波形发生器课程设计

合集下载

波形产生器课程设计

波形产生器课程设计

目录目录 01.1波形发生器的进展状况 01.2国内外波形发生器产品比较 (1)5.1 主流程图 (6)5.2正弦波仿真图 (6)5.4 方波仿真图 (7)1.波形发生器概况在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和运算机等技术领域,常常需要用到各类各样的信号波形发生器。

随着集成电路的迅速进展,用集成电路可很方便地组成各类信号波形发生器。

用集成电路实现的信号波形发生器与其它信号波形发生器相较,其波形质量、幅度和频率稳固性等性能指标,都有了专门大的提高。

1.1波形发生器的进展状况波形发生器是能够产生大量的标准信号和用户概念信号,并保证高精度、高稳固性、可重复性和易操作性的电子仪器。

函数波形发生器具有持续的相位变换、和频率稳固性等长处,不仅能够模拟各类复杂信号,还可对频率、幅值、相移、波形进行动态、及时的控制,并能够与其它仪器进行通信,组成自动测试系统,因此被普遍用于自动控制系统、震动鼓励、通信和仪器仪表领域。

在70 年代前,信号发生器主要有两类:正弦波和脉冲波,而函数发生器介于两类之间,能够提供正弦波、余弦波、方波、三角波、上弦波等几种常常利用标准波形,产生其它波形时,需要采用较复杂的电路和机电结合的方式。

那个时期的波形发生器多采用模拟电子技术,而且模拟器件组成的电路存在着尺寸大、价钱贵、功耗大等缺点,而且要产生较为复杂的信号波形,则电路结构超级复杂。

同时,主要表现为两个突出问题,一是通过电位器的调节来实现输出频率的调节,因此很难将频率调到某一固定值;二是脉冲的占空比不可调节。

到了二十一世纪,随着集成电路技术的高速进展,出现了多种工作频率可过GHz 的DDS 芯片,同时也推动了函数波形发生器的进展,2003 年,Agilent 的产品33220A能够产生17 种波形,最高频率可达到20M,2005 年的产品N6030A 能够产生高达500MHz 的频率,采样的频率可达1.25GHz。

波形发生器课程设计vhdl

波形发生器课程设计vhdl

波形发生器课程设计vhdl一、教学目标本课程旨在通过学习VHDL(硬件描述语言),让学生掌握波形发生器的设计与仿真。

通过本课程的学习,学生应能理解VHDL的基本语法和编程技巧,能够运用VHDL设计简单的数字电路,特别是波形发生器。

此外,通过课程实践,培养学生分析问题、解决问题的能力,以及团队合作和沟通交流的能力。

具体来说,知识目标包括:1.掌握VHDL的基本语法和编程技巧。

2.理解波形发生器的工作原理和设计方法。

技能目标包括:1.能够运用VHDL设计简单的数字电路。

2.能够独立完成波形发生器的设计与仿真。

情感态度价值观目标包括:1.培养学生的创新意识和实践能力。

2.培养学生团队合作和沟通交流的能力。

二、教学内容本课程的教学内容主要包括VHDL基本语法、数字电路设计方法和波形发生器的设计与仿真。

1.VHDL基本语法:包括数据类型、信号声明、实体和架构、过程和函数、线网和赋值语句等。

2.数字电路设计方法:包括组合逻辑电路、时序逻辑电路和触发器的设计方法。

3.波形发生器的设计与仿真:包括正弦波、方波、三角波等波形发生器的设计方法,以及相应的仿真测试。

三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法,包括讲授法、案例分析法、实验法和讨论法等。

1.讲授法:用于讲解VHDL基本语法和数字电路设计方法。

2.案例分析法:通过分析实际案例,让学生学会波形发生器的设计与仿真。

3.实验法:让学生动手实践,独立完成波形发生器的设计与仿真。

4.讨论法:在课堂上引导学生进行思考和讨论,培养团队合作和沟通交流的能力。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:《数字电路设计与VHDL编程》等。

2.参考书:《VHDL完全学习手册》、《数字电路与逻辑设计》等。

3.多媒体资料:包括PPT课件、教学视频、在线课程等。

4.实验设备:计算机、VHDL仿真软件(如ModelSim)、示波器等。

单片机波形发生器课程设计

单片机波形发生器课程设计

单片机波形发生器课程设计一、课程目标知识目标:1. 理解单片机的基本原理,掌握单片机波形发生器的硬件组成及工作原理;2. 学会使用相关编程语言(如C语言)编写程序,实现对单片机波形发生器的控制;3. 掌握单片机波形发生器在不同波形(如正弦波、方波、三角波等)下的参数设置及其调整方法。

技能目标:1. 能够独立完成单片机波形发生器的硬件连接与调试;2. 能够运用所学编程知识,编写出实现不同波形的程序,并成功运行在单片机上;3. 学会分析并解决在单片机波形发生器使用过程中遇到的问题。

情感态度价值观目标:1. 培养学生对电子技术的兴趣和热情,提高学生对单片机及其应用的重视程度;2. 培养学生的团队协作意识,学会在团队中发挥个人作用,共同完成项目任务;3. 培养学生勇于创新、敢于实践的精神,提高学生面对挫折和困难时的坚持与克服能力。

课程性质:本课程为实践性较强的课程,结合理论教学,注重培养学生的实际操作能力。

学生特点:学生具备一定的电子基础和编程知识,对单片机有一定了解,但实践经验不足。

教学要求:教师应结合课程特点和学生实际情况,采用理论教学与实践操作相结合的方式进行教学,注重培养学生的动手能力和创新能力。

在教学过程中,分解课程目标为具体的学习成果,以便进行有效的教学设计和评估。

二、教学内容1. 理论部分:a. 单片机原理概述:讲解单片机的基本结构、工作原理及性能特点;b. 波形发生器原理:介绍波形发生器的功能、分类及其在电子技术中的应用;c. 编程语言基础:回顾C语言基础知识,重点讲解与单片机编程相关的语法和技巧。

2. 实践部分:a. 硬件连接与调试:指导学生完成单片机波形发生器的硬件连接,学习使用调试工具;b. 程序编写与烧录:教授学生编写控制单片机波形发生器的程序,并进行烧录;c. 波形参数调整:学习如何调整单片机波形发生器的参数,实现不同波形输出。

3. 教学大纲与进度安排:a. 第一周:单片机原理概述,波形发生器原理;b. 第二周:C语言回顾,编程语言基础;c. 第三周:硬件连接与调试;d. 第四周:程序编写与烧录;e. 第五周:波形参数调整,实践操作与总结。

protel课程设计波形发生器

protel课程设计波形发生器

protel课程设计波形发生器一、教学目标本节课的教学目标是让学生掌握Protel软件的使用,能够设计并制作波形发生器电路板。

具体分为三个部分:1.知识目标:使学生了解波形发生器的基本原理和电路组成,熟悉Protel软件的操作界面和功能。

2.技能目标:培养学生使用Protel软件进行电路设计的能力,能够独立完成波形发生器电路板的设计和制作。

3.情感态度价值观目标:培养学生对电子技术的兴趣,提高学生动手实践的能力,培养学生的创新精神和团队合作意识。

二、教学内容本节课的教学内容主要包括三个部分:1.波形发生器的基本原理和电路组成:介绍波形发生器的工作原理,讲解其电路组成和功能。

2.Protel软件的操作和使用:讲解Protel软件的操作界面和功能,示范如何使用Protel软件进行电路设计。

3.波形发生器电路板的设计和制作:引导学生使用Protel软件设计波形发生器电路板,讲解电路板制作的步骤和注意事项。

三、教学方法为了达到本节课的教学目标,将采用以下教学方法:1.讲授法:讲解波形发生器的基本原理和电路组成,让学生掌握相关理论知识。

2.案例分析法:分析实际案例,让学生了解Protel软件的操作和使用。

3.实验法:引导学生动手实践,设计并制作波形发生器电路板,培养学生的实际操作能力。

4.小组讨论法:分组让学生进行讨论和合作,培养学生的团队协作能力和创新精神。

四、教学资源为了支持本节课的教学内容和教学方法的实施,将准备以下教学资源:1.教材:选用与Protel软件和波形发生器设计相关的教材,为学生提供理论知识的学习。

2.多媒体资料:制作课件和教学视频,为学生提供直观的学习材料。

3.实验设备:准备计算机和Protel软件,以及波形发生器电路实验所需的元器件和设备,为学生提供动手实践的机会。

五、教学评估为了全面、客观地评估学生的学习成果,将采用以下评估方式:1.平时表现:观察学生在课堂上的参与程度、提问回答情况以及团队合作表现,以了解学生的学习态度和掌握程度。

波形发生器单片机课程设计

波形发生器单片机课程设计

波形发生器单片机课程设计一、课程目标知识目标:1. 让学生理解波形发生器的基本原理,掌握单片机在波形发生器中的应用;2. 学会使用编程软件进行单片机程序设计,实现常见波形的生成;3. 了解波形发生器的性能指标,如频率、幅度、相位等,并能进行简单计算。

技能目标:1. 培养学生运用所学知识,设计并实现波形发生器单片机程序的能力;2. 提高学生动手实践能力,能够独立完成波形发生器的硬件连接与调试;3. 培养学生团队协作能力,通过小组合作完成课程设计。

情感态度价值观目标:1. 培养学生对单片机及电子技术的兴趣,激发学生的学习热情;2. 培养学生严谨的科学态度,注重实验数据的真实性,遵循实验操作规范;3. 培养学生的创新意识,鼓励学生勇于尝试,不断优化波形发生器设计。

分析课程性质、学生特点和教学要求:1. 课程性质:本课程属于电子技术领域,涉及单片机原理、编程及硬件设计;2. 学生特点:学生已具备一定的电子技术基础,熟悉单片机的基本操作,具有一定的编程能力;3. 教学要求:注重理论与实践相结合,强调动手实践,培养学生解决实际问题的能力。

二、教学内容1. 波形发生器原理:介绍波形发生器的功能、分类及其在电子技术中的应用,重点讲解单片机波形发生器的原理及组成。

教材章节:《单片机原理与应用》第四章第三节2. 单片机程序设计:讲解如何使用编程软件(如Keil)进行单片机程序设计,实现常见波形(如正弦波、方波、三角波等)的生成。

教材章节:《单片机原理与应用》第五章3. 硬件设计与连接:介绍波形发生器硬件电路的设计方法,包括单片机、晶振、滤波器等元件的选型与连接。

教材章节:《电子电路设计》第二章4. 波形发生器性能指标:讲解波形发生器的主要性能指标,如频率、幅度、相位等,并进行简单计算。

教材章节:《电子测量与仪器》第三章5. 实践操作与调试:指导学生进行波形发生器硬件连接、程序下载和调试,确保波形发生器正常工作。

教材章节:《单片机原理与应用》第六章6. 课程设计:要求学生以小组为单位,设计并实现一个具有特定功能的波形发生器,完成课程设计报告。

波形发生器课程设计

波形发生器课程设计

教师批阅波形发生器设计摘要波形发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。

函数信号发生器是一种能够产生多种波形,函数信号发生器是一种能够产生多种波形,如三角波、如三角波、锯齿波、矩形波(含方波)、正弦波的电路。

函数信号发生器在电路实验和设备检测中具有十分广泛的用途。

通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。

目前使用的信号发生器大部分是函数信号发生器,且特殊波形发生器的价格昂贵。

所以本设计使用的是DAC0832芯片构成的发生器,可产生三角波、方波、正弦波等多种特殊波形和任意波形,波形的频率可用程序控制改变。

在单片机上加外围器件距阵式键盘,通过键盘控制波形频率的增减以及波形的选择,并用了LCD 显示频率大小。

在单片机的输出端口接DAC0832进行D/A 转换,再通过运放进行波形调整,最后输出波形接在示波器上显示。

本设计具有线路简单、结构紧凑、价格低廉、性能优越等优点。

波器上显示。

本设计具有线路简单、结构紧凑、价格低廉、性能优越等优点。

本设计制作的波形发生器,可以输出多种标准波形,如方波、正弦波、三角波、锯齿波等,还可以输出任意波形,如用鼠标创建的一个周期的非规则波形或用函数描述的波形等,输出的波形的频率、幅度均可调,且能脱机输出。

设计的人机界面不但清晰美观,而且操作方便。

人机界面不但清晰美观,而且操作方便。

关键词:波形发生器;:波形发生器;DAC0832DAC0832DAC0832;;单片机;波形调整教师批阅目录一、设计目的及意义 ............................................................................. - 3 -1.1设计目的 ........................................................................................ - 3 -1.2设计意义 ........................................................................................ - 3 -二、方案论证 ......................................................................................... - 4 -2.1设计要求 ........................................................................................ - 4 -2.2方案论证 ........................................................................................ - 4 -三、硬件电路设计 ................................................................................. - 5 -3.1设计思路、元件选型设计思路、元件选型 .................................................................... - 5 -3.2原理图 ............................................................................................ - 5 -3.3主要芯片介绍主要芯片介绍 ................................................................................ - 6 -3.4硬件连线图 .................................................................................. - 10 -四、软件设计 ....................................................................................... - 10 -4.1锯齿波的产生过程锯齿波的产生过程 ...................................................................... - 11 -4.2三角波产生过程三角波产生过程 .......................................................................... - 13 -4.3 方波的产生过程 ......................................................................... - 14 -4.4 正弦波的产生过程 ..................................................................... - 16 -4.5通过开关实现波形切换和调频、调幅通过开关实现波形切换和调频、调幅 ...................................... - 18 -五、调试与仿真 ................................................................................... - 20 -5.1仿真结果 ...................................................................................... - 21 -六、总结 ............................................................................................... - 22 -七、参考文献: ................................................................................... - 23 -教师批阅一、设计目的及意义1.1设计目的(1)利用所学微机的理论知识进行软硬件整体设计,锻炼学生理论联系实际、提高我们的综合应用能力。

多种波形发生器课程设计

多种波形发生器课程设计

多种波形发生器课程设计一、课程目标知识目标:1. 学生能够理解并掌握多种波形发生器的原理及其功能。

2. 学生能够识别并描述方波、三角波、正弦波等基本波形的特点。

3. 学生能够解释波形发生器在电子技术中的应用。

技能目标:1. 学生能够运用所学知识,设计简单的波形发生器电路图。

2. 学生能够操作示波器等实验设备,观察并分析不同波形的特点。

3. 学生能够通过小组合作,完成波形发生器的搭建和调试。

情感态度价值观目标:1. 学生能够认识到波形发生器在科技发展中的重要性,增强对电子技术的兴趣。

2. 学生在学习过程中,培养合作精神、探究精神和创新意识。

3. 学生能够遵循实验操作规范,树立安全意识,养成严谨的科学态度。

课程性质:本课程为电子技术课程的一部分,旨在帮助学生了解并掌握波形发生器的原理和应用。

学生特点:学生为高中年级,具备一定的电子基础知识和实验操作能力。

教学要求:结合学生特点和课程性质,通过理论讲解、实验演示和小组合作,使学生能够达到上述课程目标。

在教学过程中,注重培养学生的动手能力、思考能力和创新能力,将知识目标、技能目标和情感态度价值观目标分解为具体的学习成果,以便后续的教学设计和评估。

二、教学内容1. 理论知识:- 波形发生器的原理及其分类- 方波、三角波、正弦波等基本波形的数学表达式和特点- 波形发生器在电子电路中的应用实例2. 实践操作:- 示波器的使用方法- 波形发生器电路图设计- 波形发生器电路的搭建与调试3. 教学大纲:- 第一课时:波形发生器原理及分类介绍,示波器使用方法讲解- 第二课时:方波、三角波、正弦波等基本波形特点及数学表达式分析- 第三课时:波形发生器应用实例分析,电路图设计方法讲解- 第四课时:小组合作,进行波形发生器电路搭建与调试4. 教材章节:- 教材第四章:波形发生器- 教材第五章:示波器及其应用教学内容根据课程目标进行选择和组织,确保科学性和系统性。

在教学过程中,教师需按照教学大纲安排教学内容和进度,结合教材章节,使学生在掌握理论知识的同时,能够进行实践操作,提高学生的综合能力。

proteus波形发生器课程设计

proteus波形发生器课程设计

proteus波形发生器课程设计一、课程目标知识目标:1. 理解波形发生器的原理,掌握Proteus软件中波形发生器的使用方法;2. 学会分析波形发生器的电路图,并能够描述各部分功能;3. 掌握如何调整波形发生器的参数,以实现不同波形(如正弦波、方波、三角波等)的输出。

技能目标:1. 能够运用Proteus软件设计并搭建简单的波形发生器电路;2. 学会使用示波器等工具观察波形发生器输出的波形,并进行分析;3. 能够针对实际需求,调整波形发生器的参数,实现特定波形的输出。

情感态度价值观目标:1. 培养学生对电子电路的兴趣,激发学习热情;2. 增强学生的团队合作意识,培养在团队中沟通、协作的能力;3. 引导学生认识到波形发生器在电子技术中的应用价值,提高学生的创新意识和实践能力。

课程性质:本课程为电子技术实践课程,以实验操作和实际应用为主,注重培养学生的实际操作能力和创新能力。

学生特点:学生为高年级电子专业或相关专业的学生,具有一定的电子电路基础和实际操作能力。

教学要求:结合Proteus软件和实际电路,引导学生从理论到实践,逐步掌握波形发生器的原理和应用。

在教学过程中,注重启发式教学,鼓励学生思考、提问、创新,提高学生的综合素养。

通过课程学习,使学生能够独立完成波形发生器的设计与搭建,为后续相关课程和实际工作打下基础。

二、教学内容1. 波形发生器原理介绍:讲解波形发生器的概念、种类、工作原理及其在电子电路中的应用。

- 教材章节:第二章第二节“波形发生器的基本原理”- 内容列举:正弦波、方波、三角波等常见波形的产生原理,集成波形发生器的特点。

2. Proteus软件使用:介绍Proteus软件的基本功能,重点讲解波形发生器的搭建、参数设置和仿真操作。

- 教材章节:第三章“Proteus软件的使用”- 内容列举:软件界面、基本操作、波形发生器组件、仿真分析等。

3. 波形发生器电路分析与设计:- 教材章节:第四章“波形发生器电路分析与设计”- 内容列举:电路图分析、各部分功能、参数调整、波形观察与调试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.设计题目:波形发生电路2.设计任务和要求:要求:设计并用分立元件和集成运算放大器制作能产生方波和三角波波形的波形发生器。

基本指标:输出频率分别为:102HZ 、103HZ;输出电压峰峰值VPP≥20V3.整体电路设计1)信号发生器:信号发生器又称信号源或振荡器。

按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。

各种波形曲线均可以用三角函数方程式来表示,如三角波、锯齿波、矩形波(含方波)、正弦波。

通过模拟电子技术设计的波形发生器是一个不需要外加输入信号,靠自身振荡产生信号的电路。

2)电路设计:整体电路由RC振荡电路,反相输入的滞回比较器和积分电路组成。

理由:a)矩形波电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要组成部分;b)产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈;c)输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间。

RC振荡电路:即作为延迟环节,又作为反馈电路,通过RC充放电实现输出状态的自动转换。

反相输入的滞回比较器:矩形波产生的重要组成部分。

积分电路:将方波变为三角波。

3)整体电路框图:为实现方波,三角波的输出,先通过 RC振荡电路,反相输入的滞回比较器得到方波,方波的输出,是三角波的输入信号。

三角波进入积分电路,得出的波形为所求的三角波。

其电路的整体电路框图如图1所示:图14)单元电路设计及元器件选择 a ) 方波产生电路根据本实验的设计电路产生振荡,通过RC 电路和滞回比较器时将产生幅值约为12V 的方波,因为稳压管选择1N4742A (约12V )。

电压比较电路用于比较模拟输入电压与设定参考电压的大小关系,比较的结果决定输出是高电平还是低电平。

滞回比较器主要用来将信号与零电位进行比较,以决定输出电压。

图3为一种滞回电压比较器电路,双稳压管用于输出电压限幅,R 3起限流作用,R 2和R 1构成正反馈,运算放大器当u p >u n 时工作在正饱和区,而当u n >u p 时工作在负饱和区。

从电路结构可知,当输入电压u in 小于某一负值电压时,输出电压u o = -U Z ;当输入电压u in 大于某一电压时,u o = +U Z 。

运算放大器在两个饱和区翻转时u p =u n =0,由此可确定出翻转时的输入电压。

u p 用u in 和u o 表示,有21o 1in 221o2in 1p 1111R R u R u R R R u R u R u ++=++=根据翻转条件,令上式右方为零,得此时的输入电压th Z 21o 21in U U R R u R R u ==-=U th 称为阈值电压。

滞回电压比较器的直流传递特性如图4所示。

设输入电压初始值小于-U th ,此时u o = -U Z ;增大u in ,当u in =U th 时,运放输出状态翻转,进入正饱和区。

如果初始时刻运放工作在正饱和区,减小u in ,当u in = -U th 时,运放则开始进入负饱和区。

图3 滞回电压比较器图4 滞回电压比较器的直流传递特性如果给图3所示电路输入三角波电压,其幅值大于U th ,设t = 0时,u o= -U Z ,其输出波形如图5所示。

可见,输出为方波。

图5 输入为三角波时滞回电压比较器的输出波形b ).方波—三角波发生电路给图3所示的滞回电压比较器级联一积分电路,再将积分器的输出作为比较器的输入,如图6所示。

由于积分电路可将方波变为三角波,而比较器的输入又正好为三角波,因此可定性判断出,图6电路的输出电压u o1为方波,u o2为三角波,如图7所示。

图6 方波—三角波发生电路下面分析其振荡周期。

积分器输出电压从-U th 增加到+U th 所需的时间为振荡周期T 的一半,由积分器关系式⎰+---=2Z thth 00d )(1T t tt U RCU U或212Z th T U RC U =注意到Z 21th U R R U =,故 214R RCR T =振荡频率则为1241RCR R T f ==U Z -U ZU th -U th tu o1u o2图7方波—三角波发生电路的输出波形c )元器件选择1))通用型集成单运放LM741CN电路所用的运放选用LM741CN,LM741CN 的管脚图如图所示,其特点是电压适应范围较宽,可在±5~±18V 范围内选用;具有很高的输入共模、差模电压,电压范围分别为±15V 和±30V;内含频率补偿和过载、短路保护电路;可通过外接电位器进行调零.波形发生器用到得脚位为2.3.4.6.7 脚位2:INV.INPUT 脚位3:NON-INV.INPUT 脚位4: V- 脚位6:OUTPUT 脚位7:V+图2 LM741管脚分布2))稳压二极管双稳压二极管的稳定电压根据方波幅值选取,由设计要求可取12伏特的稳压二极管,本次试验采用的1N4742A 稳压二极管。

3))电阻电阻R4根据双稳压二极管的最大电流确定,此处可取10 k ,其他电阻分别有10K 电阻,120K 电阻和25K 电阻。

4))电容电容C 根据振荡频率要求确定,本次实验采用的100nF 和10nF 两种电容。

5))由13241CR R R T f ==式,令R 1=25K Ω,为达到所要求的频率,可求得三组值: 当频率为100HZ 时,R 2=130K Ω R 3=130K Ω C=10nF 当频率为1000HZ 时,R 2=130K Ω R 3=130K Ω C=100nF 6))原件功能介绍:7))原件:元件 数量 元件 数量 LM741H 2 120K 电阻 2 10K 电阻 5 104陶瓷电容 1 25K 电阻 1 103陶瓷电容 1 1N4742A 2 单刀双掷开关1 锡线若干8))系统的电路总图:4、仿真及仿真结果仿真是通过Multisim软件进行的。

仿真电路测试过程:仿真频率为100HZ的方波和三角波的波形图: (幅值足够)仿真频率为1000HZ的方波和三角波的波形图:三角波U1 方波U2 100HZ峰-峰值/V 25.449 25.3821000HZ峰-峰值/V 25.442 79.2955.电路焊接过程与调试结果:1)方波-三角波发生电路的焊接步骤:a.把两块LM741CN集成运放和其他电子元件先放进电路板中布局,想清楚电路的路线,尽量少用跳线减少电路出现的问题;b.在焊接时注意集成运放的脚位,要对着来焊接,不能接错,如果要用到电解电容的话,也要分清电解电容的正负;c.按图接线,注意直流电源的正负及接地端,还有设立测试波形的两个输出点;d.焊接完后,要检查电路,再重新看一次,检查虚焊,不连通等的现象。

2)调试产生方波-三角波的电路:a.接入电源后,用示波器进行双踪观察;b.通过闭合开关选择合适的电容使三角波的幅值和方波的频率满足指标要求;c.观察示波器,波形稳定后记录数据。

设计数据:6.误差分析:误差的来源主要有系统误差(固有误差)和偶然误差(随机误差)。

而产生系统误差的原因有:仪器本身的缺陷、理论公式和测量方法的近似性、环境的改变和个人存在的不良测量习惯等。

系统误差来源有工具误差、装置误差、人身误差、外界误差、方法误差等。

偶然误差主要是某种未知的偶然因素对实验者、仪器、被测物理量的影响而产生的。

本设计中,器件实际测量参数跟理论参数不吻合是引起误差的最大原因。

如电路中的电阻R,它影响了输出电压的大小,如果R取合适值,三角波和方波输出波形不失真,而R出现少许改变的时候,会使输出电压和输出频率出现很大的误差.7.总结本设计作品的优点有如下几点:一.电路只有一个延迟环节,延迟时间短.二.由于积分电路引入了深度电压负反馈,所以在负载电阻相当大的变化范围里,三角波电压几乎不变.本设计作品的不足之处主要是:一.方波输出电压小于2Vcc是因为运放输出极有PNP型两种晶体组成复合互补对称电路输出方波时,两管轮流截止或饮和导通,由于导通时输出电阻的影响,使方波输出度小于电源电压值.二.受运放影响,三角波传输特性区线性度差容易引起失真.以后可能改进的方案:在电路上加上保护电路,在三角波输出端加上滤波网络改善输出波形.8.心得体会:本次课程设计是在前导验证性认知实验基础上,进行更高层次命题的课程设计,是在教师指导下独立查阅资料、设计、安装和调试特定功能的电子电路。

通过这次课程设计,我懂得了要完成一个电路的设计,理论基础是根基,实践操作是完成实物的重要部分,而创新能力则决定了一个电路的价值.因为设计一个电路,决不是简单地按课本的电路图进行焊接成型,我们要进行电路各个元件参数的计算,这个涉及我们所掌握的理论知识.元件的计算是设计中较为重要的一部分,计算准了,则设计出来的电路误差不大,否则,设计出来的电路性能指标跟要求相差甚远。

最困难的是当电路出现错误是,如何检测出错误之处,如何排除错误,它考验了我们如何运用理论知识和实际的调试的能力.另外,通过这次课程设计,我掌握了常用元件的识别和测试、熟悉了常用的仪器、了解了电路的连接、焊接方法、巩固了基础、提高了实际操作技能、并养成注重设计、追求创新的思维习惯.总而言之,这次课程设计极大的提高我在电子电路方面的各项能力。

9、主要参考书目:1、童诗白、华成英,《模拟电子技术基础》2、周誉昌、蒋力立,《电工电子技术实验》3、互联网相关文献波形发生器xwm-1 10附录:电路图:电路装配图,正面:电路装配图,反面:第11 页共11 页。

相关文档
最新文档