人教版高中数学必修1知识点总结-2019
高中数学人教A版(2019)选择性必修第一册知识点归纳含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!高中数学选择性必修第一册必备知识手册2024一轮复习【空间向量与立体几何】1、O 是直线l 上一点,在直线l 上取非零向量a r ,则对于直线l 上任意一点P ,由数乘向量的定义及向量共线的充要条件可知,存在实数l ,使得OP a l =uuu r r 。
我们把与向量a r 平行的非零向量称为直线l 的方向向量。
这样直线l 上任意一点都可以由直线l 上的一点和它的方向向量表示,也就是说,直线可以由其上一点和它的方向向量确定。
2、如果表示向量a r 的有向线段OA uuu r 所在的直线OA 与直线l 平行或重合,那么称向量a r 平行于直线l 。
(完整版)人教版高一数学必修一知识点总结大全

一 集合与函数1 集合的含义及表示*⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪∈∉⎨⎪⎧⎪⎨⎪⎩⎪⎪⎩确定性集合中元素的特征 互异性无序性 集合与元素的关系 : 列举法 集合的表示 描述法常见的数集 N N Z Q R2,,A B B A A B A B A A A A B A B A B οοφ≠⊆⊆=⎧⊆⊆⊆⎪⎪⎨⎪⎪⊆≠⊂⎩1定义:A=B2若且则子集: , 集合相等: 集合间的基本关系真子集: 若且 则空集φ的特殊性: 空集是任何集合的子集,任何非空集合的真子集 *结论 含有n 个元素的集合,其子集的个数为2n,真子集的个数为21n-3集合的基本运算{}{}{}|||U A B x x A x B A B x x A x B C A x x U x A ⎧⋃=∈∈⎪⋂=∈∈⎨⎪=∈∉⎩并集:或 交集:且 补集:且在集合运算中常借助于数轴和文氏图(*注意端点值的取舍)*结论 (1)A A A ⋃= A A A ⋂=, A A φ⋃= A φφ⋂=(2)A B B A B ⋃=⊆若则 A B A A B ⋂=⊆若则 (3)()U A C A φ⋂= ()U A C A U ⋃=(4)若A B φ⋂= 则A φ=或A φ≠4函数及其表示⎧⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎨⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩函数的定义 定义域函数的三要素对应法则值域区间的表示 解析式法函数的表示法列表法图像法5 函数的单调性及应用(1) 定义: 设[]2121,,x x b a x x ≠∈⋅那么:1212,()()x x f x f x <<⇔[]1212()()()0x x f x f x -->⇔0)()(2121>--x x x f x f []b a x f ,)(在⇔上是增函数;1212,()()x x f x f x <>⇔[]1212()()()0x x f x f x --<⇔0)()(2121<--x x x f x f []b a x f ,)(在⇔上是减函数.(2) 判定方法:1ο定义法(证明题) 2ο图像法 3ο复合法 (3) 定义法:证明函数单调性用利用定义来证明函数单调性的一般性步骤:1ο设值:任取12,x x 为该区间内的任意两个值,且12x x <2ο做差,变形,比较大小:做差12()()f x f x -,并利用通分,因式分解,配方,有理化等方法变形比较12(),()f x f x 大小3ο下结论(说函数单调性必须在其单调区间上)(4)常见函数利用图像直接判断单调性:一次函数,二次函数,反比例函数,指对数函数,幂函数,对勾函数(5)复合法:针对复合函数采用同增异减原则(6)单调性中结论:在同一个单调区间内:增+增=增: 增—减=增:减+减=减:减—增=增若函数)(x f 在区间[]b a ,为增函数,则—)(x f ,)(1xf 在[]b a ,为减函数 (7)单调性的应用:1ο:利用函数单调性比较大小2ο利用函数单调性求函数最值(值域)重点题型:求二次函数在闭区间上的最值问题6 函数的奇偶性及应用f x定义域关于原点对称(1)定义:若()1ο若对于任取x的,均有()()-=则()f x为偶函数f x f x2ο若对于任取x的,均有()()f x为奇函数-=-则()f x f x(2)奇偶函数的图像和性质(3)判定方法:1ο定义法(证明题)2ο图像法3ο口诀法(4)定义法: 证明函数奇偶性步骤:1ο求出函数的定义域观察其是否关于原点对称(前提性必备条件)2ο由出发()-,寻找其与()f x之间的关系f x3ο下结论(若()()-=-则()f x为奇f x f x-=则()f x f xf x为偶函数,若()()函数函数)(4)口诀法:奇函数+奇函数=奇函数:偶函数+偶函数=偶函数奇函数⨯奇函数=偶函数:奇函数⨯偶函数=奇函数:偶函数⨯偶函数=偶函数二 指数函数与对数函数 1 指数运算公式1οm n m n a a a +⋅= 2οm n m n a a a -÷= 3ο ()mm mab a b = 4ο()m nmna a=5ο()m m m a a b b= 6οmn a =7οm na-=8ο,,a a ⎧=⎨⎩当n 为偶数时当n 为奇数时2 对数运算公式 (1)对数恒等式0,1a a >≠当时 ,log xa N x N =⇔=alog 10a = log 1a a = log a Na N =(2)对数的运算法则(01,0,0)a a M N >≠>>且1ο log ()log log a a a M N M N ⋅=+ 2ο log ()log log a a a MM N N=- 3ο log ()log n a a M n M =(3)换底公式及推论 log log log c a c bb a=(01,01,0)a a c c b >≠>≠>且且推论 1οlog log m n a a nb b m=2ο1log log a N N a=3ο log log log a b a b c c =图像定义域值域定点单调性4 指数与对数中的比较大小问题(1)指数式比较大小1οm a,n a2οm a,n b(2)对数式比较大小1οlogam,logan2οlogam,logbn5指数与对数图像6幂函数:一般地,函数y xα=叫做幂函数,其x中为自变量,α是常数几种幂函数的图象:函数零点及二分法 一 函数零点的判定(一) 函数有实数根⇔函数的图像与轴有交点⇔函数有零点(二) 函数的零点的判定定理如果函数()y f x =在区间[],a b 上的图像时连续不断的一条曲线,并且有()()0f a f b <g ,那么,函数()y f x =在区间(),a b 内有零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程的根 二 函数二分法的应用(一)函数二分法:对于在区间上连续不断且的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法。
必修1高一数学人教版最全知识点(必须珍藏)

高中数学必修1知识点总结目录高中数学必修1知识点总结............................. 错误!未定义书签。
第一章集合与函数概念............................... 错误!未定义书签。
〖〗集合 ............................................ 错误!未定义书签。
【】集合的含义与表示................................. 错误!未定义书签。
【】集合间的基本关系................................. 错误!未定义书签。
【】集合的基本运算................................... 错误!未定义书签。
〖〗函数及其表示 .................................... 错误!未定义书签。
【】函数的概念 ...................................... 错误!未定义书签。
【】函数的表示法 .................................... 错误!未定义书签。
〖〗函数的基本性质................................... 错误!未定义书签。
【】单调性与最大(小)值............................. 错误!未定义书签。
【】奇偶性 .......................................... 错误!未定义书签。
【】函数周期性和对称性............................... 错误!未定义书签。
〖补充知识〗函数的图象............................... 错误!未定义书签。
第二章基本初等函数(Ⅰ) ............................. 错误!未定义书签。
高中数学(新人教版)必修一知识点归纳

高中数学(新人教版)必修一知识点归纳
本文将归纳高中数学(新人教版)必修一的主要知识点。
以下是
各个主题的简要概述:
1. 数与式
- 数的分类:自然数、整数、有理数、实数等。
- 代数式:基本概念、多项式、公式等。
- 幂与乘方:指数、乘方、幂等运算。
- 整式的加减法:同类项、整式的加减法规则。
- 分式:基本概念、分式的性质与化简等。
2. 一元一次方程与不等式
- 一元一次方程:基本概念、解方程的方法、应用问题等。
- 一元一次不等式:基本概念、解不等式的方法、应用问题等。
3. 函数及其图像
- 函数与自变量、函数与因变量的关系。
- 函数的表示与性质:映射、函数图像、奇偶性等。
- 一次函数:定义、性质、图像、方程等。
- 反函数与复合函数:定义、性质、求反函数、求复合函数等。
4. 等差数列
- 等差数列的定义与性质。
- 等差数列的前n项和与通项公式。
- 应用问题:等差数列应用于数学与生活中的实际问题。
5. 平面向量
- 向量的基本概念与表示法。
- 向量的运算:加法、数乘等。
- 向量共线与共面的判定。
- 向量的数量积与模的概念与性质。
6. 不等式与线性规划
- 不等式的基本性质与解法。
- 一元一次不等式组:基本概念、解法、应用问题等。
- 线性规划的基本概念与常见问题。
以上是高中数学(新人教版)必修一的主要知识点的简要归纳。
详细内容可以参考相关教材或课堂讲义。
希望这份归纳对你有帮助!。
2019新人教版高中数学必修第一册第1章集合与常用逻辑用语知识点总结

2019新人教版高中数学必修第一册第1章集合与常用逻辑用语知识点总结的表示法是将a放在大括号中,表示一个只含有a这一个元素的集合。
2)描述法中,要注意符号的使用和表达的准确性。
3)在交集与并集的性质中,要注意交集和并集的交换律和结合律。
4)在全集和补集的性质中,要注意补集的定义和符号的使用。
第一章集合和常用逻辑用语1.1 集合的含义和表示集合是由一些元素组成的总体。
元素具有确定性、互异性和无序性。
我们通常用大写的拉丁字母A、B、C等表示集合,用小写拉丁字母a、b、c等表示元素。
如果元素x在集合A中,我们称x属于A,记为x∈A,否则称x不属于A,记作x∉A。
常用的数集有非负整数集(即自然数集)记作N,正整数集记作N*或N+,整数集记作Z,有理数集记作Q,实数集记作R。
集合的表示法有列举法、描述法和图示法。
列举法是把集合中的元素一一列举出来,然后用一个大括号括上。
描述法是用集合所含元素的公共特征表示集合的方法,可以用语言描述法和数学式子描述法。
图示法是用Venn图表示集合和元素之间的关系。
1.2 集合间的基本关系集合间有“包含”关系和“相等”关系。
如果集合A中的任何一个元素都是集合B中的元素,则A叫做B的子集,记为A⊆B,例如N⊆Z。
子集的个数为2的n次方(n为集合中元素个数)。
如果A是B的子集,而且B中存在元素不属于A,则A叫B的真子集。
真子集的个数为2的n次方减1(n为集合中元素个数)。
如果A是B的子集,B也是A的子集,则称A与B相等。
空集是不含任何元素的集合,用∅来表示。
空集∅是任何集合的子集,是任何非空集合的真子集。
1.3 集合的基本运算集合有交集和并集两种基本运算。
交集是指集合A和集合B中共同拥有的元素组成的集合,记为A∩B。
并集是指集合A和集合B中所有元素组成的集合,记为A∪B。
交集和并集有交换律和结合律。
全集是指包含所有元素的集合,通常用U来表示。
补集是指集合A中不属于集合B的元素组成的集合,记为CBA。
2019新人教A版高中数学选择性必修一全册重点知识点归纳总结(复习必背)【可编辑全文】

2019新人教版高中数学选择性必修一全册重点知识点归纳总结(复习必背)第一章空间向量与立体几何一、知识要点1、空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2、空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b =+=+ ;BA OA OB a b =-=- ;()OP a R λλ=∈运算律:(1)加法交换律:a b b a +=+(2)加法结合律:)()(c b a c b a ++=++(3)数乘分配律:ba b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则3、共线向量(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a//。
(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a=λb 。
(3)三点共线:A 、B 、C 三点共线<=>ACAB λ=<=>OB y OA x OC +=(其中x +y =1)(4)与a 共线的单位向量为4、共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b 不共线,p与向量,a b 共面的条件是存在实数x ,y 使p xa yb =+。
(3)四点共面:若A 、B 、C 、P 四点共面<=>ACy AB x AP +=<=>)1(=++++=z y x OC z OB y OA x OP 其中5、空间向量基本定理:如果三个向量,,a b c不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。
高一数学必修一知识点总结人教(3篇)

高一数学必修一知识点总结人教1.知识网络图复数知识点网络图2.复数中的难点(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.(3)复数的辐角主值的求法.(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.3.复数中的重点(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.(4)复数集中一元二次方程和二项方程的解法.数学教学心得如果以上的表述并不具有数学学科的特点的话,那么加上一个定语——让学生用数学的眼光进行数学思考。
比如,百货店的促销信息,人们不仅会关注哪个折扣低,还会关注标价的高低。
美国统计学家戴维穆尔的《统计学的世界》一书中有幅漫画,画的是一个人误以为平均水深就是每一个地方都是这样的水深而溺水死亡,从侧面反映了数学常识在现实生活中的作用。
数学地思考,是数学学习的更高目标。
数学学习过程中所倡导的思考方式是具有学科特点的。
看到一幅图画时,别的学科可能关注的是这幅图是多么的美观,但是对于数学学习来说,教师需要引导学生关注这个图形的组成与分解,引导学生思考的是多边形线的条数等。
这种量化、精确化的思考方式是数学教学最根本的目标价值所在。
2019人教版新版高一数学必修一

集合的概念一、知识点:1、集合的定义 。
2、集合常用 表示,元素用 表示。
若a是集合A的元素,就说 ,记作 若a不是集合A的元素,就说 ,记作 。
3、元素的特征: 、 、4、集合的分类:根据元素的个数分为两类 和 不含任何元素的集合叫 ,记作5、常用集合:自然数集记作 ,正整数集 , 整数集 ,有理数集 ,实数集 二、典型例题:例1、下列各组对象:①正三角形的全体;②接近0的数的全体;③比1小的正整数的全体;④平面上到点(0,0)的距离等于一的点的全体,其中构成集合的是 。
变式练习下列各组对象能否构成集合,若能构成集合,指出它们是有限集、无限集、还是空集。
(1)中国所有的人口组成的集合;(2)山东省2010年应届高中毕业生; (3)数轴上到原点的距离小于1的点;(4)方程20x=的解构成的集合;(5)某校高一一班中成绩较好的同学;(6)小于1的正整数构成的集合;例2 1. 用符号“∈”或“ ”填空(1) 3.14 Q (2) Q (3) 0 N+ (4) -2 N+ (5)(6) R例3 已知集合A 中的元素是22a+2,(a+1),a +3a+3,若1∈A ,求实数a 的值。
变式练习 若3A -∈且A 中元素为23,23,7,a a a ---求实数a 的值。
三、巩固练习: 1、下面有四个命题:①集合N 中最小数为1;②若-a ∉N,则a ∈N ;③若a ∈N,b ∈N,则a+b 的最小值为2; ④所有小的正数构成一个集合,其中正确命题的个数为( ) A 、0 B 、1 C 、2 D 、32、已知集合A 是由元素1,2构成的,集合B 是由元素0,2构成的,集合C 是由A ,B 各取一个元素相乘所得的积构成的,则集合C 的所有元素之和为( ) A 、0 B 、2 C 、3 D 、63、一个集合M 中的元素m 满足m N +∈,且5m N +-∈,则集合M 中的元素最多有( )个。
A 、3B 、4C 、5D 、64、下列各组对象:(1)比较大的整数;(2)鲜艳的花(3)视力差的人(4)参加2010年南非世界杯的所有球队。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
注意:B反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集,2n-2个非空真子集三、集合的运算一、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.◆相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);◆②定义域一致(两点必须同时具备)2.值域: 先考虑其定义域(1)观察法(2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
记作“f(对应关系):A(原象)→B(象)”对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。
6.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。
二.函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:任取x1,x2∈D,且x1<x2;作差f(x1)-f(x2);变形(通常是因式分解和配方);定号(即判断差f(x1)-f(x2)的正负);下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:○1首先确定函数的定义域,并判断其是否关于原点对称;○2确定f(-x)与f(x)的关系; ○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . 9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2)求函数的解析式的主要方法有: 1) 凑配法 2) 待定系数法 3) 换元法4) 消参法10.函数最大(小)值(定义见课本p36页)○1 利用二次函数的性质(配方法)求函数的最大(小)值 ○2 利用图象求函数的最大(小)值 ○3 利用函数单调性的判断函数的最大(小)值: 如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b);第二章 基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。
当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*>∈>=n N n m a a anmnm ,)1,,,0(11*>∈>==-n N n m a a aanmnm nm◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质(1)ra ·s r r a a +=),,0(R s r a ∈>;(2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)(),,0(R s r a ∈>.(二)指数函数及其性质1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2(1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式)说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a a x =⇔=log ; ○3 注意对数的书写格式. 两个重要对数:○1 常用对数:以10为底的对数N lg ; ○2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化幂值 真数b对数(二)对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1 M a (log ·=)N M a log +N a log ; ○2 =NMa log M a log -N a log ;○3 n a M log n =M a log )(R n ∈. 注意:换底公式a bb c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ).利用换底公式推导下面的结论 (1)b mnb a n a mlog log =;(2)a b b a log 1log =. (二)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。