2019-2020年中考数学考点专题汇总试卷详解:选择题难题

合集下载

2019-2020年中考数学试卷(解析版)

2019-2020年中考数学试卷(解析版)

2019-2020年中考数学试卷(解析版)一、选择题(共10小题,每小题3分,满分30分)1.下列图形中,是中心对称图形的是()A.B. C.D.【考点】中心对称图形.【分析】根据中心对称图形的特点即可求解.【解答】解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:A.【点评】本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.在1,﹣2,0,这四个数中,最大的数是()A.﹣2 B.0 C.D.1【考点】有理数大小比较.【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得﹣2<0<1<.最大的数是,故选:C.【点评】本题考查了有理数的大小比较,注意两个负数比较大小,绝对值大的数反而小.3.在数轴上表示不等式x﹣1<0的解集,正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】解不等式x﹣1<0得:x<1,即可解答.【解答】解:x﹣1<0解得:x<1,故选:C.【点评】本题考查了在数轴上表示不等式的解集,解决本题的关键是解不等式.4.下列根式中是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、=,故此选项错误;B、是最简二次根式,故此选项正确;C、=3,故此选项错误;D、=2,故此选项错误;故选:B.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.5.已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据y轴的负半轴上点的横坐标等于零,纵坐标小于零,可得m的值,根据不等式的性质,可得到答案.【解答】解:由点P(0,m)在y轴的负半轴上,得m<0.由不等式的性质,得﹣m>0,﹣m+1>1,则点M(﹣m,﹣m+1)在第一象限,故选:A.【点评】本题考查了点的坐标,利用点的坐标得出不等式是解题关键.6.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.54°C.66°D.56°【考点】平行线的性质.【分析】根据平行线的性质得到∠D=∠1=34°,由垂直的定义得到∠DEC=90°,根据三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选D.【点评】本题考查了平行线的性质,三角形的内角和,熟记平行线的性质定理是解题的关键.7.如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:2【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵两个相似三角形的面积比是1:4,∴两个相似三角形的相似比是1:2,∴两个相似三角形的周长比是1:2,故选:D.【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方是解题的关键.8.某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】根据题意可知现在每天生产x+50台机器,而现在生产800台所需时间和原计划生产600台机器所用时间相等,从而列出方程即可.【解答】解:设原计划平均每天生产x台机器,根据题意得:=,故选:A.【点评】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.9.若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.30【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用完全平方公式,平方差公式化简,去括号整理后,将已知等式代入计算即可求出值.【解答】解:∵x2+4x﹣4=0,即x2+4x=4,∴原式=3(x2﹣4x+4)﹣6(x2﹣1)=3x2﹣12x+12﹣6x2+6=﹣3x2﹣12x+18=﹣3(x2+4x)+18=﹣12+18=6.故选B【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.10.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C 的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】过A点作AH⊥BC于H,利用等腰直角三角形的性质得到∠B=∠C=45°,BH=CH=AH=BC=2,分类讨论:当0≤x≤2时,如图1,易得PD=BD=x,根据三角形面积公式得到y=x2;当2<x≤4时,如图2,易得PD=CD=4﹣x,根据三角形面积公式得到y=﹣x2+2x,于是可判断当0≤x≤2时,y与x的函数关系的图象为开口向上的抛物线的一部分,当2<x≤4时,y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.【解答】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=x2;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=﹣x2+2x,故选B【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.二、填空题(共8小题,每小题4分,满分32分)11.因式分解:2a2﹣8=2(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.计算:(﹣5a4)•(﹣8ab2)=40a5b2.【考点】单项式乘单项式.【分析】直接利用单项式乘以单项式运算法则求出答案.【解答】解:(﹣5a4)•(﹣8ab2)=40a5b2.故答案为:40a5b2.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.13.如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是.【考点】解直角三角形;坐标与图形性质.【分析】过点A作AB⊥x轴于B,根据正切等于对边比邻边列式求解即可.【解答】解:过点A作AB⊥x轴于B,∵点A(3,t)在第一象限,∴AB=t,OB=3,又∵tanα===,∴t=.故答案为:.【点评】本题考查了锐角三角函数的定义,过点A作x轴的垂线,构造出直角三角形是利用正切列式的关键,需要熟记正切=对边:邻边.14.如果单项式2x m+2n y n﹣2m+2与x5y7是同类项,那么n m的值是.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程组,求出n,m的值,再代入代数式计算即可.【解答】解:根据题意得:,解得:,则n m=3﹣1=.故答案是.【点评】本题考查同类项的定义、方程思想,是一道基础题,比较容易解答.15.三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为12.【考点】一元二次方程的解;三角形三边关系.【专题】计算题.【分析】先利用因式分解法解方程得到x1=5,x2=8,再根据三角形三边的关系确定三角形第三边的长为5,然后计算三角形的周长.【解答】解:x2﹣13x+40=0,(x﹣5)(x﹣8)=0,所以x1=5,x2=8,而三角形的两边长分别是3和4,所以三角形第三边的长为5,所以三角形的周长为3+4+5=12.故答案为12.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.如图,在⊙O中,弦AC=2,点B是圆上一点,且∠ABC=45°,则⊙O的半径R=.【考点】圆周角定理;勾股定理.【专题】与圆有关的计算.【分析】通过∠ABC=45°,可得出∠AOC=90°,根据OA=OC就可以结合勾股定理求出AC 的长了.【解答】解:∵∠ABC=45°,∴∠AOC=90°,∵OA=OC=R,∴R2+R2=2,解得R=.故答案为:.【点评】本题考查了圆周角定理、勾股定理,解题的关键是通过圆周角定理得到∠AOC的度数.17.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC=6cm.【考点】翻折变换(折叠问题).【分析】延长原矩形的边,然后根据两直线平行,内错角相等可得∠1=∠ACB,根据翻折变换的性质可得∠1=∠ABC,从而得到∠ABC=∠ACB,再根据等角对等边可得AC=AB,从而得解.【解答】解:如图,延长原矩形的边,∵矩形的对边平行,∴∠1=∠ACB,由翻折变换的性质得,∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=6cm,∴AC=6cm.故答案为:6.【点评】本题考查了翻折变换的性质,平行线的性质,等腰三角形的判定,熟记各性质是解题的关键,难点在于作出辅助线.18.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2,…第n个三角形数记为x n,则x n+x n+1=(n+1)2.【考点】规律型:数字的变化类.【分析】根据三角形数得到x1=1,x2=3=1+2,x3=6=1+2+3,x4=10=1+2+3+4,x5=15=1+2+3+4+5,即三角形数为从1到它的顺号数之间所有整数的和,即x n=1+2+3+…+n=、x n+1=,然后计算x n+x n+1可得.【解答】解:∵x1=1,x2═3=1+2,x3=6=1+2+3,x4═10=1+2+3+4,x5═15=1+2+3+4+5,…∴x n=1+2+3+…+n=,x n+1=,则x n+x n+1=+=(n+1)2,故答案为:(n+1)2.【点评】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.三、解答题(共5小题,满分38分)19.(6分)计算:()﹣2﹣|﹣1+|+2sin60°+(﹣1﹣)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及负整数指数幂、绝对值、特殊角的三角函数值、零指数幂、二次根式化简5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:()﹣2﹣|﹣1+|+2sin60°+(﹣1﹣)0=4+1﹣+2×+1=4+1﹣++1=6.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、绝对值、特殊角的三角函数值、零指数幂、二次根式等考点的运算.20.(6分)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(1,4)均在正方形网格的格点上.(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)将△A1B1C1沿x轴方向向左平移3个单位后得到△A2B2C2,写出顶点A2,B2,C2的坐标.【考点】作图-轴对称变换;作图-平移变换.【分析】(1)直接利用关于x轴对称点的性质得出各对应点位置进而得出答案;(2)直接利用平移的性质得出各对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,点A2(﹣3,﹣1),B2(0,﹣2),C2(﹣2,﹣4).【点评】此题主要考查了轴对称变换和平移变换,根据题意得出对应点位置是解题关键.21.(8分)已知关于x的方程x2+mx+m﹣2=0.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.【考点】根的判别式;一元二次方程的解.【分析】(1)直接把x=1代入方程x2+mx+m﹣2=0求出m的值;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.【解答】解:(1)根据题意,将x=1代入方程x2+mx+m﹣2=0,得:1+m+m﹣2=0,解得:m=;(2)∵△=m2﹣4×1×(m﹣2)=m2﹣4m+8=(m﹣2)2+4>0,∴不论m取何实数,该方程都有两个不相等的实数根.【点评】此题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.22.(8分)图①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON位置运动到与地面垂直的OM位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)(1)求AB的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N点运动到M点的路径的长度.(结果保留π)【考点】解直角三角形的应用;弧长的计算.【分析】(1)过B作BE⊥AC于E,求出AE,解直角三角形求出AB即可;(2)求出∠MON的度数,根据弧长公式求出即可.【解答】解:(1)过B作BE⊥AC于E,则AE=AC﹣BD=0.66米﹣0.26米=0.4米,∠AEB=90°,AB==≈1.17(米);(2)∠MON=90°+20°=110°,所以的长度是=π(米).【点评】本题考查了弧长公式,解直角三角形的应用,能把实际问题转化成数学问题是解此题的关键.23.(10分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).(1)请你用画树状图或列表的方法,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣的图象上的概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),直接利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则点M所有可能的坐标为:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)∵点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),∴点M(x,y)在函数y=﹣的图象上的概率为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(共5小题,满分50分)24.(8分)2016年《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)条形统计图中,m=60,n=90;(3)扇形统计图中,热词B所在扇形的圆心角是多少度?【考点】条形统计图;扇形统计图.【分析】(1)根据A的人数为105人,所占的百分比为35%,求出总人数,即可解答;(2)C所对应的人数为:总人数×30%,B所对应的人数为:总人数﹣A所对应的人数﹣C 所对应的人数﹣D所对应的人数,即可解答;(3)根据B所占的百分比×360°,即可解答.【解答】解:(1)105÷35%=300(人),答:一共调查了300名同学,(2)n=300×30%=90(人),m=300﹣105﹣90﹣45=60(人).故答案为:60,90;(3)×360°=72°.答:扇形统计图中,热词B所在扇形的圆心角是72度.【点评】本题考查条形统计图与扇形统计图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25.(10分)如图,函数y1=﹣x+4的图象与函数y2=(x>0)的图象交于A(m,1),B(1,n)两点.(1)求k,m,n的值;(2)利用图象写出当x≥1时,y1和y2的大小关系.【考点】反比例函数与一次函数的交点问题.【专题】计算题;数形结合.【分析】(1)把A与B坐标代入一次函数解析式求出m与a的值,确定出A与B坐标,将A坐标代入反比例解析式求出k的值即可;(2)根据B的坐标,分x=1或x=3,1<x<3与x>3三种情况判断出y1和y2的大小关系即可.【解答】解:(1)把A(m,1)代入一次函数解析式得:1=﹣m+4,即m=3,∴A(3,1),把A(3,1)代入反比例解析式得:k=3,把B(1,n)代入一次函数解析式得:n=﹣1+4=3;(2)∵A(3,1),B(1,3),∴由图象得:当1<x<3时,y1>y2;当x>3时,y1<y2;当x=1或x=3时,y1=y2.【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.26.(10分)如图,已知EC∥AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形;(2)求证:OA2=OE•OF.【考点】相似三角形的判定与性质;平行四边形的判定与性质.【专题】证明题.【分析】(1)由EC∥AB,∠EDA=∠ABF,可证得∠DAB=∠ABF,即可证得AD∥BC,则得四边形ABCD为平行四边形;(2)由EC∥AB,可得=,由AD∥BC,可得=,等量代换得出=,即OA2=OE•OF.【解答】证明:(1)∵EC∥AB,∴∠EDA=∠DAB,∵∠EDA=∠ABF,∴∠DAB=∠ABF,∴AD∥BC,∵DC∥AB,∴四边形ABCD为平行四边形;(2)∵EC∥AB,∴△OAB∽△OED,∴=,∵AD∥BC,∴△OBF∽△ODA,∴=,∴=,∴OA2=OE•OF.【点评】此题考查了相似三角形的判定与性质,平行四边形的判定,平行线的性质,解题时要注意识图,灵活应用数形结合思想.27.(10分)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点.(1)求证:AB是⊙O的直径;(2)判断DE与⊙O的位置关系,并加以证明;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.【考点】圆的综合题.【专题】综合题;圆的有关概念及性质.【分析】(1)连接AD,由AB=AC,BD=CD,利用等腰三角形三线合一性质得到AD⊥BC,利用90°的圆周角所对的弦为直径即可得证;(2)DE与圆O相切,理由为:连接OD,由O、D分别为AB、CB中点,利用中位线定理得到OD与AC平行,利用两直线平行内错角相等得到∠ODE为直角,再由OD为半径,即可得证;(3)由AB=AC,且∠BAC=60°,得到三角形ABC为等边三角形,连接BF,DE为三角形CBF中位线,求出BF的长,即可确定出DE的长.【解答】(1)证明:连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB为圆O的直径;(2)DE与圆O相切,理由为:证明:连接OD,∵O、D分别为AB、BC的中点,∴OD为△ABC的中位线,∴OD∥BC,∵DE⊥BC,∴DE⊥OD,∵OD为圆的半径,∴DE与圆O相切;(3)解:∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=AC=BC=6,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90°,∴AF=CF=3,DE∥BF,∵D为BC中点,∴E为CF中点,即DE为△BCF中位线,在Rt△ABF中,AB=6,AF=3,根据勾股定理得:BF==3,则DE=BF=.【点评】此题属于圆的综合题,涉及的知识有:直线与圆相切的判定与性质,圆周角定理,等腰三角形的性质,等边三角形的性质,以及平行线的性质,熟练掌握定理及性质是解本题的关键.28.(12分)如图,已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.(1)求此抛物线的解析式和直线AB的解析式;(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.【考点】二次函数综合题.【分析】(1)用待定系数法求出抛物线,直线解析式;(2)分两种情况进行计算即可;(3)确定出面积达到最大时,直线PC和抛物线相交于唯一点,从而确定出直线PC解析式为y=﹣x+,根据锐角三角函数求出BD,计算即可.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点,∴,∴,∴y=﹣x2+2x+3,设直线AB的解析式为y=kx+n,∴,∴y=﹣x+3;(2)由运动得,OE=t,AF=t,∴AE=OA﹣OE=3﹣t,∵△AEF为直角三角形,∴①△AOB∽△AEF,∴,∴,∴t=,②△AOB∽△AFE,∴,∴,∴t=;(3)如图,存在,过点P作PC∥AB交y轴于C,∵直线AB解析式为y=﹣x+3,∴设直线PC解析式为y=﹣x+b,联立,∴﹣x+b=﹣x2+2x+3,∴x2﹣3x+b﹣3=0∴△=9﹣4(b﹣3)=0∴b=,∴BC=﹣3=,x=,过点B作BD⊥PC,∴直线BD解析式为y=x+3,∴BD=,∴BD=,∵AB=3S最大=AB×BD=×3×=.即:存在面积最大,最大是,此时点P(,).【点评】此题是二次函数综合题,主要考查了待定系数法求函数解析式,相似三角形的性质和判定,平行线的解析式的确定方法,互相垂直的直线解析式的确定方法,解本题的关键是确定出△PAB面积最大时点P的特点.。

2019-2020年中考数学试题真题含考点分类汇编详解

2019-2020年中考数学试题真题含考点分类汇编详解

2019-2020年中考数学试题真题含考点分类汇编详解参考公式:二次函数)0(2≠++=a c bc ax y 图象的顶点坐标是(ab2-,a b ac 442-)一、选择题(本题有10小题,每小题3分,共30分) 1. -2的倒数是A. 21-B. 21C. -2D. 2 2. 下图是由四个相同的小立方块搭成的几何体,它的主视图是3. 下列计算正确的是A. ab b a 22=+B. 22)(a a =- C. 326a a a =÷ D. 623a a a =⋅4. 据调查,某班20位女同学所穿鞋子的尺码如下表所示,则鞋子尺码的众数和中位数分别是A. 35码,35码B. 35码,36码C. 36码,35码D. 36码,36码5. 如图,AB ∥CD ,∠A=70°,∠C=40°,则∠E 等于A. 30°B. 40°C. 60°D. 70° 6. 二元一次方程组⎩⎨⎧-=-=+236y x y x 的解是A. ⎩⎨⎧==15y x B.⎩⎨⎧==24y x C. ⎩⎨⎧-=-=15y x D. ⎩⎨⎧-=-=24y x7. 下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P 作已知直线的垂线。

则对应作法错误..的是A. ①B. ②C. ③D. ④8. 如图,在直角坐标系中,点A 在函数)0(4>=x xy 的图象上,AB ⊥x 轴于点B ,AB 的垂直平分线与y 轴交于点C ,与函数)0(4>=x xy 的图象交于点D 。

连结AC ,CB ,BD ,DA ,则四边形ACBD 的面积等于A. 2B. 32C. 4D. 34 9. 如图,矩形纸片ABCD 中,AB=4,BC=6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于A. 53B. 35C. 37D.4510. 运用图形变化的方法研究下列问题:如图,AB 是⊙O 的直径,CD ,EF 是⊙O 的弦,且AB ∥CD ∥EF ,AB=10,CD=6,EF=8。

2019-2020中考数学试题含答案

2019-2020中考数学试题含答案

2019-2020中考数学试题含答案一、选择题1.已知一个正多边形的内角是140°,则这个正多边形的边数是( ) A .9 B .8 C .7 D .6 2.若一个凸多边形的内角和为720°,则这个多边形的边数为( ) A .4B .5C .6D .73.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =4.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=-B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y ==5.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O e 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭C .()()222323m n ++= D .()222349m n ++=6.51-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请51的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间 C .在1.3和1.4之间D .在1.4和1.5之间7.如图,长宽高分别为2,1,1的长方体木块上有一只小虫从顶点A 出发沿着长方体的外表面爬到顶点B ,则它爬行的最短路程是( )A .10B .5C .22D .38.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )A .5B .6C .7D .89.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .10.如果,则a 的取值范围是( ) A .B .C .D .11.如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S 的值为( )A .24B .12C .6D .3 12.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为A .2B .3C .4D .5二、填空题13.中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 . 14.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是_____.15.如图,在平面直角坐标系xOy中,函数y=kx(k>0,x>0)的图象经过菱形OACD的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为_____.16.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.17.已知反比例函数的图象经过点(m,6)和(﹣2,3),则m的值为________.18.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是19.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD =∠MAP+∠PAB,则AP=_____.20.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是.三、解答题21.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y1(元/件),销量y2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量).(1)求y1与y2的函数解析式.(2)求每天的销售利润W与x的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?22.为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m 3污水所用的时间比现在多用10小时. (1)原来每小时处理污水量是多少m 2?(2)若用新设备处理污水960m 3,需要多长时间?23.如图,在四边形ABCD 中,AB DC P ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.24.(12分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A 型车2015年6月份销售总额为3.2万元,今年经过改造升级后A 型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A 型车数量相同,则今年6月份A 型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A 型车每辆销售价多少元?(用列方程的方法解答)(2)该车行计划7月份新进一批A 型车和B 型车共50辆,且B 型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多? A 、B 两种型号车的进货和销售价格如下表:A 型车B 型车 进货价格(元/辆) 1100 1400销售价格(元/辆)今年的销售价格240025.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB,GH的交点B的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.2.C解析:C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.3.C解析:C 【解析】 【分析】分别计算出各项的结果,再进行判断即可. 【详解】A.2222a a a +=,故原选项错误;B. 322223x x y xy x y xy y ++---,故原选项错误;C. 3412()a a =,计算正确;D. 222()ab a b =,故原选项错误. 故选C 【点睛】本题主要考查了合并同类项,同底数幂的乘法,幂的乘方以及积的乘方,熟练掌握运算法则是解题的关键.4.A解析:A 【解析】 【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组. 【详解】设索长为x 尺,竿子长为y 尺,根据题意得:5152x y x y =+⎧⎪⎨=-⎪⎩.故选A . 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.D解析:D 【解析】 【分析】根据中点坐标公式求得点B 的坐标,然后代入,a b 满足的等式进行求解即可. 【详解】∵点()30A -,,点(),P a b ,点(),B m n 为弦PA 的中点, ∴32a m -+=,02b n +=, ∴23,2a m b n =+=,又,a b 满足等式:229a b +=, ∴()222349m n ++=, 故选D . 【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式.6.B解析:B 【解析】 【分析】根据4.84<5<5.29,可得答案. 【详解】 ∵4.84<5<5.29,∴,∴, 故选B . 【点睛】是解题关键.7.C解析:C 【解析】 【分析】蚂蚁有两种爬法,就是把正视和俯视(或正视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短路程. 【详解】如图所示,路径一:AB ==路径二:AB ==∵ 故选C .【点睛】本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.8.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径,根据三角形中位线定理计算即可.【详解】解:∵半径OC垂直于弦AB,∴AD=DB=12AB=7在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+(7 )2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键9.D解析:D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.10.B解析:B【解析】试题分析:根据二次根式的性质1可知:,即故答案为B..考点:二次根式的性质.11.B解析:B【解析】【分析】【详解】过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=12 BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=12S S =12.故选B.12.D解析:D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选D.二、填空题13.6×106【解析】【分析】【详解】将9600000用科学记数法表示为96×106故答案为96×106解析:6×106.【解析】【分析】【详解】将9600000用科学记数法表示为9.6×106.故答案为9.6×106.14.18【解析】【分析】根据三角形中位线定理得到AC=2DE=5AC∥DE根据勾股定理的逆定理得到∠ACB=90°根据线段垂直平分线的性质得到DC=BD根据三角形的周长公式计算即可【详解】∵DE分别是A解析:18【解析】【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.【详解】∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,故答案为18.【点睛】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.15.【解析】【分析】过D作DQ⊥x轴于Q过C作CM⊥x轴于M过E作EF⊥x 轴于F设D点的坐标为(ab)求出CE的坐标代入函数解析式求出a再根据勾股定理求出b即可请求出答案【详解】如图过D作DQ⊥x轴于Q解析:【解析】【分析】过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),求出C、E的坐标,代入函数解析式,求出a,再根据勾股定理求出b,即可请求出答案.【详解】如图,过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),则C点的坐标为(a+3,b),∵E为AC的中点,∴EF=12CM=12b,AF=12AM=12OQ=12a,E点的坐标为(3+12a,12b),把D、E的坐标代入y=kx得:k=ab=(3+12a)12b,解得:a=2,在Rt△DQO中,由勾股定理得:a2+b2=32,即22+b2=9,解得:5∴5故答案为5【点睛】本题考查了勾股定理、反比例函数图象上点的坐标特征、菱形的性质等,得出关于a、b的方程是解此题的关键.16.2【解析】【分析】设这个圆锥的底面圆的半径为R根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R由题意:2πR=解得R=2故答案为2解析:2【解析】【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.【详解】设这个圆锥的底面圆的半径为R,由题意:2πR=1804 180π⨯,解得R=2.故答案为2.17.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1 解析:-1【解析】试题分析:根据待定系数法可由(-2,3)代入y=kx,可得k=-6,然后可得反比例函数的解析式为y=-6x,代入点(m,6)可得m=-1.故答案为:-1.18.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式解析:k≥,且k≠0【解析】试题解析:∵a=k,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥0,解得:k≥-,∵原方程是一元二次方程,∴k≠0.考点:根的判别式.19.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM 是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到2,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到2AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴2,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴2AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.20.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF解析:.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.三、解答题21.(1)y2与x的函数关系式为y2=-2x+200(1≤x<90);(2)W=22x180x2?000(1x50),120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)销售这种文化衫的第45天,销售利润最大,最大利润是6050元.【解析】【分析】(1)待定系数法分别求解可得;(2)根据:销售利润=(售价-成本)×销量,分1≤x<50、50≤x<90两种情况分别列函数关系式可得;(3)当1≤x<50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x<90时,依据一次函数性质可得最值情况,比较后可得答案.【详解】(1)当1≤x<50时,设y1=kx+b,将(1,41),(50,90)代入,得k b41,50k b90,+=⎧⎨+=⎩解得k1,b40,=⎧⎨=⎩∴y1=x+40,当50≤x<90时,y1=90,故y 1与x 的函数解析式为y 1=x 40(1x 50),90(50x 90);+≤<⎧⎨≤<⎩ 设y 2与x 的函数解析式为y 2=mx+n(1≤x<90),将(50,100),(90,20)代入,得50m n 100,90m n 20,+=⎧⎨+=⎩解得:m 2,n 200,=-⎧⎨=⎩故y 2与x 的函数关系式为y 2=-2x+200(1≤x<90).(2)由(1)知,当1≤x<50时,W=(x+40-30)(-2x+200)=-2x 2+180x+2000;当50≤x<90时,W=(90-30)(-2x+200)=-120x+12000;综上,W=22x 180x 2?000(1x 50),120?x 12?000(50x 90).⎧-++≤<⎨-+≤<⎩ (3)当1≤x<50时,∵W=-2x 2+180x+2000=-2(x-45)2+6050,∴当x=45时,W 取得最大值,最大值为6050元;当50≤x<90时,W=-120x+12000,∵-120<0,W 随x 的增大而减小,∴当x=50时,W 取得最大值,最大值为6000元;综上,当x=45时,W 取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.22.(1)原来每小时处理污水量是40m 2;(2)需要16小时.【解析】试题分析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2,根据原来处理1200m 3污水所用的时间比现在多用10小时这个等量关系,列出方程求解即可. ()2根据()960 1.54016÷⨯=即可求出.试题解析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2, 根据题意得:1200120010,1.5x x-= 去分母得:1800120015x ,-= 解得:40x =,经检验40x = 是分式方程的解,且符合题意,则原来每小时处理污水量是40m 2;(2)根据题意得:()960 1.54016÷⨯=(小时),则需要16小时.23.(1)证明见解析;(2)2.【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出222OA AB OB =-=.根据直角三角形斜边的中线等于斜边的一半即可求解.详解:(1)证明:∵AB ∥CD ,∴CAB ACD ∠=∠∵AC 平分BAD ∠∴CAB CAD ∠=∠,∴CAD ACD ∠=∠∴AD CD =又∵AD AB =∴AB CD =又∵AB ∥CD ,∴四边形ABCD 是平行四边形又∵AB AD =∴ABCD Y 是菱形 (2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==. 在Rt AOB V 中,90AOB ∠=︒.∴222OA AB OB =-=.∵CE AB ⊥,∴90AEC ∠=︒.在Rt AEC V 中,90AEC ∠=︒.O 为AC 中点.∴122OE AC OA ===. 点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.24.(1)2000;(2)A 型车17辆,B 型车33辆【解析】试题分析:(1)设去年A 型车每辆x 元,那么今年每辆(x+400)元,列出方程即可解决问题.(2)设今年7月份进A 型车m 辆,则B 型车(50﹣m )辆,获得的总利润为y 元,先求出m 的范围,构建一次函数,利用函数性质解决问题.试题解析:(1)设去年A 型车每辆x 元,那么今年每辆(x+400)元,根据题意得, 解之得x=1600, 经检验,x=1600是方程的解.答:今年A 型车每辆2000元.(2)设今年7月份进A 型车m 辆,则B 型车(50﹣m )辆,获得的总利润为y 元,根据题意得50﹣m≤2m解之得m≥, ∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m )=﹣100m+50000, ∴y 随m 的增大而减小, ∴当m=17时,可以获得最大利润.答:进货方案是A 型车17辆,B 型车33辆.考点:(1)一次函数的应用;(2)分式方程25.(1)小聪上午7:30从飞瀑出发;(2)点B 的实际意义是当小慧出发1.5 h 时,小慧与小聪相遇,且离宾馆的路程为30 km.;(3)小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他11:00遇见小慧.【解析】【分析】(1)由时间=路程÷速度,可得小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时),从10点往前推2.5小时,即可解答;(2)先求GH 的解析式,当s=30时,求出t 的值,即可确定点B 的坐标;(3)根据50÷30=53(小时)=1小时40分钟,确定当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣)=50,解得:x=1,10+1=11点,即可解答.【详解】(1)小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时), ∵上午10:00小聪到达宾馆,∴小聪上午7点30分从飞瀑出发.(2)3﹣2.5=0.5,∴点G 的坐标为(0.5,50),设GH 的解析式为s kt b =+,把G (0.5,50),H (3,0)代入得;150{230k b k b +=+=,解得:20{60k b =-=, ∴s=﹣20t+60,当s=30时,t=1.5,∴B 点的坐标为(1.5,30),点B 的实际意义是当小慧出发1.5小时时,小慧与小聪相遇,且离宾馆的路程为30km ;(3)50÷30=53(小时)=1小时40分钟,12﹣53=1103, ∴当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣13)=50,解得:x=1,10+1=11=11点,∴小聪到达宾馆后,立即以30km/h的速度按原路返回,那么返回途中他11点遇见小慧.。

2019-2020年中考试数学试题(解析卷)

2019-2020年中考试数学试题(解析卷)

2019-2020年中考试数学试题(解析卷)一.选择题(本大题共10小题,每小题3分,共30分)1.下列平面图形中,不是轴对称图形的是().A.B.C.D.【考点】轴对称图形.【专题】常规题型.【分析】根据轴对称图形的概念对各图形分析判断后即可求解.【解答】解:A选项的图形黑色部分呈螺旋状,不是轴对称图形,B选项的图形是轴对称图形,C选项的图形是轴对称图形,D选项的图形是轴对称图形,故选A.【点评】本题考查了轴对称图形,图形两部分沿对称轴折叠后可重合,轴对称图形的关键是寻找对称轴.2.下列图形具有稳定性的是()A.正五边形 B.正方形C.梯形 D.等腰三角形【考点】三角形的稳定性.【分析】根据三角形具有稳定性解答.【解答】解:正五边形,正方形,梯形,等腰三角形中具有稳定性的是等腰三角形.故选D.【点评】本题考查了三角形的稳定性,三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等.3.若3x=15,3y=5,则3x﹣y等于()A.5 B.3 C.15 D.10【考点】同底数幂的除法.【分析】根据同底数幂的除法,底数不变,指数相减,可得答案.【解答】解:3x﹣y=3x÷3y=15÷5=3,故选:B.【点评】本题考查了同底数幂的除法,底数不变,指数相减.4.下列各式运算正确的是()A.a2+a3=a5B.a2•a3=a5C.(ab2)3=ab6D.a10÷a2=a5(a≠0)【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用同底数幂的乘法以及同底数幂的除法运算法则以及积的乘方运算法则判断得出即可.【解答】解:A、a2+a3无法计算,故此选项错误;B、a2•a3=a5,正确;C、(ab2)3=a3b6,故此选项错误;D、a10÷a2=a8(a≠0),故此选项错误;故选:B.【点评】此题主要考查了积的乘方以及同底数幂的乘除法运算,正确掌握运算法则是解题关键.5.若x的多项式8x2﹣3x+5与3x3+2mx2﹣5x+3相加后,不含x2项,则m等于()A.2 B.﹣2 C.﹣4 D.﹣8【考点】整式的加减.【专题】计算题.【分析】先把两个多项式相加,再根据不含x2项,可知x2项的系数为0,那么8+2m=0,解即可求m.【解答】解:∵8x2﹣3x+5+3x3+2mx2﹣5x+3=3x3+(8+2m)x2﹣8x+8,又结果中不含x2项,∴8+2m=0,解得m=﹣4.故选C.【点评】本题考查了整式的加减,解题的关键是注意合并同类项.6.在△ABC和△DEF中,AB=DE,∠A=∠D,若证△ABC≌△DEF,还需补充一个条件,错误的补充方法是()A.∠B=∠E B.∠C=∠F C.BC=EF D.AC=DF【考点】全等三角形的判定.【分析】根据已知及全等三角形的判定方法对各个选项进行分析,从而得到答案.【解答】解:A、正确,符合判定ASA;B、正确,符合判定AAS;C、不正确,满足SSA没有与之对应的判定方法,不能判定全等;D、正确,符合判定SAS.故选C.【点评】此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有AAS,SAS,SSS,HL等.7.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是()A.45°B.60°C.75°D.90°【考点】三角形的外角性质;直角三角形的性质.【分析】根据直角三角形的两锐角互余求出∠1的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∠1=90°﹣60°=30°,所以,∠α=45°+30°=75°.故选C.【点评】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.8.如图,在△ABC中,∠A=40°,将△ABC延虚线剪去∠A,则∠1+∠2等于()A.180°B.200°C.220°D.270°【考点】多边形内角与外角;三角形内角和定理.【分析】根据题意可得出∠B+∠C,再根据四边形的内角和定理可求出∠1+∠2.【解答】解:∵∠A=40°,∴∠B+∠C=140°,∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=220°.故选:C.【点评】本题考查了三角形的内角和定理,四边形的内角和定理,三角形的内角和等于180°.9.如图,在△ABC中,已知∠B和∠C的平分线相交于点D,过点D作EF∥BC交AB、AC于点E、F,若△AEF的周长为9,BC=5,则△ABC的周长为()A.18 B.17 C.16 D.15【考点】等腰三角形的判定与性质;平行线的性质.【分析】由∠B和∠C的平分线相交于点D,EF∥BC,易证得△EBD与△FCD是等腰三角形,则可得ED=EB,FD=FC,又由△AEF的周长为9,BC=8,由等量代换,即可得△ABC的周长是△AEF 的周长与BC边的和.【解答】解:∵∠B和∠C的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠BCD,∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠BCD,∴∠EBD=∠EDB,∠FCD=∠FDC,∴ED=EB,FD=FC,∵△AEF的周长为9,BC=6,∴△ABC的周长为:AB+AC+BC=AE+BE+AF+CF+BC=AE+ED+DF+AF+BC=AE+EF+AF+BC=9+6=15.故选D.【点评】此题考查了等腰三角形的判定与性质、平行线的性质以及角平分线的定义.此题难度适中,由平行线与角平分线,易构造等腰三角形,注意转化思想的应用.10.如图,在三角形纸片ABC中,AC=6,∠A=30°,∠C=90°,将∠A沿DE折叠,使点A与点B 重合,则折痕DE的长为()A.1 B. C. D.2【考点】翻折变换(折叠问题);勾股定理;解直角三角形.【专题】计算题.【分析】利用翻折变换及勾股定理的性质.【解答】解:∵∠A=30°,∠C=90°,∴∠CBD=60°.∵将∠A沿DE折叠,使点A与点B重合,∴∠A=∠DBE=∠EBC=30°.∵∠EBC=∠DBE,∠BCE=∠BDE=90°,BE=BE,∴△BCE≌△BDE.∴CE=DE.∵AC=6,∠A=30°,∴BC=AC×tan30°=2.∵∠CBE=30°.∴CE=2.即DE=2.故选D.【点评】考查了学生运用翻折变换及勾股定理等来综合解直角三角形的能力.二.填空题(本大题共6小题,每小题4分,共24分)11.五边形对角线的条数是5.【考点】多边形的对角线.【专题】计算题.【分析】根据n边形的对角线的条数是n(n﹣3)条,代入即可求解.【解答】解:五边形对角线的条数是:×5(5﹣3)=5条.故答案是:5.【点评】本题主要考查了多边形的对角线条数的计算方法,是需要熟记的内容.12.多项式x2+3x﹣1是二次三项式.【考点】多项式.【专题】计算题.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:由题意可知,多项式x2+3x﹣1是二次三项式.故答案为:二,三.【点评】本题主要考查多项式的定义,解答此次题的关键是熟知以下概念:多项式中的每个单项式叫做多项式的项;多项式中不含字母的项叫常数项;多项式里次数最高项的次数,叫做这个多项式的次数.13.等腰三角形的两边长分别为3cm、6cm,则此等腰三角形的周长等于15cm.【考点】等腰三角形的性质;三角形三边关系.【分析】根据已知条件和三角形三边关系可知;等腰三角形的腰长不可能为3,只能为6,然后即可求得等腰三角形的周长【解答】解:①6cm为腰,3cm为底,此时周长为6+6+3=15cm;②6cm为底,3cm为腰,则两边和等于第三边无法构成三角形,故舍去.故其周长是15cm.故答案是:15.【点评】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,则BD=3.【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的三线合一知:底边上的高也是底边上的中线.即BD=BC.【解答】解:因为AB=AC,AD⊥BC,BC=6,所以BD=DC=BC=3,故答案为:3.【点评】考查了等腰三角形三线合一性质以及直角三角形的勾股定理.15.如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是40 .【考点】平行线的性质;三角形的外角性质.【分析】根据平行线的性质得出∠4=∠1=75°,然后根据三角形外角的性质即可求得∠3的度数.【解答】解:∵直线a∥b,∠1=75°,∴∠4=∠1=75°,∵∠2+∠3=∠4,∴∠3=∠4﹣∠2=75°﹣35°=40°.故∠3的度数是40°.【点评】本题考查了平行线的性质和三角形外角的性质,熟练掌握性质定理是解题的关键.16.如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是33.【考点】角平分线的性质.【专题】计算题.【分析】根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等,从而可得到△ABC的面积等于周长的一半乘以OD,然后列式进行计算即可求解.【解答】解:如图,连接OA,∵OB、OC分别平分∠ABC和∠ACB,∴点O到AB、AC、BC的距离都相等,∵△ABC的周长是22,OD⊥BC于D,且OD=3,∴S△ABC=×22×3=33.故答案为:33.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键.三.解答题(本大题共3小题,每小题6分,共18分)17.如图,在公路的同旁有两个仓库A、B,现需要建一货物中转站,要求到A、B两仓库的距离和最短,这个中转站M应建在公路旁的哪个位置比较合理?【考点】轴对称-最短路线问题;作图—应用与设计作图.【分析】作A点关于的对称点A′,连接A′B,交直线于M,此时AM+MB的和最小,M所处的位置即为中转站应建的位置.【解答】解:作A点关于的对称点A′.连接A′B交于点M,连接AM,此时AM+MB的和最小,M即为所求.【点评】本题主要考查了轴对称﹣﹣最短路线问题,作出其中一点的对称点,并利用两点之间线段最短是解题的关键.18.一个正多边形的内角和是外角和的4倍,求这个正多边形的边数.【考点】多边形内角和与外角和.【分析】根据多边形的内角和和与外角和的关系,可得关于n的一元一次方程,根据解方程,可得答案.【解答】解:设这个正多边形的边数n边形,由题意,得(n﹣2)×180°=4×360°.解得n=10,答:这个正多边形的彼岸数是10.【点评】本题考查了正多边形的内角和与外角和的关系.19.如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】易证△BED≌△CFD,根据全等三角形对应边相等的性质即可解题.【解答】解:∵BE⊥AE,CF⊥AE,∴∠BED=∠CFD=90°,在△BED 和△CFD 中,⎪⎩⎪⎨⎧=∠=∠︒=∠=∠CD BD CDFBDE CFD BED 90, ∴△BED ≌△CFD (AAS ),∴BE=CF .【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中找出全等三角形并证明是解题的关键.四.解答题(本大题共3小题,每小题7分,共21分)20.先化简,再求值:,其中.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式利用去括号法则去括号后,合并同类项得到最简结果,将x 的值代入计算即可求出值.【解答】解:原式==,当时,原式==0.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.21.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,EF ⊥AB 于点F ,且AB=DE .(1)求证:△ACB ≌△EBD ;(2)若DB=10,求AC 的长.【考点】全等三角形的判定与性质.【分析】(1)易证∠DEB=∠A ,即可证明△ACB ≌△EBD ,即可解题;(2)根据(1)中结论可得BC=DB ,AC=EB ,根据BD 长度即可求得BC 长度,即可解题.【解答】(1)证明:∵∠DEB+∠ABC=90°,∠A+∠ABC=90°,∴∠DEB=∠A ,在△ACB 和△EBD 中,⎪⎩⎪⎨⎧=∠=∠︒=∠=∠DE AB DEBA EBD ACB 90, ∴△ACB ≌△EBD ,(AAS );(2)解:∵△ACB ≌△EBD ,∴BC=DB ,AC=EB ,∵E 是BC 的中点,∴EB=,∵DB=10,BC=DB ,∴BC=10,∴AC=EB==5.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ACB ≌△EBD 是解题的关键.22.∠BAC 的角平分线与BC 的垂直平分线相交于D ,DE ⊥AB 于E ,DF ⊥AC 于F .求证:(1)BE=CF ;.(2)求证:AB+AC=2AF【考点】角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.【专题】证明题.【分析】(1)根据中垂线、角平分线的性质来证明Rt△DCF≌Rt△DBE(HL),然后根据全等三角形的对应边相等推知BE=CF.(2)求出△AED≌△AFD,推出AE=AF,即可得出答案【解答】解:(1)连接DB.∵点D在BC的垂直平分线上,∴DB=DC;∵D在∠BAC的平分线上,DE⊥AB,DF⊥AC,∴DE=DF;∵∠DFC=∠DEB=90°,(已知),∴Rt△DCF≌Rt△DBE(HL),∴CF=BE(全等三角形的对应边相等).(2)∵Rt△DCF≌Rt△DBE∴FD=ED(全等三角形的对应边相等)∴在Rt△AED和Rt△AFD中∴Rt△AED≌Rt△AFD(HL)∴AE=AF∴AB-BE=AF又∵BE=CF=AF-AC∴AB-(AF-AC)=AF即AB+AC=2AF【点评】本题综合考查了角平分线的性质、全等三角形的判定与性质、线段垂直平分线的性质.解答此题时是通过作辅助线BD 构建全等三角形△DCF ≌△DEB (SAS )来证明全等三角形的对应线段CF=BE .题目比较典型,难度适中.五.解答题(本大题共3小题,每小题9分,共27分)23.平方差公式是恒等式,是初中数学中重要的公式,公式中的字母可以表示数字,也可以表示单项式、多项式等代数式。

2019-2020年中考数学考点分类解析汇编

2019-2020年中考数学考点分类解析汇编

2019-2020 年中考数学考点分类解析汇编一、选择题1. ( 2012 安徽, 3,4 分)计算(2x 2 ) 3的结果是()A. 2x5B.8x 6C. 2x6D.8x 5解析:依照积的乘方和幂的运算法规可得.解答:解: ( 2x 2 ) 3( 2)3 (x 2 ) 38x6应选B.议论:幂的几种运算不要混淆,当底数不变时,指数运算要相应的降一级,还要弄清符号,这些都是易错的地方,要熟练掌握,要点是理解乘方运算的意义.2.( 2012 安徽, 4,4 分)下面的多项式中,能因式分解的是()A. m2nB.m2m 1C. m2nD. m22m1解析:依照分解因式的方法,第一是提公因式,尔后考虑用公式,若是项数很多,要分组分解,此题给出四个选项,问哪个能够分解,比较选项中的多项式,试用所学的方法分解.就能判断出只有 D 项能够 .解答:解: m22m 1 (m1)2应选D.议论:在进行因式分解时,第一是提公因式,尔后考虑用公式,(两项考虑用平方差公式,三项用完好平方公式,自然吻合公式才能够.)若是项数很多,要分组分解,最后必然要分.解到每个因式不能够再分为止3. ( 2012 安徽,5,4 分)某企业今年 3 月份产值为 a 万元,4 月份比 3 月份减少了10%,5 月份比 4 月份增加了15%,则 5 月份的产值是()A. (a -10%)(a +15 %)万元B. a (1-10%)(1+15%)万元C.(a -10% +15 %)万元D. a (1-10%+15%)万元解析:依照 4 月份比 3 月份减少10﹪,可得 4 月份产值是(1-10﹪) a, 5 月份比 4 月份增加 15﹪,可得 5 月份产值是(1- 10﹪)( 1+15﹪) a,解答:A.议论:此类题目要点是弄清楚谁是“基准”,把“基准”看作“单位1”,在此基础上增加还是减少,就可以用这个基准量表示出来了.4.( 2012 福州)以下计算正确的选项是A. a+ a= 2a B. b3· b3= 2b3C. a3÷a= a3 D . (a5)2= a7考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.解析:分别依照合并同类项、同底数幂的除法与乘法、幂的乘方与积的乘方法规对各选项进行逐一计算即可.解答:解: A、 a+ a= 2a,故本选项正确;B、 b3?b3= b6,故本选项错误;C、 a3÷ a=a2,故本选项错误;D、 (a5)2=a10,故本选项错误.应选 A.熟知议论:此题观察的是合并同类项、同底数幂的除法与乘法、幂的乘方与积的乘方法规,以上知识是解答此题的要点.5.( 2012?广州)下面的计算正确的选项是()A. 6a﹣ 5a=1B. a+2a2 =3a3C.﹣(a﹣ b) =﹣ a+b D. 2(a+b) =2a+b考点:去括号与添括号;合并同类项。

2019-2020年中考数学试卷(A)真题含考点分类汇编详解

2019-2020年中考数学试卷(A)真题含考点分类汇编详解

2019-2020年中考数学试卷(A )真题含考点分类汇编详解一、选择题1、在实数-3,2,0,-4,最大的数是( )A 、-3B 、2C 、0D 、-4 2、下列图形中是轴对称图形的是( )A B C D 3、计算26x x ÷正确的解果是( )A 、3B 、3xC 、4x D 、8x 4、下列调查中,最适合采用全面调查(普查)方式的是( ) A 、对重庆市初中学生每天阅读时间的调查 B 、对端午节期间市场上粽子质量情况的调查 C 、对某批次手机的防水功能的调查D 、对某校九年级3班学生肺活量情况的调查 5、估计110+的值应在( )A 、3和4之间B 、4和5之间C 、5和6之间D 、6和7之间 6、若4,31-==y x ,则代数式33-+y x 的值为( ) A 、-6 B 、0 C 、2 D 、6 7、要使分式34-x 有意义,x 应满足的条件是( )A 、3 xB 、3=xC 、3 xD 、3≠x 8、若ABC ∆错误!未找到引用源。

DEF ∆,相似比为3:2,则对应高的比为( ) A 、3:2 B 、3:5 C 、9:4 D 、4:99、如图,矩形ABCD 的边AB=1,BE 平分ABC ∠,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( ) A 、4-2πB 、4-23π C 、8-2π D 、8-23π10、下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有3个菱形,。

,按此规律排列下去,第⑨个图形中菱形的个数为( )A 、73B 、81C 、91D 、10911、如图,小王在长江边某瞭望台D 处,测得江面上的渔船A 的俯角为040,若DE=3米,CE=2米,CE 平行于江面AB ,迎水坡BC 的坡度75.0:1=i ,坡长BC=10米,则此时AB 的长约为( )(参考数据:84.040tan ,77.040cos ,64.040sin 000≈≈≈)A 、5.1米B 、6.3米C 、7.1米D 、9.2米12、若数a 使关于x 的分式方程4112=-+-xax 的解为正数,且使关于y 的不等式组()⎪⎩⎪⎨⎧≤--+021232a y yy 的解集为2- y ,则符合条件的所有整数a 的和为( ) A 、10 B 、12 C 、14 D 、16 二、填空题 13、“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 。

2019-2020年中考试数学试题 解析版 含解析

2019-2020年中考试数学试题 解析版 含解析

2019-2020年中考试数学试题 解析版 含解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.若角α的终边经过点(1,2)P -,则tan α的值为( ) A. 2- B. 2 C. 12- D. 12【答案】A 【解析】试题分析:由三角函数定义可知2tan 21y x α-===- 考点:三角函数定义 2.()1sin 2πα+=-, 则sin α=( )A.12 B. 12- D. -【答案】A考点:三角函数诱导公式 3.11cos()6π-=( )A.12 B. 12- C. -【答案】D 【解析】试题分析:1111cos()cos 2cos 6662ππππ⎛⎫-=-+==⎪⎝⎭考点:三角函数诱导公式及求值 4.co s420°+sin330°等于( )A .1B .0C .D .﹣1 【答案】B 【解析】试题分析:()11cos 420sin 330cos60sin 30022+=+-=-= 考点:三角函数诱导公式及求值5.若sin α<0且tan α>0,则α是 ( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 【答案】C考点:三角函数定义6.在ABC ∆中,已知1cos 2A =,则sin A =( )A.12B.【答案】D 【解析】试题分析:1cos sin 2A A =∴=考点:同角间三角函数关系7.已知sin α=,且α为第二象限角,则cos α=( ) A .﹣ B .﹣ C .﹣ D .﹣ 【答案】C 【解析】 试题分析:34sin cos 55ααα=∴=±在第二象限,所以4cos 5α=-考点:同角间三角函数关系 8.已知,那么cos α=( )A .B .C .D .【答案】B【解析】 试题分析:51sin sin cos 225ππααα⎛⎫⎛⎫+=+==⎪ ⎪⎝⎭⎝⎭考点:三角函数诱导公式 9.根据如下样本数据 5 7 8 0.52.03.0得到的回归方程为a bx yˆˆ+=,则( ) A .0,0>>b a B . 0,0<>b a C . 0,0><b a D .0,0<<b a 【答案】B 【解析】试题分析:由表格数据可知随着x 的增大y 值逐渐减小,因此相关系数0b <,当0x =时00y a >∴>考点:回归方程 10.若α是第二象限角,则2α是第( )象限角. A.二、三 B.一、二 C.二、四 D.一、三 【答案】D 【解析】试题分析:由题意可知222422k k k k ππαππαππππ+<<+∴+<<+,当0k =时,角在第一象限,当1k =时角在第三象限 考点:象限角11.投掷两枚骰子,则点数之和是8的概率为 ( ) A .536 B .16 C .215 D .112【答案】A 【解析】试题分析:投掷骰子两次所有的情况有6636⨯=种,点数和为8的有5种,所以516P = 考点:古典概型概率12.甲、乙两人下棋,和棋概率为,乙获胜概率为,甲获胜概率是( ) A . B . C . D . 【答案】C 【解析】试题分析:由对立事件概率公式可知1111236P =--= 考点:对立事件概率第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在矩形ABCD 中,AB=4,BC=2(如图所示) ,随机向矩形内丢一粒豆子,求豆子落入圆内的概 率____________。

2019-2020年中考数学真题试题(解析版) (I)

2019-2020年中考数学真题试题(解析版) (I)

2019-2020年中考数学真题试题(解析版) (I)一、选择题(本大题共7小题,每小题3分,共21分)1.sin30°的值是()A.B.C.D.12.4的算术平方根是()A.16 B. 2 C.﹣2 D.±23.3x2可以表示为()A.9x B.x2•x2•x2C.3x•3x D.x2+x2+x24.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()【答案】C.【解析】试题分析:根据题意可得图形C.故选C.【考点】垂线.5.已知命题A:任何偶数都是8的整数倍.在下列选项中,可以作为“命题A是假命题”的反例的是()A.2k B.15 C.24 D.426.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB 等于()A.∠EDB B.∠BED C.12∠AFB D.2∠ABF∠ACB=12∠AFB,故选:C.【考点】全等三角形的判定与性质.7.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A. a<13,b=13 B.a<13,b<13 C.a>13,b<13 D. a>13, b=13【答案】A.【解析】试题分析:∵原来的平均数是13岁,∴13×23=299(岁),∴正确的平均数a=299123-≈12.97<13,∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,∴b=13;故选A.【考点】1.中位数;2.算术平均数.二、填空题(本大题共10小题,每小题4分,共40分)8.)一个圆形转盘被平均分成红、黄、蓝、白4个扇形区域,向其投掷一枚飞镖,飞镖落在转盘上,则落在黄色区域的概率是【考点】几何概率.9.x的取值范围是【答案】x≥1.【解析】试题分析:先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.x 在实数范围内有意义,试题解析:∵1∴x﹣1≥0,解得x≥1.【考点】二次根式有意义的条件.10.四边形的内角和是°.11.在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是.12.已知一组数据:6,6,6,6,6,6,则这组数据的方差为.【注:计算方差的公式是S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]】【答案】0.【解析】试题解析:去分母得:2x+10=x+3,解得:x=﹣7.【考点】解一元一次方程.14.如图,在等腰梯形ABCD中,AD∥BC,若AD=2,BC=8,梯形的高是3,则∠B的度数是【答案】45°.【解析】【考点】等腰梯形的性质.15.设a=192×918,b=8882﹣302,c=10532﹣7472,则数a,b,c按从小到大的顺序排列,结果是b=8882﹣302=(888﹣30)(888+30)=858×918,c=10532﹣7472=(1053+747)(1053﹣747)=1800×306=600×918,所以a<c<b.【考点】因式分解的应用.16.某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生产60个零件比8个工人生产这些零件少用2小时,则这台机器每小时生产个零件.【考点】分式方程的应用.17.如图,正六边形ABCDEF的边长为2,延长BA,EF交于点O.以O为原点,以边AB所在的直线为x 轴建立平面直角坐标系,则直线DF与直线AE的交点坐标是(,).【答案】(【解析】试题分析:首先得出△AOF是等边三角形,利用建立的坐标系,得出D,F点坐标,进而求出直线DF的解析式,进而求出横坐标为试题解析:连接AE,DF,x+2,故直线DF的解析式为:y=3+2=4,当x=y=3∴直线DF与直线AE的交点坐标是:(4).【考点】1.正多边形和圆;2.两条直线相交或平行问题.三、解答题(共13小题,共89分)18.计算:(﹣1)×(﹣3)+(﹣)0﹣(8﹣2)【答案】-2.【解析】试题分析:先根据0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可.试题解析:原式=3+1﹣6=﹣2.【考点】实数的混合运算19.在平面直角坐标系中,已知点A(﹣3,1),B(﹣1,0),C(﹣2,﹣1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.20.甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有两个小球,分别标有号码1,2;这些球除数字外完全相同,从甲、乙两口袋中分别随机摸出一个小球,求这两个小球的号码都是1的概率.【答案】16.【解析】【考点】列表法与树状图法.21.如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,DE=2,BC=3,求AEAC的值.【考点】相似三角形的判定与性质.22.化简下式,再求值:(﹣x 2+3﹣7x )+(5x ﹣7+2x 2),其中+1.【答案】﹣3. 【解析】23.解方程组21524y x x y +⎨=+=⎧⎩①②.【答案】12x y =⎧⎨=⎩.【解析】试题分析:方程组利用加减消元法求出解即可.【考点】解二元一次方程组.24.如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD=∠BCD,AM=AN,求证:四边形ABCD是菱形.【答案】【解析】∴AB=AD,∴四边形ABCD是菱形.【考点】菱形的判定.25.已知A (x 1,y 1),B (x 2,y 2)是反比例函数y=k x 图象上的两点,且x 1﹣x 2=﹣2,x 1•x 2=3,y 1﹣y 2=43-,当﹣3<x <﹣1时,求y 的取值范围.∵y 1﹣y 2=43-, ∴1k x ﹣2k x =43-, ∴121243x x k x x -=-, ∵x 1﹣x 2=﹣2,x 1•x 2=3,∴2433k =-,解得k=﹣2, ∴反比例函数解析式为y=﹣2x, 当x=﹣3时,y=23;当x=﹣1时,y=2, ∴当﹣3<x <﹣1时,y 的取值范围为23<y <2. 【考点】反比例函数图象上点的坐标特征.26.A ,B ,C ,D 四支足球队分在同一小组进行单循环足球比赛,争夺出线权,比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中积分最高的两个队(有且只有两个队)出线,小组赛结束后,如果A 队没有全胜,那么A 队的积分至少要几分才能保证一定出线?请说明理由.[注:单循环比赛就是小组内的每一个队都要和其他队赛一场].若A队两胜一负,积6分.如表格所示,根据规则,这种情况下,A队不一定出线.同理,当A队积分是5分、4分、3分、2分时不一定出线.总之,至少7分才能保证一定出线.【考点】推理与论证.27.已知锐角三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,AC=32,根据题意画出示意图,并求tanD的值.∵∠ACB=∠D+∠CAD,∠ACB=2∠D,∴∠CAD=∠D,【考点】解直角三角形.28.当m,n是正实数,且满足m+n=mn时,就称点P(m,mn)为“完美点”,已知点A(0,5)与点M都在直线y=﹣x+b上,点B,C是“完美点”,且点B在线段AM上,若,,求△MBC的面积.∴P(m,m﹣1),∴直线AM与直线y=x﹣1垂直,∵点B是直线y=x﹣1与直线AM的交点,∴垂足是点B,∵点C是“完美点”,【考点】一次函数综合题.29.已知A,B,C,D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.【答案】(1)证明见解析;(2【解析】∴AC⊥BD;(2)作直径DE,连接CE、BE.∵DE是直径,∴∠DCE=∠DBE=90°,∴EB⊥DB,又∵AC⊥BD,∴BE∥AC,∴弧CE=弧AB,∴CE=AB.根据勾股定理,得CE2+DC2=AB2+DC2=DE2=20,∴D E=【考点】1.垂径定理;2.勾股定理;3.圆周角定理.30.如图,已知c <0,抛物线y=x 2+bx+c 与x 轴交于A (x 1,0),B (x 2,0)两点(x 2>x 1),与y 轴交于点C .(1)若x 2=1,,求函数y=x 2+bx+c 的最小值; (2)过点A 作AP⊥BC,垂足为P (点P 在线段BC 上),AP 交y 轴于点M .若2OA OM,求抛物线y=x 2+bx+c 顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围.【答案】(1) ﹣94.(2) y=﹣x 2﹣4x ﹣4(x >﹣34). 【解析】∴抛物线的解析式为:y=x 2+x ﹣2.转化为y=(x+12)2﹣94;∴函数y=x2+bx+c的最小值为﹣94.∴顶点的纵坐标随横坐标变化的函数解析式为:y=﹣x2﹣4x﹣4(x>﹣34).【考点】二次函数综合题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B.
y1 y3 y 2
C.
y2 y1 y3
D.
y 3 y1 y2
5. 如图 , 菱形 ABCD中 , 对角线 AC,BD相交于点 O,且 AC=12cm,BD=16cm点. P 从点 B 出发 , 沿 BA方向匀速运动 ,
速度为 1cm/s ;同时 , 直线 EF 从点 D 出发,沿 DB方向匀速运动 , 速度为 1cm/s , EF⊥ BD,且与 AD、 BD、 CD 分别交于点 E、Q、 F;当直线 EF 停止运动时 , 点 P 也停止运动 . 连接 PF, 设运动时间为 t ( s)( 0< t <8) . 设四边形 APFE的面积为 y ( cm2),则下列图象中 , 能表示 y 与 t 的函数关系的图象大致是 ( )
18. 如图 , 矩形 ABCD中 ,AB=3,BC=4, 动点 P 从 A 点出发 , 按 A→ B→ C的方向在 AB 和 BC上移动 , 记 PA=x, 点 D
(℃)与开机后用时( min)成反比例关系 , 直至水温降至 30℃ , 饮水机关机 . 饮水机关机后即刻自动开机 ,
重复上述自动程序 . 若在水温为 30℃时,接通电源后 , 水温 y(℃)和时间 x( min)的关系如图所示 ,
水温从 100℃降到 35℃所用的时间是(

A.27 分钟
B.20
分钟
秒时, PD的长是(

A.1.5cm
B.1.2cm
C.1.8cm
3. 二次函数 y = ax2 bx c ( a ≠ 0)图象如图所示,下列结论:
D.2cm
① abc > 0; ② 2a b = 0; ③当 m ≠ 1 时 , a b > am2 bm ; ④ a b c >0;⑤若 ax12 bx1 = ax22

A.(2,10)
B.(-2,0)
C.(2,10)
或 (-2,0)
D.(10,2)
或 (-2,0)
15. 如图 , 直线 y x m 与 y nx 4n(n 0) 的交点的横坐标为 -2 ,则关于 x 的不等式
x m nx 4n 0 的整数解为(

A. ﹣ 1
B.
﹣5
C.
﹣4
D.
﹣3
16. 如图 ,Rt △ ABC 内接于⊙ O,BC 为直径 ,AB=4,AC=3,D 是 AB 的中点 ,CD 与 AB 的交点为 E, 则 CE 等于 DE
()
A.4
B.3.5
C.3
D.2.8
17. 如图 , △ ABC中 , ∠ ACB=900, ∠ A=300,AB=16. 点 P是斜边 AB上一点 , 过点 P 作 PQ⊥ AB, 垂足为 P, 交边 A(C 或
边 CB)于点 Q,设 AP=x,△ APQ的面积为 y, 则 y 与 x 之间的函数图象大致是 ( )

2. 如图 , 在 Rt △ ABC中 , ∠ ACB=900, 点 P 以每秒 1cm 的速度从点 A 出发,沿折线 AC-CB运动 , 到点 B 停止 , 过
点 P 作 PD⊥ AB,垂足为 D,PD 的长 y( cm)与点 P 的运动时间 x(秒)的函数图象如图 2 所示 , 当点 P 运动 5
C.13
分钟
D.7
分钟
10. 如图 , 在矩形 ABCD中 ,AB=4,BC=6, 当直角三角板 MPN 的直角顶点 P 在 BC边上移动时 , 直角边 MP始终经
过点 A, 设直角三角板的另一直角边 ()
PN 与 CD 相交于点 Q.BP=x,CQ=y,那么 y 与 x 之间的函数图象大致是
11. 如图 , 点 P 是以 O为圆心 ,AB 为直径的半圆上的动点 ,AB=2, 设弦 AP 的长为 x, △ APO的面积为 y, 则下列 图象中 , 能表示 y 与 x 的函数关系的图象大致是 ( )
设点 P 经过的路程为 x ,△ APE 的面积为 y ,则 y 关于 x 的函数的图象大致为(

14. 如图 , 正方形 OABC两边 OA、 OC分别在 x 轴、 y 轴上 , 点 D(5,3 )在边 AB 上 , 以 C 为中心 , 把△ CDB旋转
900,则旋转后点 D 的对应点 D/ 的坐标是(
2019-2020 年中考数学考点专题汇总试卷详解:选择题难题
1. 如图 , 矩形 ABCD中 ,P 为 CD中点 , 点 Q为 AB上的动点 ( 不与 A,B重合 ). 过 Q作 QM⊥ PA于 M,QN⊥ PB于 N.
设 AQ的长度为 x, QM与 QN的长度和为 y. 则能表示 y 与 x 之间的函数关系的图象大致是(
8. 如图 ,OA⊥ OB,等腰直角三角形 CDE的腰 CD在 OB上 , ∠ ECD=450, 将三角形 CDE绕点 C 逆时针旋转 750, 点 E
的对应点 N恰好落在 OA上 , 则 OC 值为(

CD
1
1
2
3
A.
B.
C.
D.
2
3
2
3
9. 某品牌的饮水机接通电源就进入自动程序
: 开机加热到水温 100℃ , 停止加热 , 水温开始下降 , 此时水温
6. 已知 m
n ,满足 m 2
n2
m2 n2
4mn , 则
=()mn NhomakorabeaA. 3
B.
3
C.
6
D.
23
7. 如图 , 过半径为 6 的⊙ O上一点 A 作⊙ O的切线 l ,P 为⊙ O上一个动点 , 作 PH⊥ l 于点 H,连接 PA. 若 PA=x,
AH=y,则下列图象中 , 能大致表示 y 与 x 的函数关系的是 ( )
且 x1 ≠ x2 ,则 x1 x2 =2. 其中正确的有(

A.1 个
B.3

C.2 个
D.4 个
bx2 ,
4. 若二次函数 y x2 6x c 的图象经过 (-1 , y1) 、(2 , y2) 、 (3 2 , y3 ) 三点,则关于 y1,y 2,y 3 大小关系
正确的是 ( )
A. y1 y2 y3
12. 如图,点 P 是定线段 OA上的动点,点 P 从 O 点出发,沿线段 OA运动至点 A 后,再立即按原路返回至
点 O 停止,点 P 在运动过程中速度大小不变,以点 O为圆心,线段 OP长为半径作圆,则该圆的周长 l 与
点 P 的运动时间 t 之间的函数图象大致为(

13. 已知边长为 1 的正方形 ABCD, E为 CD边的中点,动点 P 在正方形 ABCD边上沿 A B C E 运动,
相关文档
最新文档