为221y y + ∴点C 的坐标为(221x x +,221y y +).............................8分 【知识拓展】 当AB 是平行四边形一条边,且点C 在x轴的正半轴时,AD 与BC 互相平分,设点C 的坐标为(a,0),点D 的坐标为(0,y)由上面的结论可知:-6+a=4+0,-1+0=5+b∴a=10,b=-6∴此时点C 的坐标为(10,0),点D 的坐标为(0,-6)同理,当AB 是平行四边形一条边,且点C 在x轴的负半轴时求得点C 的坐标为(-10,0),点D 的坐标为(0,6)当AB 是对角线时点C 的坐标为(-2,0),点D 的坐标为(0,4).............................14分。
2013年山东省聊城市中考数学模拟试卷(四)答案及解析
2013年山东省聊城市中考数学模拟试卷(四)一、选择题:(本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.)1. 下列运算中,结果正确的是( ) A.a 6÷a 3=a 2 B.(2ab 2)2=2a 2b 4 C.a ⋅a 2=a 3D.(a +b)2=a 2+b 22. 某市启动了历史上规模最大的轨道交通投资建设,预计某市轨道交通投资将达到51 800 000 000元人民币.将51 800 000 000用科学记数法表示正确的是( ) A.5.18×1010 B.51.8×109C.0.518×1011D.5.18×1083. 下面四个几何体中,左视图是四边形的几何体共有( )A.1个B.2个C.3个D.4个4. 为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:则关于这10户家庭的月用水量,下列说法错误的是( )A.中位数是5吨B.众数是5吨C.极差是3吨D.平均数是5.3吨5. 已知下列命题:①若a 2≠b 2,则a ≠b ;②垂直于弦的直径平分这条弦;③角平分线上的点到这个角的两边距离相等; ④平行四边形的对角线互相平分;⑤直角三角形斜边上的中线等于斜边的一半. 其中原命题与逆命题均为真命题的是( ) A.②③④ B.①②④C.③④⑤D.①③⑤6. 如图,一艘旅游船从A 点驶向C 点.旅游船先从A 点沿以D 为圆心的弧AB 行驶到B 点,然后从B 点沿直径行驶到圆D 上的C 点.假如旅游船在整个行驶过程中保持匀速,则下面各图中,能反映旅游船与D 点的距离随时间变化的图象大致是( )A.B.C. D.7. 如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD ,若BD =6,DF =4,则菱形ABCD 的边长为( )A.4√2 B.3√2C.5D.78. 如图,现有一圆心角为90∘,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( )A.4cmB.3cmC.2cmD.1cm二、填空题:(本大题共8小题,共32分,每小题填对得4分.)9的平方根是________.分解因式:x 2y −4xy +4y =________.解不等式组{x−(3x−2)≤41−2x4<1−x的解集为________.如图,△OPQ是边长为2的等边三角形,若正比例函数的图象过点P,则它的解析式是________.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC= 6,BC=8,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是________.已知两圆的圆心距d=8,两圆的半径长是方程x2−6x+5=0的两根,则这两圆的位置关系是________.如图,AB // CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72∘,则∠2=________.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性.若把第一个三角形数记为a1,第二个三角形数记为a2,…,第n个三角形数记为a n,计算a2−a1,a3−a2,a4−a3,…,由此推算,可知a100=________.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.先化简,再求值:(x+2x2−2x −x−1x2−4x+4)÷x2−16x2+4x,其中x=2+√2.有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字−2,−3和−4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x, y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=−x−2上的概率.在萧山区第二届汽车展期间,某汽车经销商推出A、B、C、D四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.由于电力紧张,某地决定对工厂实行“峰谷”用电.规定:在每天的8:00至22:00为“峰电”期,电价为a元/度;每天22:00至次日8:00为“谷电”期,电价为b元/度.下表为某厂4、5月份的用电量和电费的情况统计表:(1)若4月份“谷电”的用电量占当月总电量的13,5月份“峰电”的用电量占当月总用电量的34,求a 、b 的值; (2)若6月份该厂预计用电20万度,为将电费控制在10万元至10.6万元之间(不含10万元和10.6万元),那么该厂6月份在“谷电”的用电量占当月用电量的比例应在什么范围?如图,一次函数y =−12x −2的图象分别交x 轴、y 轴于A 、B 两点,P 为AB 的中点,PC ⊥x 轴于点C ,延长PC交反比例函数y =k x(x <0)的图象于点Q ,且tan ∠AOQ =12.(1)求k 的值;(2)连接OP 、AQ ,求证:四边形APOQ 是菱形.在一平直河岸l 同侧有A ,B 两个村庄,A ,B 到l 的距离分别是3km 和2km ,AB =akm(a >1).现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水.某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为d 1,且d 1=PB +BA(km)(其中BP ⊥l 于点P );图2是方案二的示意图,设该方案中管道长度为d 2,且d 2=PA +PB(km)(其中点A′与点A 关于l 对称,A′B 与l 交于点P ).观察计算:(1)在方案一中,d 1=________km (用含a 的式子表示);(2)在方案二中,组长小宇为了计算d 2的长,作了如图3所示的辅助线,请你按小宇同学的思路计算,d 2=________km (用含a 的式子表示). 探索归纳:(1)①当a =4时,比较大小:d 1________d 2(填“>”、“=”或“<”); ②当a =6时,比较大小:d 1________d 2(填“>”、“=”或“<”);(2)请你参考方法指导,就a (当a >1时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?方法指导:当不易直接比较两个正数m 与n 的大小时,可以对它们的平方进行比较: ∵ m 2−n 2=(m +n)(m −n),m +n >0, ∴ (m 2−n 2)与(m −n)的符号相同.当m 2−n 2>0时,m −n >0,即m >n ; 当m 2−n 2=0时,m −n =0,即m =n ; 当m 2−n 2<0时,m −n <0,即m <n .参考答案与试题解析2013年山东省聊城市中考数学模拟试卷(四)一、选择题:(本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.)1.【答案】C【考点】同底数幂的除法同底数幂的乘法幂的乘方与积的乘方完全平方公式【解析】根据同底数幂的除法、积的乘方、同底数幂的乘法、完全平方公式,对各选项分析判断后利用排除法求解.【解答】解:A、应为a6÷a3=a,故本选项错误;B、应为(2ab2)2=4a2b4,故本选项错误;C、a⋅a2=a3,正确;D、应为(a+b)2=a2+2ab+b2,故本选项错误;故选C.2.【答案】A【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:51800000000=5.18×1010.故选A.3.【答案】B【考点】简单几何体的三视图【解析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.【解答】因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体,4.【答案】C【考点】中位数众数方差加权平均数【解析】根据中位数的确定方法,将一组数据按大小顺序排列,位于最中间的两个的平均数或最中间一个数据是中位数,众数的定义是在一组数据中出现次数最多的就是众数,极差是一组数据中最大值与最小值的差,运用加权平均数求出即可.【解答】∵这10个数据是:4,4,4,5,5,5,5,6,6,9;∴中位数是:(5+5)÷2=5吨,故A正确;∴众数是:5吨,故B正确;∴极差是:9−4=5吨,故C错误;∴平均数是:(3×4+4×5+2×6+9)÷10=5.3吨,故D正确.5.【答案】C【考点】命题与定理【解析】根据是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①若a2≠b2,则a≠b,原命题是真命题,逆命题是假命题;②垂直于弦的直径平分这条弦,原命题与逆命题均为假命题;③角平分线上的点到这个角的两边距离相等,原命题与逆命题均为真命题;④平行四边形的对角线互相平分,原命题与逆命题均为真命题;⑤直角三角形斜边上的中线等于斜边的一半,原命题与逆命题均为真命题.故选C.6.【答案】B【考点】动点问题的解决方法【解析】根据实际情况采用排除法求解.【解答】解:当旅游船在弧AB上运动时,距离圆心的距离为半径,保持不变,排除C,D.当运动到直径BC上,到圆心D时,距离为0,排除A.故选B.7.【答案】D【考点】矩形的判定与性质勾股定理三角形中位线定理菱形的性质【解析】连接OM,求出OD、OM,由勾股定理求出OA、MD,由菱形ABCD,得到AC⊥BD,由勾股定理求出AD,再根据勾股定理即可求出答案.【解答】解:连接OM,∵BD=6,DF=4,∴OD=3,OF=OM=3+4=7,由勾股定理得:OA=MD=√OM2−OD2=2√10,∵菱形ABCD,∴AC⊥BD,由勾股定理得:AD=√OA2+OD2=√32+(2√10)2=7.故选D.8.【答案】C【考点】弧长的计算【解析】本题考查了圆锥的有关计算,圆锥的表面是由一个曲面和一个圆面围成的,圆锥的侧面展开在平面上,是一个扇形,计算圆锥侧面积时,通过求侧面展开图面积求得,侧面积公式是底面周长与母线乘积的一半,先求扇形的弧长,再求圆锥底面圆的半径,弧长:90π×8180=4π,圆锥底面圆的半径:r=4π2π=2(cm).【解答】解:弧长:90π×8180=4π,圆锥底面圆的半径:r=4π2π=2(cm).故选C.二、填空题:(本大题共8小题,共32分,每小题填对得4分.)【答案】±3【考点】平方根【解析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.【答案】y(x−2)2【考点】提公因式法与公式法的综合运用【解析】先提取公因式y,再对余下的多项式利用完全平方公式继续分解.【解答】x2y−4xy+4y,=y(x2−4x+4),=y(x−2)2.【答案】−1≤x<3【考点】解一元一次不等式组【解析】首先求出两个不等式的解集,然后根据大大取大,小小取小,大小小大中间找,大大小小解不了的口诀求出不等式组的解集.【解答】解:{x−(3x−2)≤4①1−2x4<1−x②,由①得:x≥−1,由②得:x<1.5,∴不等式组的解集为:−1≤x<1.5,故答案为:−1≤x<1.5.【答案】y=√3x【考点】待定系数法求正比例函数解析式等边三角形的判定方法【解析】过点P作PD⊥x轴于点D,由等边三角形的性质可知OD=12OQ=1,再根据勾股定理求出PD的长,故可得出P点坐标,再利用待定系数法求出直线OP的解析式即可.【解答】解:过点P作PD⊥x轴于点D,∵△OPQ是边长为2的等边三角形,∴OD=12OQ=12×2=1,在Rt△OPD中,∵OP=2,OD=1,∴PD=√OP2−OD2=√22−12=√3,∴P(1, √3),设直线OP的解析式为y=kx(k≠0),∴√3=k,∴直线OP的解析式为y=√3x.故答案为:y=√3x.【答案】247或4【考点】相似三角形的性质翻折变换(折叠问题)【解析】用圆锥的面周得圆锥的面半径根据圆锥的侧面积=周长×母线长÷2.【解答】解:∵面径是1cm,∴S=12×2π×44πc2.∴底面长是2,故答案为4πcm.【答案】外离【考点】圆与圆的位置关系解一元二次方程-因式分解法【解析】本题可先求出方程的根即两圆的半径R、r,再根据由数量关系来判断两圆位置关系的方法,确定两圆的位置关系.设两圆圆心距为P,两圆半径分别为R和r,且R≥r,则有:外离P>R+r;外切P=R+r;相交R−r<P<R+r;内切P=R−r;内含P<R−r.【解答】解:∵两圆半径的长分别为方程x2−6x+5=0的两根,∴两圆半径之和为6,又∵两圆的圆心距为8,6<8,∴两圆外离.故答案为:外离.【答案】54∘【考点】平行线的判定与性质角平分线的定义【解析】两直线平行,同旁内角互补,可求出∠FEB,再根据角平分线的性质,可得到∠BEG,然后用两直线平行,内错角相等求出∠2.【解答】解:∵AB // CD,∴∠BEF=180∘−∠1=180∘−72∘=108∘∠2=∠BEG,又∵EG平分∠BEF,∴∠BEG=12∠BEF=12×108∘=54∘故∠2=∠BEG=54∘.故答案为:54∘.【答案】5050【考点】规律型:数字的变化类【解析】先计算a2−a1=3−1=2;a3−a2=6−3=3;a4−a3=10−6=4,则a2=1+2,a3=1+2+3,a4=1+3+4,即第n个三角形数等于1到n的所有整数的和,然后计算n=100的a的值.【解答】解:∵a2−a1=3−1=2,a3−a2=6−3=3,a4−a3=10−6=4,…∴a2=1+2,a3=1+2+3,a4=1+2+3+4,…∴a100=1+2+3+4+...+100=5050.故答案为:5050.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.【答案】解:原式=[x+2x(x−2)−x−1(x−2)2]⋅x(x+4)(x+4)(x−4)=x−4x(x−2)2⋅xx−4=1(x−2)2,当x=2+√2时,原式=12.【考点】分式的化简求值【解析】先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.再把x的值代入求值.【解答】解:原式=[x+2x(x−2)−x−1(x−2)2]⋅x(x+4)(x+4)(x−4)=x−4x(x−2)2⋅xx−4=1(x−2)2,当x=2+√2时,原式=12.【答案】解:(1)画树状图得:∴点Q的所有可能坐标为:(1, −2),(1, −3),(1, −4),(2, −2),(2, −3),(2, −4);(2)点Q落在直线y=−x−2上的有(1, −3)与(2, −4),∴点Q落在直线y=−x−2上的概率为:26=13.【考点】列表法与树状图法一次函数图象上点的坐标特点【解析】(1)依据题意用列表法或画树状图法分析所有等可能的出现结果;(2)根据概率公式即可求出该事件的概率.【解答】解:(1)画树状图得:∴点Q的所有可能坐标为:(1, −2),(1, −3),(1, −4),(2, −2),(2, −3),(2, −4);(2)点Q落在直线y=−x−2上的有(1, −3)与(2, −4),∴点Q落在直线y=−x−2上的概率为:26=13.【答案】解:(1)∵1−35%−20%−20%=25%,∴1000×25%=250(辆).(2)如图,(1000×20%×50%=100).(3)四种型号轿车的成交率:A:168350×100%=48%;B:98200×100%=49%;C:50%;D:130250×100%=52%.∴D种型号的轿车销售情况最好.【考点】扇形统计图条形统计图【解析】(1)先求出D型号轿车所占的百分比,再利用总数1000辆即可求出答案;(2)利用C型号轿车销售的成交率为50%,求出C型号轿车的售出量,补充统计图即可;(3)分别求出各种型号轿车的成交率即可作出判断;【解答】解:(1)∵1−35%−20%−20%=25%,∴1000×25%=250(辆).(2)如图,(1000×20%×50%=100).(3)四种型号轿车的成交率:A:168350×100%=48%;B:98200×100%=49%;C:50%;D:130250×100%=52%.∴D种型号的轿车销售情况最好.【答案】证明:(1)连接AD.∵AB是⊙O的直径,∴∠ADB=90∘.又∵DC=BD,∴AD是BC的中垂线.∴AB=AC.(2)连接OD.∵OA=OB,CD=BD,∴OD // AC.∴∠ODE=∠CED.又∵DE⊥AC,∴∠CED=90∘.∴∠ODE=90∘,即OD⊥DE.∴DE是⊙O的切线.【考点】线段垂直平分线的性质切线的判定【解析】(1)连接AD,根据中垂线定理不难求得AB=AC;(2)要证DE为⊙O的切线,只要证明∠ODE=90∘即可.【解答】证明:(1)连接AD.∵AB是⊙O的直径,∴∠ADB=90∘.又∵DC=BD,∴AD是BC的中垂线.∴AB=AC.(2)连接OD.∵OA=OB,CD=BD,∴OD // AC.∴∠ODE=∠CED.又∵DE⊥AC,∴∠CED=90∘.∴∠ODE=90∘,即OD⊥DE.∴DE是⊙O的切线.【答案】峰电每度是0.6元,谷电每度是0.4元.(2)设6月份的“谷电”的用电量为x万度,则峰电的用电量为(20−x)万度,根据题意,得10<0.4x+0.6(20−x)<10.6,解得:7<x<10.故该厂6月份在“谷电”的用电量占当月用电量的比例应在大于7万度而小于10万度之间.【考点】一元一次不等式组的应用二元一次方程组的应用——行程问题【解析】(1)根据已知条件可以求出4月、5月的风点亮和谷电量,然后根据电费建立二元一次方程组就可以求出其值.(2)设6月份的“谷电”的用电量为x万度,则峰电的用电量为(20−x)万度,根据电费的控制范围建立不等式组求出其解就可以了.【解答】解:∵4月份“谷电”的用电量占当月总电量的13,∴4月的谷电用电量是:12×13=4(万度),∴4月的峰电用电量是:12−4=8(万度).∵5月份“峰电”的用电量占当月总用电量的34,∴ 5月的峰电用电量是:16×34=12(万度),∴ 5月的谷电用电量是:16−12=4(万度). ∴ 由题意,得 {8a +4b =6.412a +4b =8.8, 解得{a =0.6b =0.4.【答案】(1)解:∵ y =−12x −2令y =0,得x =−4,即A(−4, 0)由P 为AB 的中点,PC ⊥x 轴可知C 点坐标为(−2, 0) 又∵ tan ∠AOQ =12可知QC =1∴ Q 点坐标为(−2, 1)将Q 点坐标代入反比例函数得:1=k −2,∴ 可得k =−2;(2)证明:由(1)可知QC =PC =1,AC =CO =2,且A0⊥PQ ∴ 四边形APOQ 是菱形. 【考点】函数的综合性问题 菱形的判定【解析】(1)由一次函数解析式确定A 点坐标,进而确定C ,Q 的坐标,将Q 的坐标代入反比例函数关系式可求出k 的值.(2)由(1)可分别确定QC =CP ,AC =OC ,且QP 垂直平分AO ,故可证明四边形APOQ 是菱形. 【解答】(1)解:∵ y =−12x −2令y =0,得x =−4,即A(−4, 0)由P 为AB 的中点,PC ⊥x 轴可知C 点坐标为(−2, 0) 又∵ tan ∠AOQ =12可知QC =1 ∴ Q 点坐标为(−2, 1)将Q 点坐标代入反比例函数得:1=k−2,∴ 可得k =−2;(2)证明:由(1)可知QC =PC =1,AC =CO =2,且A0⊥PQ ∴ 四边形APOQ 是菱形. 【答案】 a +2√a 2+24,<,>【考点】轴对称——最短路线问题 【解析】 观察计算:(1)由题意可以得知管道长度为d 1=PB +BA(km),根据BP ⊥l 于点P 得出PB =2,故可以得出d 1的值为a +2.(2)由条件根据勾股定理可以求出KB 的值,由轴对称可以求出A′K 的值,在Rt △KBA′由勾股定理可以求出A′B 的值√a 2+24就是管道长度. 探索归纳:(1)①把a =4代入d 1=a +2和d 2=√a 2+24就可以比较其大小; ②把a =6代入d 1=a +2和d 2=√a 2+24就可以比较其大小;(2)分类进行讨论当d 1>d 2,d 1=d 2,d 1<d 2时就可以分别求出a 的范围,从而确定选择方案. 【解答】 解:(1)∵ BP ⊥l , ∴ BP =2, ∵ AB =a , ∴ d 1=a +2.(2)∵ 点A′与点A 关于l 对称, ∴ AA′=6, ∵ BK ⊥AA′,∴ AK =1,在Rt △ABK 中,由勾股定理,得: BK 2=a 2−1,在Rt △KBA′由勾股定理,得: A′B 2=25+a 2−1=a2+24. ∴ A′B =√a 2+24;探索归纳:(1)①当a =4时,d 1=6,d 2=2√10, ∵ 6<2√10, ∴ d 1<d 2.②当a =6时,d 1=8,d 2=2√15, ∵ 8>2√15, ∴ d 1>d 2.(2)∵ d 12−d 22=(a +2)2−(√a 2+24)2=4a −20, ∴ ①当4a −20>0,即a >5时,d 1>d 2; ∴ 选择方案二铺设管道较短.②当4a −20=0,a =5时,d 1=d 2; ∴ 选择方案一、二铺设管道一样长; ③当4a −20<0,即a <5时,d 1<d 2. ∴ 选择方案一铺设管道较短. 综上可知:当a >5时,选方案二; 当a =5时,选方案一或方案二; 当1<a <5 时,选方案一.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013中考数学较难典型选择题模拟(4)
1.在正方体的表面上画有如图⑴中所示的粗线,图⑵是其展开图的示意图,但只在A 面上画有粗线,那么将图⑴中剩余两个面中的粗线画入图⑵中,画法正确的是( )
2.若m 、n (m<n )是关于x 的方程1()()0x a x b ---=的两根,且a < b , 则a 、b 、m 、n 的大小关系是( )
A. m < a < b< n
B. a < m < n < b
C. a < m < b< n
D. m < a < n < b 3.右图是一个正方体的平面展开图,这个正方体是( )
4.若正方形网格中的每个小正方形的边长都是1,则把每个小格的顶点叫做格点.现有一
个表面积为12的正方体,沿着一些棱将它剪开,展成以格点为顶点的平面图形,下列四个图形中,能满足题意的是( )
D
C B A
5.将左图中的正方体纸盒沿所示的粗线..
剪开,其平面展开图的示意图为( )
纸 盒裁剪线
A B C D
6.将一正方体纸盒沿下右图所示
的粗实线剪开,展开成平面图, 其展开图的形状为( ).
A . B.
C.
D.
纸盒剪裁线
正方体纸盒
A .
B .
C .
D .
D
C
B
A
M'M
M
M
M
P
P
P P
N'
N
N
N'
N
N'
N
N'
P'P'
P'
P'
图2N M
P
7.右图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是( )
8.如图,已知MN 是圆柱底面的直径,NP 是圆柱的高, 在圆柱的侧面上,点M 、P 嵌有一圈路径最短的金属丝 ,现将圆柱侧面沿NP 剪开,所得的侧面展开图是( )
9. 右图需再添上一个面,折叠后才能围成一个正方体,下面 是四位同学补画的情况(图中阴影部分),其中正确的是( ) A . B. C. D. 10. 如图,边长为2的正方体中,一只蚂蚁从正方体下方一边
AB 的中点P 出发,沿着正方体的外表面爬到其一顶点C ′ 处的最短路径是( )
A .13
B .23
C .25
D .42 11. 如图,在直角梯形ABCD 中,AD ∥BC ,90C ∠=,
6cm CD =,AD =2cm ,动点P 、Q 同时从点B 出发,点P
沿BA 、AD 、DC 运动到点C 停止,点Q 沿BC 运动到C 点停止,
两点运动时的速度都是1cm/s ,而当点P 到达点A 时,点Q (第11题) 正好到达点C .设P 点运动的时间为(s)t ,BPQ △的面积为 y 2
(cm ). 下图中能正确表示整个运动中
y 关于t 的函数关系的大致图象是( )
P
Q A
D
C
B
A .
B .
C .
D .
12. 如图1 ,在直角梯形ABCD 中,∠B=90°,DC ∥AB ,动点P 从B 点出发,沿梯形的边由B C D A 运动,设点P 运动的路程为x ,△ABP 的面积为y , 如果关于x 的函数y 的图象如图2所示 ,那么△ABC 的面积为( ) A .32
B .18
C .16
D .10
13.右图是画有一条对角线的平行四边形
纸片ABCD ,用此纸片可以围成一个 无上下底面的三棱柱纸筒, 则所围成 的三棱柱纸筒可能是 ( )
A B C D
14.任何一个正整数n 都可以进行这样的分解:q p n ⨯=(q
p 、A
D
B (
C )
A (D )
A (D )
B (
C )
A (D )
B (
C )
A (D )
B (
C )
F E
G
A
B
D
C
B
A 是正整数,且q p ≤),如果p q ⨯在n 的所有这种分解中两因数之差的绝对值最小,我们就称p q ⨯是n 的最佳分解,并规定:()p
F n q
=
.例如18可以分解成118⨯、29⨯或36⨯,这时就有31(18)62F =
=.给出下列关于()F n 的说法:(1)1(2)2F =;(2)3(24)8
F =;(3)(27)3F =;(4)若n 是一个完全平方数,则()1F n =.其中正确说法的个数是 ( )
A.1 B.2 C.3 D.4
15.已知,如图是一个封闭的正方形纸盒,E 是CD 中点,F 是CE 中点,一只蚂蚁从一个顶点A 爬到另一个顶点G ,那么这只蚂蚁爬行的最短路线是( )
A .A —
B —
C —G B .A —C —G
C .A —E —G
D .A —F —G
16.如图,是一个棱长为2的正方体,一只蜘蛛在
顶点A 处,一只小昆虫在顶点B 处,则蜘蛛接近小昆虫时 所爬行的最短路线的长是 ( ) A .6 B .2+22 C .23 D .25
17.如图1,是用边长为2cm 的正方形和边长为2cm 正三角形硬纸片拼成的五边形ABCDE .在桌面上由图1起始位置将图片沿直线l 不滑行地翻滚,翻滚一周后到图2的位置. 则由点A 到点4A 所走路径的长度为( )
A .
310πcm B .()
3
238π
+ cm C .3212πcm D .313π cm 18.如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是( ) A 3 B 2 C 5 D 6
参考答案
1. A
2. A
3. D
4. A
5. C
6. A
7. B
8. A
9. B
10.A
11.B
12.C
13.C
14.B
15.C
16.D
17.B
18.C。