线性空间的维数 基底
线性空间的基与维数

2,
a
3,
a
T
4)
线性空间 V的任一元素在不同的基下所对的
坐标一般不同,一个元素在一个基下对应的坐标是
唯一的.
例2 所有二阶实矩阵组成的集合V,对于矩阵 的加法和数量乘法,构成实数域 R上的一个线性
空间.对于V中的矩阵
E
11
1 0
0 0
,
E
12
0 0
1 , 0
0 0
0 0
E
21
1
0
,
E
22
( x1, x2 , , xn )T
结论
1.数域 P上任意两个n 维线性空间都同
构2..同构的线性空间之间具有反身性、对称性
与传递性.
3.同维数的线性空间必同构.
同构的意义
在线性空间的抽象讨论中,无论构成线性空间 的元素是什么,其中的运算是如何定义的,我们所 关心的只是这些运算的代数性质.从这个意义上可 以说,同构的线性空间是可以不加区别的,而有限 维线性空间唯一本质的特征就是它的维数.
( 2)
V中任一元素总可由1,2 ,
,
线
n
性
表示,
那末, 1,2 , ,n 就称为线性空间V 的一个
基, n 称为线性空间V 的维数.
维数为n的线性空间称为n 维线性空间,记作Vn . 当一个线性空间 V 中存在任意多个线性无关
的向量时,就称 V 是无限维的.
若1 ,2 , ,n为Vn的一个基,则Vn可表示为
一、线性空间的基与维数
已知:在 Rn中,线性无关的向量组最多由 n 个向量组成,而任意 n 1个向量都是线性相关的.
问题:线性空间的一个重要特征——在线性空 间V 中,最多能有多少线性无关的向量?
基与维数的几种求法

线性空间基和维数的求法方法一 根据线性空间基和维数的定义求空间的基和维数,即:在线性空间V 中,如果有n 个向量n αα,,1 满足:(1)n ααα,2,1 线性无关。
(2)V 中任一向量α总可以由n ααα,,21, 线性表示。
那么称V 为n 维(有限维)线性空间,n 为V 的维数,记为dim v n =,并称n ααα,,2,1 为线性空间V 的一组基。
如果在V 中可以找到任意多个线性无关的向量,那么就成V 为无限维的。
例1 设{}0V X AX ==,A 为数域P 上m n ⨯矩阵,X 为数域P 上n 维向量,求V 的维数和一组基。
解 设矩阵A 的秩为r ,则齐次线性方程组0AX =的任一基础解系都是V 的基,且V 的维数为n r -。
例2 数域P 上全体形如0a a b ⎛⎫⎪-⎝⎭的二阶方阵,对矩阵的加法及数与矩阵的乘法所组成的线性空间,求此空间的维数和一组基。
解 易证0100,1001⎛⎫⎛⎫⎪ ⎪-⎝⎭⎝⎭为线性空间0,a V a b p a b ⎧⎫⎛⎫=∈⎨⎬ ⎪-⎝⎭⎩⎭|的一组线性无关的向量组,且对V 中任一元素0a a b ⎛⎫ ⎪-⎝⎭有00100+1001a a b a b ⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 按定义0100,1001⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭为V 的一组基,V 的维数为2。
方法二 在已知线性空间的维数为n 时,任意n 个向量组成的线性无关向量组均作成线性空间的基。
例3 假定[]n R x 是一切次数小于n 的实系数多项式添上零多项式所形成的线性空间,证明:()()()211,1,1,,1n x x x ----构成[]n R x 的基。
证明 考察()()1121110n n k k x k x -⋅+-++-=由1n x-的系数为0得0n k =,并代入上式可得2n x -的系数10n k -=依此类推便有110n n k k k -====,故()()11,1,,1n x x ---线性无关又[]nR x 的维数为n ,于是()()11,1,,1n x x ---为[]nR x 的基。
线形空间的维数与基

浅谈线性空间的维数与基摘要本文通过对有限维线性空间中基和维数的讨论,总结出了有限维线性空间的基和维数的求解方法,并且,用不同的方法对线性空间的基和维数的应用进行了探讨.关键词:线性空间;维数;基;同构;子空间THE DISCUSSING TO THE DIMENSIONS ANDBASES OF LINEAR SPACEABSTRACTIn this paper, by discussing dimensions and bases of finite dimensions linear space, we Summarizes the methods to soluting dimensions and bases of finite dimensional linear space. Moreover, the application of the bases and dimensions are discussed in different ways.Keywords: linear space; dimension; base; isomorphism; subspace .目录摘要 (1)关键词: (1)ABSTRACT (2)一、基本概念 (4)二、线性空间的基和维数求解方法 (5)2.1、定义法 (5)2.2、利用相关定理求维数与基 (8)三、线性空间基和维数的应用 (10)3.1、次子空间的应用 (10)3.2、在同构线性空间中的应用 (12)四、有限维线性空间基的扩充 (13)五、参考文献 (15)致谢 (15)一、基本概念定义1.2、U 中向量集H 如果满足下述两个条件,① 向量集H 是线性相关的;② U 中每一个向量可以由H 中有限个向量线性表出;则H 是U 的一个基,只含0向量的基是空集。
定义1.3、U 称为有限维的,如果U 有一个基包含有限多个向量,否则U 称为无限维的,有限维线性空间的一个基所含向量个数称为U 的维数。
线性空间-基和维数

(3)若向量组 1,2, ,r 线性无关,但向量组
1,2, ,r,线性相关,则 可被向量组
1,2, ,r线性表出,且表法是唯一的.
6.3 维数 基 坐标
二、线性空间的维数、基与坐标
1、无限维线性空间
若线性空间 V 中可以找到任意多个线性无关的向量, 则称 V 是无限维线性空间.
k1
k1 k2 k3
k2 2k3
0
0
②
k1 2k2 k3 0
其系数行列式
11 1
1 2 (1)(21)(2)0 1 2
6.3 维数 基 坐标
∴方程组②只有零解: k1k2k30 故 E, A, A2 线性无关. 又由①知,任意均可表成 E, A, A2 的线性组合, 所以V为三维线性空间, E, A, A2 就是V的一组基.
注意:
① n维线性空间 V的基不是唯一的,V中任意 n个 线性无关的向量都是V的一组基.
② 任意两组基向量是等价的.
例3(1)证明:线性空间P[x]n是n 维的,且 1,x,x2,…,xn-1 为 P[x]n 的一组基.
(2)证明:1,x-a,(x-a)2,…,(x-a)n-1 也为P[x]n的一组基.
则数组 a1,a2, ,an,就称为 在基1,2, ,n
下的坐标,记为 (a1,a2, ,an).
6.3 维数 基 坐标
有时也形式地记作 ( 1 , 2 ,
注意:
a1
,
n
)
a
2
a
n
向量 的坐标(a1,a2, ,an)是被向量 和基1,2, ,n
唯一确定的.即向量 在基 1,2, ,n 下的坐标唯一的.
线性空间的基与维数

线性空间的基与维数线性空间是线性代数中的重要概念,它是由一组元素构成的集合,这些元素之间满足线性运算的性质。
在线性空间中,基与维数是两个重要的概念。
一、线性空间的基线性空间的基是指线性空间中的一组线性无关的元素,通过这组元素可以表示整个线性空间中的任意元素。
换言之,线性空间中的每个元素都可以唯一地由基中的元素线性组合而成。
线性空间的基具有以下特性:1. 基中的元素线性无关,即任意一个基中的元素不能被其他基中的元素线性表示。
2. 基中的元素张成整个线性空间,即线性空间中的任意元素都可以由基中的元素线性组合而成。
3. 基中的元素个数是唯一的,即同一个线性空间中的不同基所包含的元素个数是相同的,这个个数称为线性空间的维数。
二、线性空间的维数线性空间的维数是指线性空间中的基所包含的元素的个数,用整数表示。
维数是衡量线性空间大小的一个重要指标。
线性空间的维数具有以下性质:1. 对于一个线性空间,如果存在一个有限的基,则该线性空间的维数是有限的。
2. 对于一个线性空间,如果不存在有限的基,则该线性空间的维数是无限的。
维数是线性空间一个重要的性质,它决定了线性空间的很多性质。
在线性代数中,我们可以通过求解线性方程组的秩来确定线性空间的维数。
三、基与维数的应用基与维数在线性代数的各个分支中有广泛的应用。
以下是一些典型的应用场景:1. 线性变换的表示:线性变换可以由一个矩阵表示,基的选择与线性变换的矩阵表示密切相关。
2. 向量空间的表示:向量空间中的向量可以由线性组合表示,基的选择可以简化向量空间中向量的表示和计算。
3. 子空间的判断:基与维数可以用来判断一个子集是否构成了线性空间的子空间。
4. 线性方程组的解空间:线性方程组的解空间可以由基与维数表示。
总结:线性空间的基与维数是线性代数中的重要概念。
基是线性空间中一组线性无关的元素,可以表示线性空间中的任意元素;维数是基所包含的元素的个数,它决定了线性空间的很多性质。
维数、基与坐标

对任意αV,kK成立.从而
(0) (0) 0 () 0
() ((1)) (1) () () (k11 k22 krr ) (k11) (k22 ) (krr )
k1 (1) k2 (2 ) kr (r )
(2) 若有不全为零的k1,k2,…,kr使
则有
(k11 k2 2 kr r ) 0
由于σ是单射,又只有零元素0才映射到0,
故
k11 k2 2 kr r 0 即若 (1), (2 ),, (r ) 线性相关也必有 α1,α2,…,αr线性相关;
(3) 由于维数就是线性空间中线性无
关元素的最大个数,设V与W同构,则若V 中最大的线性无关元素组为α1,α2,…,αm,那么 σ(α1), σ(α2),…,σ(αr)也是W中线性无关的,且 任何多于m个的元素组必线性相关.这样,W 的维数必等于V的维数;
设 ε1,ε2,…,εn与η1,η2, …,ηn是n维线性空 间V中的两组基.由基的定义,它们必可以 互相线性表出.设 η1,η2, …,ηn由ε1,ε2,…,εn线 性表出的关系式为
1 a111 a12 2 a1n n , 2a211a222 a2n n , n an11 an2 2 ann n .
(1, 2 ,3 , 4 ) (1, x, x 2 , x3 ) A
其中
(1, 2 , 3 , 4 ) (1, x, x 2 , x3 )B
1 1 1 1
A
2 0 2
1 2 0
0 2 0
3 03
1 1 1 1
B
0 0 0
1 0 0
2 1 0
3 13
于是
(1, 2 , 3 , 4 ) (1, 2 ,3 , 4 )A1B
高等代数 第6章线性空间 6.2 基底、坐标与维数

任一不超过4次的多项式 p a 4 x 4 a 3 x 3 a 2 x 2 a1 x a 0 可表示为 p a 0 p1 a 1 p 2 a 2 p 3 a 3 p 4 a 4 p 5
因此 p 在这个基下的坐标为 ( a 0 , a 1, a 2 , a 3 , a 4 )
T
若取另一基q1 1, q 2 1 x , q 3 2 x 2 , q 4 x 3 , q5 x4 , 则 1 p (a 0 a 1 )q1 a 1 q 2 a 2 q 3 a 3 q 4 a 4 q 5 2 因此 p 在这个基下的坐标为
1 ( a 0 a 1, a 1, a 2 , a 3 , a 4 ) 2 注意 线性空间 V的任一元素在不同的基下所对的 坐标一般不同,一个元素在一个基下对应的坐标是 唯一的.
T
例2 所有二阶实矩阵组成的集合 V ,对于矩阵 的加法和数量乘法,构成实数域 R上的一个线性 空间.对于 V 中的矩阵
有
1 E 11 0 0 E 21 1
0 0 1 , E 12 , 0 0 0 0 0 0 , E 22 0 0 1
而矩阵A在这组基下的坐标是 (a 11, a 12, a 21, a 22) .
T
例3 在线性空间R, 2 ( x a ), 3 ( x a ) , , n ( x a )
则由泰勒公式知
2
n 1
f ' ' (a ) 2 f ( x ) f (a ) f ' (a )( x a ) ( x a) 2! ( n 1) (a ) f n 1 ( x a) ( n 1)! 因此 f ( x )在基 1 , 2 , 3 , , n 下的坐标是
基与维数的几种求法

基与维数的几种求法线性空间基和维数的求法方法一根据线性空间基和维数的定义求空间的基和维数,即:在线性空间v中,如果有n个向量α1,,αn满足用户:(1)α1,α2,αn线性无关。
(2)v中任一向量α总可以由α1,α2,,αn线性则表示。
那么称v为n维(有限维)线性空间,n为v的维数,记为dimv=n,并称α1,α2,,αn为线性空间v的一组基为。
如果在v中可以找到任意多个线性无关的向量,那么就成v为无限维的。
基准1设v=xax=0,a为数域p上m⨯n矩阵,x为数域p上n佩向量,谋v的维数和一组基为。
解设矩阵a的秩为r,则齐次线性方程组ax=0的任一基础解系都是v的基,且v的维数为n-r。
基准2数域p上全体形似对矩阵的乘法及数与矩阵的乘法所共同组成⎪的二阶方阵,-ab⎪⎪的线性空间,谋此空间的维数和一组基为。
⎪⎪0a⎪⎪⎪01⎪⎪00⎪为线性空间,v=|a,b∈p⎪⎪的一组线性毫无关系的向⎪⎪⎪⎪-10⎪⎪01⎪⎪⎪-ab⎪⎪⎪0a⎪⎪0a⎪⎪01⎪⎪00⎪量组,且对v中任一元素⎪=a⎪+b⎪⎪有ab1001-ab⎪⎪⎪⎪⎪⎪⎪⎪⎪01⎪⎪00⎪⎪,⎪为v的一组基为,v的维数为2。
⎪10⎪⎪01⎪方法二在已知线性空间的维数为n时,任意n个向量组成的线性无关向量组均作成线性空间的基。
基准3假设r[x]n就是一切次数大于n的实系数多项式迎上零多项式所构成的线性空间,证明:1,(x-1),(x-1),,(x-1)构成r[x]n的基。
证明实地考察k1⋅1+k2(x-1)++kn(x-1)的系数为0得kn=0,并代入上式可得xn-2的系数kn-1=0依此类推便存有kn=kn-1==k1=0,故1,(x-1),,(x-1)又r[x]的维数为n,于是1,(x-1),,(x-1)为r[x]的基。
方法三利用定理:数域p上两个非常有限佩线性空间同构的充份必要条件就是它们存有相同的维数。
例4设a=⎪,证明:由实数域上的矩阵a的全体实系数多项式f(a)共同组成的空间v=⎪f(a)|a=⎪⎪⎪0-1⎪⎪⎪⎪与复数域c作为实数域r上的线性空间10⎪⎪⎪v'={a+bi|a,b∈r}同构,并非谋它们的维数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性空间是n维向量空间的推广, 这样向量 空间中的线性相关、线性无关、最大线性无 关组等概念及有关性质在线性空间中仍然成 立. 根据这些概念推导出的定理在线性空间中 也是成立的.
n维向量空间的最大线性无关组只含有n个 向量. 而实系数多项式全体构成的实线性空间 的最大无关组可为
1, x, x2 ,, xn ,
含有无穷多个元素.
定义 在线性空间V中,如果存在n个线性无
关的向量 1,2 ,,n 使V中任一元素
都可由这n个线性无关的元素线性表出, 则这n个线性无关的元素称为线性空间 V的一组基底(简称基base)
注 在向量组中, 最大线性无关组不唯一, 线性 空间的基也不唯一, 但任意两组不相同的基所 含元素的个数相同.
定义 非零线性空间V的基中所含元素的个数, 称为线性空间的维数, 记为dimV.
例如 全体n阶方阵组成的线性空间Mn n是n2维的.
对只含有零元素的线性空间----零空间, 没有 基, 规定dimV=0.实系数多项式的体构成的实线性空间是无 限维的.
n元齐次线性方程组Ax=0的解空间是n R(A) 维的.