波形发生器设计
波形发生器设计报告

摘要(1)纯硬件设计波形发生器:采用运算放大器加分立元件来实现。
(2)实验的目的:能够产生正弦波、方波和三角波 (3)工作原理:主要是通过波形 转换形成三种波形①通过RC 振荡器(文氏电桥振荡器)产生正弦波,在实验的过程当中,可以加入负反馈稳幅支路,以此保证波形不出现明显的失真。
②正弦波通过滞回比较器产生方波;③方波通过一个积分器产生三角波。
即将滞回比较器与一个积分器首尾相接形成正反馈闭环系统,这样,经上一级输出的方波经由积分器积分可得到三角波。
(4)模拟方案实现框图正弦波 方波 三角波最终设计成的波形放大器能够对三种波形的幅值、频率进行简单的调节,并且实现相位的可调功能。
关键词:函数波形发生器;RC 桥式正弦波振荡电路;滞回比较器;积分器RC 桥式正弦波 振荡电路滞回比较器积分器Abstract(1) waveform generator: pure hardware design using operational amplifier with discrete component.(2) experimental objective: can produce sine wave, square wave and triangular wave(3) working principle: mainly through waveform transformation form three types of waveformsA through the RC oscillator wien bridge oscillator) generate sine wave, the process of the experiment, add feedback stability of branch, so that doesn't appear obvious distortion of waveform.B sine wave through a hysteresis comparator generate square wave;C square wave generated by an integrator triangle wave. The hysteresis comparator and an integrator head-tail form positive feedback closed-loop system, so that the output of square wave at the next higher level via the integrator integral triangle wave can be obtained.(4) to simulate the implementation schemeSine square wave, triangle waveFinal design into the waveform amplifier to three kinds of waveform amplitude, frequency, simple adjustment, and the implementation phase of the adjustable function.Key words: function waveform generator; RC bridge sine wave oscillator circuit;Hysteresis comparator; integrator目录第一章RC桥式正弦振荡电路 (4)1.1 RC桥式正弦振荡电路的介绍 (4)1.1.1RC桥式正弦振荡电路的应用与原理 (5)第二章滞回比较器............................................................... (6)2.1 滞回比较器 (6)第三章方波和三角波发生器 (7)3.1方波和三角波发生器 (7)3.1.1电路的实现 (8)3.1.1.1 电路软件仿真效果 (9)参考文献 (10)附录 (10)第一章RC桥式正弦振荡电路1.1 RC桥式正弦振荡电路的介绍RC桥式正弦振荡电路如图1所示。
波形发生器课程设计报告

1.设计题目:波形发生电路2.设计任务和要求:要求:设计并用分立元件和集成运算放大器制作能产生方波和三角波波形的波形发生器。
基本指标:输出频率分别为:102H Z、103H Z;输出电压峰峰值V PP≥20V3.整体电路设计1)信号发生器:信号发生器又称信号源或振荡器。
按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。
各种波形曲线均可以用三角函数方程式来表示,如三角波、锯齿波、矩形波(含方波)、正弦波。
通过模拟电子技术设计的波形发生器是一个不需要外加输入信号,靠自身振荡产生信号的电路。
2)电路设计:整体电路由RC振荡电路,反相输入的滞回比较器和积分电路组成。
理由:a)矩形波电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要组成部分;b)产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈;c)输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间。
RC振荡电路:即作为延迟环节,又作为反馈电路,通过RC充放电实现输出状态的自动转换。
反相输入的滞回比较器:矩形波产生的重要组成部分。
积分电路:将方波变为三角波。
3)整体电路框图:为实现方波,三角波的输出,先通过RC振荡电路,反相输入的滞回比较器得到方波,方波的输出,是三角波的输入信号。
三角波进入积分电路,得出的波形为所求的三角波。
其电路的整体电路框图如图1所示:图14)单元电路设计及元器件选择a)方波产生电路根据本实验的设计电路产生振荡,通过RC电路和滞回比较器时将产生幅值约为12V的方波,因为稳压管选择1N4742A(约12V)。
电压比较电路用于比较模拟输入电压与设定参考电压的大小关系,比较的结果决定输出是高电平还是低电平。
滞回比较器主要用来将信号与零电位进行比较,以决定输出电压。
图3为一种滞回电压比较器电路,双稳压管用于输出电压限幅,R 3起限流作用,R 2和R 1构成正反馈,运算放大器当u p >u n 时工作在正饱和区,而当u n >u p 时工作在负饱和区。
电子综合设计范例--波形发生器的设计

第2节 电子综合设计范例1----波形发生器的设计一、设计任务与要求1、设计任务设计制作一个波形发生器,该波形发生器能产生正弦波、方波、三角波和由用户编辑的特定形状波形。
示意图如下:2、设计要求⑴基本要求①具有产生正弦波、方波、三角波三种周期性波形的功能。
②用键盘输入编辑生成上述三种波形(同周期)的线性组合波形,以及由基波及其谐波(5次以下)线性组合的波形。
③具有波形存储功能。
④输出波形的频率范围为100Hz~20kHz(非正弦波频率按10次谐波计算);重复频率可调,频率步进间隔≤100Hz。
⑤输出波形幅度范围O~5V(峰—峰值),可按步进0.1V(峰—峰值)调整。
⑥具有显示输出波形的类型、重复频率(周期)和幅度的功能。
⑵发挥部分①输出波形频率范围扩展至100Hz~200kHz。
②用键盘或其他输入装置产生任意波形。
③增加稳幅输出功能,当负载变化时,输出电压幅度变化不大于±3%(负载电阻变化范围:100Ω~∞)。
④具有掉电存储功能,可存储掉电前用户编辑的波形和设置。
⑤可产生单次或多次(1000次以下)特定波形(如产生1个半周期三角波输出)。
⑥其他(如增加频谱分析、失真度分析、频率扩展>200kHz、扫频输出等功能)。
二、方案论证与比较1、常见信号源制作方法方案一:采用模拟分立元件或单片压控函数发生器MAX038,可产生正弦波、方波、三角波,通过用锁相式频率合成方案。
锁相式频率合成是将一个高稳定度和高精确度的标准频率经生器常采用的原理 DDFS 的基本原理框图如图1所示。
图1 DDFS 的基本原理框图输出波形的一个完整的周期、幅中。
当RAM 的地址变化时,DAC 的常数,便改变了每个周期中的点数,而这些点数正是用来改变整个波形的频率。
辨率在相位累加器的位数N 足够大时,理论上可以获得相应的分辨精度,这是调整外部元件可改变输出频率,但采用模拟器件由于元件分散性太大,即使使用单片函数发生器,参数也与外部元件有关,外接的电阻电容对参数影响很大,因而产生的频率稳定度较差、精度低、抗干扰能力低、成本也高;而且灵活性较差,不能实现任意波形以及波形运算输出等智能化的功能。
基于51单片机的波形发生器设计报告

基于51单片机的波形发生器设计报告波形发生器是一种电子设备,用于产生各种不同类型和频率的电信号波形。
基于51单片机的波形发生器设计是一种常用的工程设计。
下面是一个关于基于51单片机的波形发生器设计的报告,详细介绍了设计的原理、步骤、电路、程序和性能。
一、设计原理:二、设计步骤:1.确定波形发生器的输出频率范围和分辨率要求。
2.选择适当的定时器/计数器模块来实现频率的计时和控制。
3.设计电路,包括定时器/计数器模块、晶振、滤波电路和输出接口等。
4.编写程序,配置定时器/计数器模块的工作模式、计数值和中断服务程序。
5.调试和测试电路和程序,确保波形发生器正常工作并满足设计要求。
三、电路设计:1.定时器/计数器模块:选择一个合适的定时器/计数器模块,如51单片机的定时器/计数器T0或T1、根据设计要求,设置工作模式、计数器模式和计数值。
2.晶振:选择适当的晶振频率,一般为11.0592MHz,将晶振连接到单片机的晶振引脚。
3.滤波电路:根据需要,设计一个滤波电路来滤除不需要的高频噪声和杂散信号。
4.输出接口:设计一个输出接口电路来连接单片机和外部电路,使用电平转换电路将单片机的低电平(0V)输出转换为所需的电平电压。
四、程序设计:1.配置定时器/计数器模块的工作模式和计数值,设置中断服务程序。
2.在中断服务程序中,根据设计要求生成矩形波信号,并将信号输出到输出端口。
3.在主程序中,初始化单片机和定时器/计数器模块,使波形发生器开始工作。
4.在主循环中,可以设置按键输入来改变输出频率,通过调整计数值来实现不同的频率输出。
五、性能评估:1.输出频率范围:根据设计要求,测试波形发生器的最低和最高输出频率是否在设计范围内。
2.分辨率:对于指定频率范围,测试波形发生器的输出频率的分辨率,即最小可调节的频率。
3.稳定性:测试波形发生器的输出信号的稳定性和准确度,是否有漂移和偏差。
4.噪声:测试波形发生器的输出信号是否有杂散噪声和幅度波动。
波形发生器设计方案

波形发生器设计方案一、引言波形发生器是一种电子设备,用于产生具有特定频率、振幅和形状的电信号。
它在各种应用中广泛使用,例如科学实验、医疗设备和通信系统等。
本文将介绍一种波形发生器的设计方案。
二、设计原理波形发生器的设计原理是基于振荡电路。
振荡电路是一种能够稳定产生周期性信号的电路,通常采用反馈路径来实现。
在波形发生器中,我们将采用RC振荡电路作为基础。
三、设计步骤1. 选择合适的电路元件我们需要选择合适的电容和电阻来构建RC振荡电路。
根据所需的频率范围和精度要求,选取合适的元件。
2. 计算元件数值根据振荡电路的设计公式,计算所需的电容和电阻数值。
确保电容和电阻的数值可获得并满足设计需求。
3. 组装电路根据所选的电路元件和计算得到的数值,组装RC振荡电路。
确保元件的正确连接,并注意防止干扰和噪音。
4. 调试和优化连接电源后,使用示波器监测输出信号。
如果波形不满足设计要求,可以调整电容或电阻的数值进行优化。
四、特性和功能该波形发生器设计方案具有以下特性和功能:1. 频率可调性:通过调整电容或电阻的数值,可以实现不同频率的输出信号。
2. 波形形状可变性:根据实际需求,可以调整电路参数以产生正弦波、方波、矩形波等不同形状的输出信号。
3. 稳定性和精度:经过调试和优化后,该波形发生器能够稳定输出准确的波形信号。
五、应用领域本设计方案的波形发生器可应用于以下领域:1. 科学实验:在物理、化学等实验中,需要产生特定频率和形状的信号,用于测试和研究。
2. 医疗设备:在医疗设备中,波形发生器常用于心电图机、超声设备等,用于诊断和治疗。
3. 通信系统:在通信系统中,波形发生器被用于产生调制信号和时钟信号等,保证通信的稳定和可靠。
六、总结波形发生器是一种重要的电子设备,在多个领域中发挥着重要作用。
本文介绍了一种基于RC振荡电路的波形发生器设计方案,通过选择合适的元件、计算数值、组装电路和调试优化等步骤,可以实现频率可调、波形形状可变的输出信号。
波形发生器的设计实验报告

波形发生器的设计实验报告波形发生器是一种用于产生各种波形信号的仪器或设备。
它常常被用于电子实验、通信系统测试、音频设备校准等领域。
本文将介绍波形发生器的设计实验,并探讨其原理和应用。
波形发生器的设计实验主要包括以下几个方面:电路设计、元件选择、参数调整和信号输出。
首先,我们需要设计一个合适的电路来产生所需的波形。
常见的波形包括正弦波、方波、三角波等。
根据不同的波形要求,我们可以选择适当的电路结构和元件组成。
例如,正弦波可以通过RC电路或LC电路实现,方波可以通过比较器电路和计数器电路实现,三角波可以通过积分电路实现。
在元件选择方面,我们需要根据设计要求来选择合适的电阻、电容、电感等元件。
这些元件的数值和质量对波形发生器的性能和稳定性起着重要的影响。
因此,我们需要仔细考虑每个元件的参数,并选择合适的品牌和型号。
参数调整是波形发生器设计实验中的关键步骤之一。
我们需要根据设计要求来调整电路中各个元件的数值和工作状态,以确保所产生的波形符合要求。
参数调整需要依靠实验数据和仪器测量结果来进行,同时也需要运用一定的电路分析和计算方法。
信号输出是波形发生器设计实验的最终目标。
在设计过程中,我们需要确保所产生的波形信号能够正确输出,并具有稳定性和准确性。
为了实现这一目标,我们可以使用示波器等仪器来对输出信号进行检测和分析,并根据需要进行调整和优化。
波形发生器具有广泛的应用领域。
在电子实验中,波形发生器常常被用于产生各种测试信号,用于测试和验证电路的性能和功能。
在通信系统测试中,波形发生器可以产生各种模拟信号,用于测试和校准通信设备。
在音频设备校准中,波形发生器可以产生各种音频信号,用于校准音频设备的频率响应和失真特性。
波形发生器的设计实验是一个涉及电路设计、元件选择、参数调整和信号输出的复杂过程。
在实验中,我们需要仔细考虑每个步骤的要求,并根据实际情况进行调整和优化。
通过合理的设计和实验验证,我们可以获得稳定、准确的波形信号,满足各种应用需求。
任意波形发生器设计

任意波形发生器设计一、设计目标和需求分析在进行任意波形发生器设计之前,首先需要明确设计目标和需求。
根据实际应用需求,我们需要设计一种具有以下特点的任意波形发生器:1.多种波形形状:能够产生包括正弦波、方波、三角波、锯齿波等多种波形形状的输出信号。
2.高精度输出:能够提供稳定、精确的波形输出,满足对波形频率、幅度、相位等参数的要求。
3.宽频率范围:能够在较宽的频率范围内产生波形信号,适应不同应用场景的需求。
4.灵活性和操作便捷:具备灵活的参数调节和操作界面,方便用户配置所需波形信号。
二、电路设计和构成基于以上需求,我们可以采用数字/模拟混合电路来设计任意波形发生器。
整体电路结构包括信号发生器、波形调节电路、滤波器、放大器和输出接口等几大部分。
1.信号发生器:信号发生器是生成基本信号的核心部分。
可以采用数字逻辑电路,通过编程控制产生不同形状的基本波形,例如正弦波、方波、三角波、锯齿波等。
可以使用存储器来存储基本波形的采样点,并通过数字模拟转换器(DAC)将数字信号转换为模拟信号。
2.波形调节电路:波形调节电路用于调整波形的频率、幅度和相位等参数。
通过调整振荡电路中的电阻、电容或电感等元件,实现对基本波形的变换和调节。
可以设计多种电路模块来完成这一任务,例如可变电容二极管电路、可调电阻电路等。
3.滤波器:滤波器用于对产生的波形信号进行滤波处理,除去高频或低频的杂散分量,保留所需频率范围内的信号。
可以采用各种类型的滤波器电路,例如RC滤波器、有源滤波器或数字滤波器等。
4.放大器:放大器用于增强波形信号的幅度,确保输出的信号具备足够的驱动能力,可以驱动接收端电路。
可以采用运放等放大电路,根据需要选择合适的增益。
5.输出接口:输出接口用于将产生的波形信号输出给外部设备。
可以设计多种类型的输出接口,例如模拟输出接口(BNC接口)、数字输出接口(USB接口)等,方便用户接入不同类型的设备。
三、实现方法和关键技术在设计任意波形发生器时,需要考虑以下关键技术和实现方法:1.数字信号处理技术:通过数字信号处理技术,实现对基本波形的生成、存储和输出。
proteus波形发生器课程设计

proteus波形发生器课程设计一、课程目标知识目标:1. 理解波形发生器的原理,掌握Proteus软件中波形发生器的使用方法;2. 学会分析波形发生器的电路图,并能够描述各部分功能;3. 掌握如何调整波形发生器的参数,以实现不同波形(如正弦波、方波、三角波等)的输出。
技能目标:1. 能够运用Proteus软件设计并搭建简单的波形发生器电路;2. 学会使用示波器等工具观察波形发生器输出的波形,并进行分析;3. 能够针对实际需求,调整波形发生器的参数,实现特定波形的输出。
情感态度价值观目标:1. 培养学生对电子电路的兴趣,激发学习热情;2. 增强学生的团队合作意识,培养在团队中沟通、协作的能力;3. 引导学生认识到波形发生器在电子技术中的应用价值,提高学生的创新意识和实践能力。
课程性质:本课程为电子技术实践课程,以实验操作和实际应用为主,注重培养学生的实际操作能力和创新能力。
学生特点:学生为高年级电子专业或相关专业的学生,具有一定的电子电路基础和实际操作能力。
教学要求:结合Proteus软件和实际电路,引导学生从理论到实践,逐步掌握波形发生器的原理和应用。
在教学过程中,注重启发式教学,鼓励学生思考、提问、创新,提高学生的综合素养。
通过课程学习,使学生能够独立完成波形发生器的设计与搭建,为后续相关课程和实际工作打下基础。
二、教学内容1. 波形发生器原理介绍:讲解波形发生器的概念、种类、工作原理及其在电子电路中的应用。
- 教材章节:第二章第二节“波形发生器的基本原理”- 内容列举:正弦波、方波、三角波等常见波形的产生原理,集成波形发生器的特点。
2. Proteus软件使用:介绍Proteus软件的基本功能,重点讲解波形发生器的搭建、参数设置和仿真操作。
- 教材章节:第三章“Proteus软件的使用”- 内容列举:软件界面、基本操作、波形发生器组件、仿真分析等。
3. 波形发生器电路分析与设计:- 教材章节:第四章“波形发生器电路分析与设计”- 内容列举:电路图分析、各部分功能、参数调整、波形观察与调试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计任务书学生姓名:专业班级:自动化指导教师:工作单位:题目: 波形信号发生器初始条件:可选元件:运算放大器,三极管,电阻、开关、电容若干,等自选元器件。
可用仪器:示波器,万用表,频率计等要求完成的主要任务:(1)设计任务设计一台波形信号发生器。
(2)设计要求1、输出波形:方波、三角波、锯齿波、正弦波、阶梯波。
2、频率范围:1Hz—10Hz,10Hz—100Hz,100Hz—1KHz,1KHz—10KHz等四个波段。
3、频率控制:通过改变RC时间常数手控信号频率。
4、方波峰峰值0—20V之间可调,三角波峰峰值在0—5之间可调,正弦波峰峰值大于1V。
5、用分立元件和运放设计一个波形发生器,要求用Multisim或Protel进行电路仿真。
时间安排:1、2010 年6月7日至2010年6月28日,完成仿真设计、制作与调试;撰写课程设计报告。
2、2010 年7月1日提交课程设计报告,进行课程设计验收和答辩。
设计的作用、目的1、根据从稳定性、可靠性、实用性、经济性选择电子线路和电子器件,找到合适的功能电路;2、通过网络查阅和图书馆资料,培养独立分析问题和解决实际问题的能力;3、掌握常用元器件的识别和测试4、熟悉常用仪表,了解电路调试的基本方法指导教师签名:年月日系主任(或责任教师)签名:年月日目录1 函数发生器的总方案及原理框图 (1)1.1 电路设计原理框图 (1)1.2 电路设计方案设计 (1)2设计的目的及任务 (2)2.1 课程设计的目的 (2)2.2 课程设计的任务与要求 (2)2.3 课程设计的技术指标 (2)3 各部分电路设计 (3)3.1 方波发生电路的工作原理 (3)3.2 方波---三角波转换电路的工作原理 (3)3.3 三角波---正弦波转换电路的工作原理 (6)3.4电路的参数选择及计算 (8)3.5 总电路图 (10)4 电路仿真 (11)4.1 方波---三角波发生电路的仿真 (11)4.2 三角波---正弦波转换电路的仿真 (12)4.3 仿真结果分析 (12)5电路的安装与调试 (13)5.1 方波---三角波发生电路的安装与调试 (13)5.2 三角波---正弦波转换电路的安装与调试 (13)5.3 总电路的安装与调试 (13)5.4 电路安装与调试中遇到的问题及分析解决方法 (13)6电路的实验结果 (15)6.1 方波---三角波发生电路的实验结果 (15)6.2 三角波---正弦波转换电路的实验结果 (15)6.3 实测电路波形、误差分析及改进方法 (16)7 实验总结 (17)8 仪器仪表明细清单 (18)9 参考文献 (19)1.函数发生器总方案及原理框图1.1 原理框图1.2 函数发生器的总方案函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。
根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块)。
为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。
产生正弦波、方波、三角波的方案有多种,如首先RC振荡产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。
本课设采用先产生方波—三角波,再将三角波变换成正弦波的电路设计方法,本课题中函数发生器电路组成框图如下所示:由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。
差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。
特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
波形变换的原理是利用差分放大器传输特性曲线的非线性。
2.课程设计的目的和设计的任务2.1 设计目的1、根据稳定性、实用性、经济性选择电子线路和电子器件,找到合适的电路2、通过网络查阅和图书馆资料,培养独立分析问题和解决实际问题的能力;3.掌握常用元器件的识别和测试4.熟悉常用仪表,了解电路调试的基本方法2.2设计任务设计方波——三角波——正弦波函数信号发生器2.3课程设计的要求及技术指标1.输出波形:正弦波、方波、三角波;2.频率范围:1Hz—10Hz,10Hz—100Hz,100Hz—1KHz,1KHz—10KHz。
3.输出电压:方波UP-P≤20V,三角波UP-P=5V,正弦波UP-P>1V;3.各组成部分的工作原理3.1方波发生电路的工作原理3.2 方波---三角波转换电路的工作原理方波—三角波产生电路工作原理如下:若R2下侧端点断开,运算发大器LM101AH1与R2及R3、RP1组成电压比较器。
运放的反相端接基准电压,即U-=0,同相输入端接输入电压Uia,R1为平衡电阻。
比较器的输出Uo1的高电平等于正电源电压+Vcc,低电平等于负电源电压-Vee(|+Vcc|=|-Vee|), 当比较器的U+=U-=0时,比较器翻转,输出Uo1从高电平跳到低电平-Vee,或者从低电平Vee 跳到高电平Vcc 。
设Uo1=+Vcc,则312231231()0CC ia R RP R U V U R R RP R R RP ++=++=++++将上式整理,得比较器翻转的下门限单位Uia-为223131()CC CC ia R R U V V R RP R RP ---=+=++若Uo1=-Vee,则比较器翻转的上门限电位Uia+为223131()EE CC ia R R U V V R RP R RP +-=-=++比较器的门限宽度Vcc R R R U U U p TH TH TH 132212+=-=∆由以上公式可得比较器的电压传输特性,如下图所示。
a 点断开后,运放LM101AH2与R4、RP2、C1及R5组成反相积分器,其输入信号为方波Uo1,则积分器的输出Uo2为214221()O O U U dt R RP C -=+⎰ 1O CC U V =+时,2422422()()()CC CCO V V U t t R RP C R RP C -+-==++1O EE U V =-时,2422422()()()CC EE O V V U t t R RP C R RP C --==++可见积分器的输入为方波时,输出是一个上升速度与下降速度相等的三角波,其波形关系下图所示。
a 点闭合,既比较器与积分器首尾相连,形成闭环电路,则自动产生方波-三角波。
三角波的幅度为2231O m CC R U V R RP =+方波-三角波的频率f 为3124224()R RP f R R RP C +=+由以上两式可以得到以下结论:1. 电位器RP2在调整方波-三角波的输出频率时,不会影响输出波形的幅度。
若要求输出频率的范围较宽,可用C2改变频率的范围,PR2实现频率微调。
2. 方波的输出幅度应等于电源电压+Vcc 。
三角波的输出幅度应不超过电源电压+Vcc 。
电位器RP1可实现幅度微调,但会影响方波-三角波的频率。
3.3 三角波---正弦波转换电路的工作原理三角波——正弦波的变换电路主要由差分放大电路来完成。
差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。
特别是作为直流放大器,可以有效的抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
波形变换的原理是利用差分放大器传输特性曲线的非线性。
分析表明,传输特性曲线的表达式为:022/1id TC E U U aI I aI e==+ 011/1id TC E U U aI I aI e -==+式中 /1C E a I I =≈0I ——差分放大器的恒定电流;T U ——温度的电压当量,当室温为25oc 时,UT ≈26mV 。
如果Uid 为三角波,设表达式为44434m id m U T t T U U Tt T ⎧⎛⎫- ⎪⎪⎪⎝⎭=⎨-⎛⎫⎪- ⎪⎪⎝⎭⎩ 022T t T t T ⎛⎫≤≤ ⎪⎝⎭⎛⎫≤≤ ⎪⎝⎭式中 Um ——三角波的幅度; T ——三角波的周期。
为使输出波形更接近正弦波,由图可见: (1) 传输特性曲线越对称,线性区越窄越好;(2) 三角波的幅度Um 应正好使晶体管接近饱和区或截止区。
(3) 图为实现三角波——正弦波变换的电路。
其中R12调节三角波的幅度,R14调整电路的对称性,其并联电阻R16用来减小差分放大器的线性区。
电容C8,C9,C11为隔直电容,C10为滤波电容,以滤除谐波分量,改善输出波形。
3.4直流稳压电源部分:R550Ω50ΩKey=A50%使用直流稳压电源替代Vcc ,Vee ,将使所加电源可调,从而调整方波的幅度。
3.5电路的参数选择及计算1.方波-三角波部分: 由式cc p m V R R R U 13202+=得:412052232===+CC m o p V U R R R 取R2=10K Ω,则R3+Rp1=40K Ω,选择R3=30K Ω和Rp1为50K Ω的电位器。
取平衡电阻R1k R R R R R R p p 10)(132132=+++•=Ω,由式22413)(41C R R R R T f p p ++== 得 R4+Rp2=22134C fR R R p +当1Hz ≤≤f 10Hz 时,取C2=10uF ,则R4+Rp2=100K`—10K Ω,选择R4=5k Ω和Rp2=100K Ω当10Hz ≤≤f 100Hz 时,取C2=1uf ,则R4+Rp2=100K`—10K Ω,选择R4=5k Ω和Rp2=100K Ω,平衡电阻R6=150k Ω当100Hz ≤≤f 1KHz 时,取C2=0.1uf ,则R4+Rp2=100K`—10K Ω,选择R4=5k Ω和Rp2=100K Ω,平衡电阻R6=150k Ω当1KHz ≤≤f 10KHz 时,取C2=0.1uf ,则R4+Rp2=100K`—10K Ω,选择R4=5k Ω和Rp2=100K Ω,平衡电阻R6=150k Ω2.三角波-正弦波部分三角波经电容C8和 分压电阻R12、R20给差分电路输入差模电压Uid 。
一般情况下,差模电压Uid ,26mv ,因为三角波的最大幅值为5v,故取R1=6K Ω、Rp3=600Ω。
因为三角波的频率不太高,所以,隔直电容C9和C11要取得大一些,这里取C9=C11=C8=470uF 。
滤波电容C11视输出的波形而定。
若含高次谐波成分较多,C11可取得较小,一般为几十至1微法。