课程设计——波形发生器
课程设计——波形发生器

波形发生器设计一.摘要本文以AT89C51单片机为核心,采用C语言的编程方法,外加DAC0832数模转换模块与集成运放模块,构成了函数波形发生器。
可产生方波、三角波、正弦波、锯齿波等多种波形,波形的频率可用程序改变,并可根据需要选择输出波形。
其中运用软硬件结合的方法实现设计功能,具有线路简单、结构紧凑、性能优越等特点。
关键词:51单片机;DAC;函数波形发生器二.设计要求1.产生正弦波、方波、三角波;2.幅度可以设定;3.出频率能达到1MHZ。
4. 发挥部分(自选)三.设计目的1、巩固、加深和扩大单片机应用的知识面,提高综合及灵活运用所学知识解决实际课题设计的能力。
2、培养针对课题需要,选择和查阅有关手册、图表及文献资料的能力,提高组成系统、编程、调试的动脑动手能力。
3、通过对课题设计方案的分析、选择、比较,熟悉运用单片机系统开发、软硬件设计的方法内容及步骤。
4,掌握各个接口芯片(如0832等)的功能特性及接口方法,并能运用其实现一个简单的单片机应用系统功能器件。
四.设计方案波形发生器的实现方法通常有以下几种:方案一:采用模拟电路搭建函数信号发生器,它可以同时产生方波、三角波、正弦波。
但是这种模块产生的不能产生任意的波形(例如梯形波),并且频率调节很不方便。
方案二:采用锁相式频率合成器,利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需频率上,该方案性能良好,但难以达到输出频率覆盖系数的要求,且电路复杂。
方案三:采用AT89S52单片机和DAC0832芯片,直接连接键盘和显示。
该种方案主要对AT89S52单片机的各个I/O口充分利用。
P1口是连接键盘, P2口接显示电路,P0口连接DAC0832输出波形。
这样总体来说,能对单片机各个接口都利用上,而不在多用其它芯片,从而减小了系统的成本。
也对按照系统便携式低频信号发生器的要求所完成。
占用空间小,使用芯片少,低功耗。
综合考虑,方案三各项性能和指标都优于其他几种方案,能使输出频率有较好的稳定性,充分体现了模块化设计的要求,而且这些芯片及器件均为通用器件,在市场上较常见,价格也低廉,样品制作成功的可能性比较大,所以本设计采用方案三。
波形产生器课程设计

目录目录 01.1波形发生器的进展状况 01.2国内外波形发生器产品比较 (1)5.1 主流程图 (6)5.2正弦波仿真图 (6)5.4 方波仿真图 (7)1.波形发生器概况在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和运算机等技术领域,常常需要用到各类各样的信号波形发生器。
随着集成电路的迅速进展,用集成电路可很方便地组成各类信号波形发生器。
用集成电路实现的信号波形发生器与其它信号波形发生器相较,其波形质量、幅度和频率稳固性等性能指标,都有了专门大的提高。
1.1波形发生器的进展状况波形发生器是能够产生大量的标准信号和用户概念信号,并保证高精度、高稳固性、可重复性和易操作性的电子仪器。
函数波形发生器具有持续的相位变换、和频率稳固性等长处,不仅能够模拟各类复杂信号,还可对频率、幅值、相移、波形进行动态、及时的控制,并能够与其它仪器进行通信,组成自动测试系统,因此被普遍用于自动控制系统、震动鼓励、通信和仪器仪表领域。
在70 年代前,信号发生器主要有两类:正弦波和脉冲波,而函数发生器介于两类之间,能够提供正弦波、余弦波、方波、三角波、上弦波等几种常常利用标准波形,产生其它波形时,需要采用较复杂的电路和机电结合的方式。
那个时期的波形发生器多采用模拟电子技术,而且模拟器件组成的电路存在着尺寸大、价钱贵、功耗大等缺点,而且要产生较为复杂的信号波形,则电路结构超级复杂。
同时,主要表现为两个突出问题,一是通过电位器的调节来实现输出频率的调节,因此很难将频率调到某一固定值;二是脉冲的占空比不可调节。
到了二十一世纪,随着集成电路技术的高速进展,出现了多种工作频率可过GHz 的DDS 芯片,同时也推动了函数波形发生器的进展,2003 年,Agilent 的产品33220A能够产生17 种波形,最高频率可达到20M,2005 年的产品N6030A 能够产生高达500MHz 的频率,采样的频率可达1.25GHz。
波形发生器课程设计vhdl

波形发生器课程设计vhdl一、教学目标本课程旨在通过学习VHDL(硬件描述语言),让学生掌握波形发生器的设计与仿真。
通过本课程的学习,学生应能理解VHDL的基本语法和编程技巧,能够运用VHDL设计简单的数字电路,特别是波形发生器。
此外,通过课程实践,培养学生分析问题、解决问题的能力,以及团队合作和沟通交流的能力。
具体来说,知识目标包括:1.掌握VHDL的基本语法和编程技巧。
2.理解波形发生器的工作原理和设计方法。
技能目标包括:1.能够运用VHDL设计简单的数字电路。
2.能够独立完成波形发生器的设计与仿真。
情感态度价值观目标包括:1.培养学生的创新意识和实践能力。
2.培养学生团队合作和沟通交流的能力。
二、教学内容本课程的教学内容主要包括VHDL基本语法、数字电路设计方法和波形发生器的设计与仿真。
1.VHDL基本语法:包括数据类型、信号声明、实体和架构、过程和函数、线网和赋值语句等。
2.数字电路设计方法:包括组合逻辑电路、时序逻辑电路和触发器的设计方法。
3.波形发生器的设计与仿真:包括正弦波、方波、三角波等波形发生器的设计方法,以及相应的仿真测试。
三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法,包括讲授法、案例分析法、实验法和讨论法等。
1.讲授法:用于讲解VHDL基本语法和数字电路设计方法。
2.案例分析法:通过分析实际案例,让学生学会波形发生器的设计与仿真。
3.实验法:让学生动手实践,独立完成波形发生器的设计与仿真。
4.讨论法:在课堂上引导学生进行思考和讨论,培养团队合作和沟通交流的能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:《数字电路设计与VHDL编程》等。
2.参考书:《VHDL完全学习手册》、《数字电路与逻辑设计》等。
3.多媒体资料:包括PPT课件、教学视频、在线课程等。
4.实验设备:计算机、VHDL仿真软件(如ModelSim)、示波器等。
单片机波形发生器课程设计

单片机波形发生器课程设计一、课程目标知识目标:1. 理解单片机的基本原理,掌握单片机波形发生器的硬件组成及工作原理;2. 学会使用相关编程语言(如C语言)编写程序,实现对单片机波形发生器的控制;3. 掌握单片机波形发生器在不同波形(如正弦波、方波、三角波等)下的参数设置及其调整方法。
技能目标:1. 能够独立完成单片机波形发生器的硬件连接与调试;2. 能够运用所学编程知识,编写出实现不同波形的程序,并成功运行在单片机上;3. 学会分析并解决在单片机波形发生器使用过程中遇到的问题。
情感态度价值观目标:1. 培养学生对电子技术的兴趣和热情,提高学生对单片机及其应用的重视程度;2. 培养学生的团队协作意识,学会在团队中发挥个人作用,共同完成项目任务;3. 培养学生勇于创新、敢于实践的精神,提高学生面对挫折和困难时的坚持与克服能力。
课程性质:本课程为实践性较强的课程,结合理论教学,注重培养学生的实际操作能力。
学生特点:学生具备一定的电子基础和编程知识,对单片机有一定了解,但实践经验不足。
教学要求:教师应结合课程特点和学生实际情况,采用理论教学与实践操作相结合的方式进行教学,注重培养学生的动手能力和创新能力。
在教学过程中,分解课程目标为具体的学习成果,以便进行有效的教学设计和评估。
二、教学内容1. 理论部分:a. 单片机原理概述:讲解单片机的基本结构、工作原理及性能特点;b. 波形发生器原理:介绍波形发生器的功能、分类及其在电子技术中的应用;c. 编程语言基础:回顾C语言基础知识,重点讲解与单片机编程相关的语法和技巧。
2. 实践部分:a. 硬件连接与调试:指导学生完成单片机波形发生器的硬件连接,学习使用调试工具;b. 程序编写与烧录:教授学生编写控制单片机波形发生器的程序,并进行烧录;c. 波形参数调整:学习如何调整单片机波形发生器的参数,实现不同波形输出。
3. 教学大纲与进度安排:a. 第一周:单片机原理概述,波形发生器原理;b. 第二周:C语言回顾,编程语言基础;c. 第三周:硬件连接与调试;d. 第四周:程序编写与烧录;e. 第五周:波形参数调整,实践操作与总结。
模拟电路课程设计--多用途波形发生器

模拟电路课程设计--多用途波形发生器课程题目:多用途波形发生器一、设计目的·掌握运算放大器的工作原理。
·掌握波形产生电路组成及设计方法。
二、设计任务和要求。
1.设计制作一台能产生方波、三角波、锯齿波和正弦波的波形发生器。
;2.①输出波形频率范围为0.02Hz~20kHz且连续可调;②正弦波幅值为±10V,失真度小于2%;③方波幅值为10V;④三角波峰-峰值为20V;⑤各种波形幅值均连续可调;⑥设计电路所需的直流电源。
⑦出集成运放、二极管、电阻、电容、电位器、转换开关等全部元件的清单三、方案选择与论证。
3.1方案1:1、结构图见图1:图中共有四个主要部分: 1.正弦波发生器如图:C450%50%50% C1、C2与两个滑动变阻器构成选频网络,开始时,D2、D3与R3并联,电阻约为R3,AF>1,之后D2与D3将R3短路,AF=1,振荡产生正弦波。
2.方波与三角波发生器R4200kΩ当R8取50%时,电路振荡产生方波与三角波,否则产生矩形波与锯齿波。
波形频率有R6调节,R4可以调节波形和幅度。
C2与R9接地可以使波形减少失真。
3.电源1kΩ利用桥型整流,结合C7~C12滤波,将交流电变成直流,产生正负电源为运算放大器提供电源4.放大器R15200kΩKey=AAD549JH是高阻抗运算放大器,将产生的波形放大。
四.用到的元器件741、AD549JH运算放大器电解电容、可变电容1N4001GP、1N1204C二极管05AZ2.2稳压管TS-PQ4-10变压器220V、50Hz电阻若干五.心得通过本次课程设计,将课本所学知识联系到日常生活中,加深了我们对课本内容的认识和应用,也更让我们了解到了生活中即使是随便看得到一个光控路灯,也有着不简单的内容,让我们重新感悟,从生活中学习,着心于观察生活,才能做到不空读书,从而将生活中的所观所感融入到学习中,进而学会更多。
此外,通过团队的合作,更让我们发现了各自所学的不足,大家取长补短,互相为师,加深了对彼此的了解,增进了友谊。
protel课程设计波形发生器

protel课程设计波形发生器一、教学目标本节课的教学目标是让学生掌握Protel软件的使用,能够设计并制作波形发生器电路板。
具体分为三个部分:1.知识目标:使学生了解波形发生器的基本原理和电路组成,熟悉Protel软件的操作界面和功能。
2.技能目标:培养学生使用Protel软件进行电路设计的能力,能够独立完成波形发生器电路板的设计和制作。
3.情感态度价值观目标:培养学生对电子技术的兴趣,提高学生动手实践的能力,培养学生的创新精神和团队合作意识。
二、教学内容本节课的教学内容主要包括三个部分:1.波形发生器的基本原理和电路组成:介绍波形发生器的工作原理,讲解其电路组成和功能。
2.Protel软件的操作和使用:讲解Protel软件的操作界面和功能,示范如何使用Protel软件进行电路设计。
3.波形发生器电路板的设计和制作:引导学生使用Protel软件设计波形发生器电路板,讲解电路板制作的步骤和注意事项。
三、教学方法为了达到本节课的教学目标,将采用以下教学方法:1.讲授法:讲解波形发生器的基本原理和电路组成,让学生掌握相关理论知识。
2.案例分析法:分析实际案例,让学生了解Protel软件的操作和使用。
3.实验法:引导学生动手实践,设计并制作波形发生器电路板,培养学生的实际操作能力。
4.小组讨论法:分组让学生进行讨论和合作,培养学生的团队协作能力和创新精神。
四、教学资源为了支持本节课的教学内容和教学方法的实施,将准备以下教学资源:1.教材:选用与Protel软件和波形发生器设计相关的教材,为学生提供理论知识的学习。
2.多媒体资料:制作课件和教学视频,为学生提供直观的学习材料。
3.实验设备:准备计算机和Protel软件,以及波形发生器电路实验所需的元器件和设备,为学生提供动手实践的机会。
五、教学评估为了全面、客观地评估学生的学习成果,将采用以下评估方式:1.平时表现:观察学生在课堂上的参与程度、提问回答情况以及团队合作表现,以了解学生的学习态度和掌握程度。
单片机课程设计———波形发生器

课程设计任务书题目波形发生器专业、班级学号姓名主要内容:设计一个产生各种波形的波形发生器基本要求:利用单片机P1.0引脚输出频率范围1Hz – 1000Hz的正弦波、方波、三角波、梯形波、锯齿波,并用示波器观察。
目录一、设计目的及意义 ........................................................................... - 3 -1.1设计目的 (3)1.2设计意义 (3)二、方案论证 ....................................................................................... - 3 -2.1设计要求 (3)2.2方案论证 (4)三、硬件电路设计 ............................................................................... - 4 -3.1设计思路、元件选型 (4)3.2原理图 (5)3.3主要芯片介绍 (5)3.4硬件连线图 (8)四、软件设计 ....................................................................................... - 9 -4.1锯齿波的产生过程 (10)4.2梯形波的产生过程 (11)4.3三角波的产生过程 (13)4.4方波的产生过程 (14)4.5正弦波的产生过程 (15)五、调试与仿真 ................................................................................. - 16 -六、总结.............................................................................................. - 19 -七、参考文献: ................................................................................. - 19 -一、设计目的及意义1.1设计目的(1)利用所学单片机的理论知识进行软硬件整体设计,锻炼学生理论联系实际、提高我们的综合应用能力。
波形发生器单片机课程设计

波形发生器单片机课程设计一、课程目标知识目标:1. 让学生理解波形发生器的基本原理,掌握单片机在波形发生器中的应用;2. 学会使用编程软件进行单片机程序设计,实现常见波形的生成;3. 了解波形发生器的性能指标,如频率、幅度、相位等,并能进行简单计算。
技能目标:1. 培养学生运用所学知识,设计并实现波形发生器单片机程序的能力;2. 提高学生动手实践能力,能够独立完成波形发生器的硬件连接与调试;3. 培养学生团队协作能力,通过小组合作完成课程设计。
情感态度价值观目标:1. 培养学生对单片机及电子技术的兴趣,激发学生的学习热情;2. 培养学生严谨的科学态度,注重实验数据的真实性,遵循实验操作规范;3. 培养学生的创新意识,鼓励学生勇于尝试,不断优化波形发生器设计。
分析课程性质、学生特点和教学要求:1. 课程性质:本课程属于电子技术领域,涉及单片机原理、编程及硬件设计;2. 学生特点:学生已具备一定的电子技术基础,熟悉单片机的基本操作,具有一定的编程能力;3. 教学要求:注重理论与实践相结合,强调动手实践,培养学生解决实际问题的能力。
二、教学内容1. 波形发生器原理:介绍波形发生器的功能、分类及其在电子技术中的应用,重点讲解单片机波形发生器的原理及组成。
教材章节:《单片机原理与应用》第四章第三节2. 单片机程序设计:讲解如何使用编程软件(如Keil)进行单片机程序设计,实现常见波形(如正弦波、方波、三角波等)的生成。
教材章节:《单片机原理与应用》第五章3. 硬件设计与连接:介绍波形发生器硬件电路的设计方法,包括单片机、晶振、滤波器等元件的选型与连接。
教材章节:《电子电路设计》第二章4. 波形发生器性能指标:讲解波形发生器的主要性能指标,如频率、幅度、相位等,并进行简单计算。
教材章节:《电子测量与仪器》第三章5. 实践操作与调试:指导学生进行波形发生器硬件连接、程序下载和调试,确保波形发生器正常工作。
教材章节:《单片机原理与应用》第六章6. 课程设计:要求学生以小组为单位,设计并实现一个具有特定功能的波形发生器,完成课程设计报告。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.概述波形发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。
函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。
函数信号发生器在电路实验和设备检测中具有十分广泛的用途。
通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。
本课程采用采用RC正弦波振荡电路、电压比较器、积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。
先通过RC正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。
2.设计方案采用RC正弦波振荡电路、电压比较器、积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。
先通过RC正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。
文氏桥振荡器产生正弦波输出,其特点是采用RC串并联网络作为选频和反馈网络,其振荡频率f=1/2πRC.改变RC的值,可得到不同的频率正弦波信号输出。
用集成运放构成电压比较器,将正弦波变换成方波输出。
用运放构成积分电路,将方波信号变换成三角波。
3. 设计原理3.1正弦波产生电路正弦波由RC 桥式振荡电路(如图3-1所示),即文氏桥振荡电路产生。
文氏桥振荡器具有电路简单、易起振、频率可调等特点而大量应用于低频振荡电路。
正弦波振荡电路由一个放大器和一个带有选频功能的正反馈网络组成。
其振荡平衡的条件是AF =1以及ψa+ψf=2n π。
其中A 为放大电路的放大倍数,F 为反馈系数。
振荡开始时,信号非常弱,为了使振荡建立起来,应该使AF 略大于1。
放大电路应具有尽可能大的输入电阻和尽可能小的输出电阻以减少放大电路对选频特性的影响,使振荡频率几乎仅决定于选频网络,因此通常选用引入电压串联负反馈的放大电路。
正反馈网络的反馈电压U f 是同相比例运算电路的输入电压,因而要把同相比例运算电路作为整体看成电路放大电路,它的比例系数是电压放大倍数,根据起振条件和幅值平衡条件有311≥+=R RfAv (Rf=R2+R1//D1//D2) 且振荡产生正弦波频率Rc f π210=图中D1、D2的作用是,当Vo1幅值很小时,二极管D1、D2接近开路,近似有Rf =9.1K +2.7K =11.8K ,,Av=1+Rf/R1=3.3>=3,有利于起振;反之当Vo 的幅值较大时,D1或D2导通,Rf 减小,Av 随之下降,Vo1幅值趋于稳定。
3-1正弦波产生电路3.2 正弦波——方波产生电路如图,Vo1为正弦信号输入,经过迟滞比较器u2后输出方波Vo2。
电路工作原理:运放同相端接基准电压,即U+=0,反相端输入电压Vo1,R8称为平衡电阻。
当比较器的U+=U-=0时,输出Vo2从高电平跳到低电平,或从低电平跳到高电平。
此时Vo276V Vo1R R th -==由于Vo2=±Vz,可得上、下门限电压为Vz 76V R R t =+ Vz76V R R t =-正弦波输入信号Vo1在上升到Vt+之前,Vo2保持不变,超过Vt+后Vo2翻转,直到Vo1下降到Vt-,Vo2再翻转,如此反复便形成Vo2方波输出。
图3-2 正弦波——三角波产生电路3.3 方波——三角波变换电路图3-3 方波——三角波变换电路此电路由反相输入的过零比较器和RC电路组成。
RC回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现输出状态的自动转换。
设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+U。
Uo通过R3对电T容C正向充电,如图中实线箭头所示。
反相输入端电位n随时间t的增长而逐渐增高,当t 趋于无穷时,Un 趋于+Uz ;但是,一旦Un ≥0,Uo 从+Uz 跃变为-Uz,与此同时Up 从+Ut 跃变为-Ut 。
随后,Uo 又通过R3对电容C 反向充电,如图中虚线箭头所示。
Un 随时间逐渐增长而减低,当t 趋于无穷大时,Un 趋于-Uz ;但是,一旦Un ≤0,Uo 就从-Uz 跃变为+Uz ,Up 从-Ut 跃变为+Ut ,电容又开始正相充电。
上述过程周而复始,电路产生了自激振荡。
±U T =±R 2∕(R 6+R W )U 02m T=2R 6(R 6+R W )C 3∕R 7运放的反相端接基准电压,即U-=0,同相输入端接输入电压Uia ,R6称为平衡电阻。
比较器的输出Uo1的高电平等于正电源电压+Vcc ,低电平等于负电源电压-Vee (|+Vcc|=|-Vee|), 当比较器的U+=U-=0时,比较器翻转,输出Uo1从高电平跳到低电平-Vee,或者从低电平Vee 跳到高电平Vcc 。
由以上公式可得比较器的电压传输特性. 当输入信号为方波Uo1,则积分器的输出Uo3为214221()O O U U dt R RP C -=+⎰Uo=+Uz,D 5导通,D 6截止,Uo 3=-1/(R 6C)Uz(t1-t0)+Uo(t 0)Uo=-Uz,D 6导通,D 5截止,Uo 3=1/(R6+Rw')Uz(t2-t1)+Uo(t 1)可见积分器的输入为方波时,输出是一个上升速度与下降速度不相等的占空比可调的三角波.经计算,如果选R 6=1k,则R 7=10K ,C=100nF.三角波图与方波图3-4所示:图3-4 方波与三角波3.4正弦波——方波——三角波发生电路图4-5 完整波形发生器电路图3.5 电源电路设计制作方法是利用桥式整流器与稳压IC搭配适当规格之电容构成整流电路,将一般常用之220伏特电源转为±15Vdc之电源,其电路图如图8所示,220伏特电源经桥式整流器后,利用三端稳压IC7815与7915将电压值调整至±15Vdc,其中7815为正电压调整器用以稳定电压至+15V,7915则进行负电压调整。
图3-6 供电电路4 主要元器件的工作原理及参数4.1 变压器变压器是电子电路,用来升压降压的电力变压器,变压器的原理是电磁感应技术,变压器有两个分别独立的共用一个铁芯的线圈。
分别叫作变压器的次级线圈和初级线圈。
电流的方向和大小随时间变化的,变压器初级通上交流电时,变压器的铁芯中产生了交变的磁场(其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈),在次级就感应出频率相同的交流电压.变压器的初次级线圈的匝数比等于电压比。
变压器只能改变交流电压,不能改变直流电压,因为直流电流是不会变化的,电流通过变压器不会产生交变的磁场,所以次级线圈只能在直接接通的一瞬间产生一个瞬间电流和电压。
变压器的主要参数: 电压比 n=U1/U2=N1/N2 效 率 η=P2/P1*100%额定功率 P4.2 桥式整流电路桥式整流电路由四个二极管组成,如图4-1所示。
图4-1 桥式整流电路工作原理:U2正半周时: D1、D3导通, D2、D4截止 U2负半周时:D2、D4 导通, D1 、D3截止1u 220V主要参数:输出电压平均值:UL=0.9U2输出电流平均值:IL =UL/RL=0.9U2/ RL流过二极管的平均电流:ID =IL/2二极管承受的最大反向电压:25V–1000V4.3 三端稳压器该稳压器内部设有电流过流﹑过热和调整管安全区保护电路,以防止过载而损坏,用它来组成稳压电源只需很少的外围元件,电路简单,且安全可靠。
4.4 稳压二极管稳压器二极管也叫齐纳二极管,稳压原理:给稳压二极管施加反向电压并使其值增大,当反向电压之值达到稳压二极管的稳定电压时,其正常雪崩击穿,若在此情况下,一定范围内改变电源电压的波动或改变负载电流的大小,齐纳电流IZ和动态电阻随之而改变,然而,齐纳电压UZ却稳定不变。
稳压二极管串联一个电阻来提供一个稳定的参考电压VREF,其中稳压二极管选用1N4735,其稳定电压为6.2V,限流电阻R13选用1K。
稳压二极管1N4735的重要参数:最大工作电流IZM稳定电压UZ动态电阻RZ4.5 集成运算放大器集成电路运算放大器是一种高电压增益、高输入电阻和低输入电阻的多级直接耦合放大电路,它的种类很多,电路也不一样,但结构具有共同之处,如下图4-2表示集成运放的内部电路组成的原理框图。
图4-2 集成运放的内部电路组成的原理框图如图4-2集成运放的输入级一般是由BIT、JFET或MOSFET组成的差分式放大电路,利用它的对称特性可以提高整个电路的共模抑制比和其他方面的性能。
它的两个输入端构成整个电路的反相输入端和同相输入端。
电压放大级的主要作用是提高电压增益,它可由一级或多级放大电路组成。
输出级一般由电压跟随器或互补电压跟随器所组成,以降低输出电阻,提高带负载能力。
偏置电路是为个级提供合适的工作电流。
其代表符号和输入输出传输特性如图4-3所示。
图4-3 集成运放符号和传输特性5. 心得体会一周的课程设计很快就结束了,但其过程可谓曲折艰难,通过本周的课程设计,我认识到课本上的知识的实际应用,激发了学习兴趣,增强了思考和解决实际问题的能力。
这是我第一次做课程设计,给我留下了很深的印象。
虽然只是短暂的一周,但在这期间,却让我受益匪浅。
这次课程设计让我认识到了知识和实践的重要性。
只有牢固掌握了所学的知识,才能有清晰的思路,知道每一步该怎样走。
才能顺利的解决每一个问题。
就以这次课程设计为例,刚拿到题目的时候,大致看一下要求,根据平时所学的知识,脑海中就立刻会想到应该用到的元器件,然后再去图书馆去查这些元器件的资料,很快地初步方案以及大概的电路原理图就出来了。
但是,在具体的细节设计上,我却不知道为什么,从而明白了自己基础知识掌握得不牢固。
还好由老师的指导和同学们的帮助,才使我顺利的完成此次课程设计所以,这次课程设计在让我认识了知识的重要性之外,更让我明白了自己理论知识和实践知识的欠缺,让我坚定了以后努力学习知识的决心。
参考文献[1] 何小艇,电子系统设计.浙江大学出版社,2001年6月[2] 姚福安,电子电路设计与实践.山东科技技术出版社,2001年10月[3] 王澄非,电路与数字逻辑设计实践.东南大学出版社,1999年10月[4] 李银华,电子线路设计指导.北京航空航天大学出版社,2005年6月[5] 康华光,电子技术基础.高教出版社,2003附录一总电路图附录二原件清单附录三集成运放UA741管脚分布图。