八年级数学勾股定理中的易错题辨析

合集下载

(人教版)八年级数学下册 易错课堂(二) 勾股定理

(人教版)八年级数学下册 易错课堂(二) 勾股定理
易错课堂(二) 勾股定理
一、受思维定势的影响找错直角而出错 【例 1】在 Rt△ABC 中,∠A=90°,a=6,b=3,则 c=__3__3__. 分析:由于∠A=90°,因此 a 为斜边,则有 b2+c2=a2,将 a,b 的值代入即可求得 c 值. 【对应训练】 1.在 Rt△ABC 中,∠B=90°,∠A=45°,b=2,则 c=___2_.
【对应训练】 3.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a -b)=c2,则( A ) A.∠A为直角 B.∠C为直角 C.∠B为直角 D.△不是直角三角形
四、在利用勾股定理求解有关问题时,考虑问题不全面而造成漏解 【例 4】在△ABC 中,AB=20,AC=15,CB 边上的高 AD=12, 求△ABC 的面积. 分析:需分∠BCA 为锐角和钝角两种情况求解.
第三边为边长的正方形的面积为__9__或__2_3__.
三、受思维定势影响只比较 a2+b2 和 c2 的大小关系造成错误判断 【例 3】判断以 a=32,b=52,c=2 为边长的三角形是否为直角三角 形. 分析:求解时应先确定最长边,然后分别计算较短两边的平方和与 最长边的平方,若它们相等,则为直角三角形,否则就不是直角三角形. 解:∵a2+c2=(23)2+22=245,b2=(25)2=245,∴a2+c2=b2,∴此三角 形是直角三角形
二、应用勾股定理时,直角边和斜边不明确而造成漏解
【例 2】已知直角三角形两边长分别为 3 和 5,则第三边的长为
___3_4_或___4___. 分析:由于题中没有明确说第三边是斜边还是直角边,故求解时需分
两种情况讨论:一是第三边是斜边,二是第三边是直角边. 【对应训练】 2.已知以直角三角形的两边分别为边长的正方形面积为7和16,则以

勾股定理复习易错题四套题由简到难(附带答案)

勾股定理复习易错题四套题由简到难(附带答案)

勾股定理练习卷姓名一、填空题1.三角形的三边满足a2=b2+c2,这个三角形是三角形,它的最大边是.2.在直角三角形ABC中,∠C=90°,BC=24,CA=7,AB=.3.在△ABC中,假设其三条边的长度分别为9、12、15,那么以两个这样的三角形所拼成的四边形的面积是.4.如图1所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,那么正方形D的面积是cm2.5.如图2,在△ABC中,∠C=90°,BC=60c m,CA=80c m,一只蜗牛从C点出发,以每分钟20c m的速度沿CA→AB→BC的路径再回到C点,需要分钟的时间.6.x、y为正数,且|x2-4|+(y2-16)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为.7.在布置新年联欢会的会场时,小虎准备把同学们做的拉花用上,他搬来了一架高为2.5米的梯子,要想把拉花挂在高2.4米的墙上〔设梯子上端要到达或超过挂拉花的高度才能挂上〕,小虎应把梯子的底端放在距离墙米处.8.如图3是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,假设图中大小正方形的面积分别为52与4,那么直角三角形的两直角边分别为与.〔注:两直角边长均为整数〕二、选择题1.以下各组数为勾股数的是〔〕A.6,12,13 B.3,4,7 C.4,7.5,8.5 D.8,15,16 2.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,那么梯子的长度为〔〕A.12m B.13m C.14m D.15m3.直角三角形两直角边边长分别为6cm与8cm,那么连接这两条直角边中点的线段长为〔〕A.10cm B.3cm C.4cm D.5cm4.假设将直角三角形的两直角边同时扩大2倍,那么斜边扩大为原来的〔〕A.2倍B.3倍C.4倍D.5倍5.以下说法中,不正确的选项是〔〕A.三个角的度数之比为1∶3∶4的三角形是直角三角形B.三个角的度数之比为3∶4∶5的三角形是直角三角形C.三边长度之比为3∶4∶5的三角形是直角三角形D.三边长度之比为9∶40∶41的三角形是直角三角形6.三角形的三边长满足关系:(a+b)2=c2+2ab,那么这个三角形是〔〕A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形7.某直角三角形的周长为30,且一条直角边为5,那么另一直角边为〔〕A.3 B.4 C.12 D.138.如果正方形ABCD的面积为29,那么对角线AC的长度为〔〕A .23B .49C .3D .29三、简答题 1.〔10分〕如图4,你能计算出各直角三角形中未知边的长吗?2.〔10分〕如图5所示,有一条小路穿过长方形的草地ABCD ,假设AB =60m ,BC =84m ,AE =100m ,那么这条小路的面积是多少3.〔10分〕如图6,在△ABC 中,∠BAC =120°,∠B =30°,AD ⊥AB ,垂足为A ,CD =1c m ,求AB 的长.4.〔10分〕小芳家门前有一个花圃,呈三角形状,小芳想知道该三角形是不是一个直角三角形,请问她可以用什么方法来作出判断?你能帮她设计一种方案吗?5.〔10分〕如图7,在△ABC 中,AB =AC =25,点D 在BC 上,AD =24,BD =7,试问AD 平分∠BAC 吗?为什么?6.〔10分〕如图8所示,四边形ABCD 中,AB =1,BC =2,CD =2,AD =3,且AB ⊥BC .求证:AC ⊥CD .参考答案:一、1.直角,a2.25 3.108 4.17 5.12 6.20 7.0.7 8.4,6二、1~4.CBDA 5~8.BBCA三、1.〔1〕5x =;〔2〕24x =2.2240m34.略5.所以AD平分BAC∠,理由略6.证明略四、〔1〕84,85.〔2〕任意一个大于1的奇数的平方可以拆成两个连续整数的与,并且这两个连续整数及原来的奇数构成一组勾股数.〔3〕略.八年级下册第十八勾股定理水平测试一、填空题〔每题3分,共24分〕1.一个三角形的三个内角之比为1∶2∶3,那么三角形是三角形;假设这三个内角所对的三边分别为a、b、c〔设最长边为c〕,那么此三角形的三边的关系是.2.等腰直角三角形的斜边长为2,那么直角边长为,假设直角边长为2,那么斜边长为.3.在Rt△ABC中,∠C=90°,①假设AB=41,AC=9,那么BC=;②假设AC=1.5,BC=2,那么AB=.4.两条线段的长分别为11cm与60cm,当第三条线段的长为cm时,这3条线段能组成一个直角三角形.5.如图1,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,那么筷子露在杯子外面的长度至少为厘米.6.如图2,AC⊥CE,AD=BE=13,BC=5,DE=7,那么AC=.7.等腰直角三角形有一边长为8c m,那么底边上的高是,面积是.8.如图3,一个机器人从A点出发,拐了几个直角的弯后到达B点位置,根据图中的数据,点A与点B的直线距离是.二、选择题〔每题3分,共24分〕1.如图4,两个较大正方形的面积分别为225,289,那么字母A所代表的正方形的面积为〔〕A.4 B.8 C.16 D.642.小丽与小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了10分钟,小芳先去家拿钱再去图书馆,小芳到家用了6分钟,从家到图书馆用了8分钟,小芳从公园到图书馆拐了个〔设公园到小芳家及小芳家到图书馆都是直线〕〔〕A.锐角B.直角C.钝角D.不能确定3.一直角三角形的一条直角边长是7cm,另一条直角边及斜边长的与是49cm,那么斜边的长〔〕A.18cm B.20cm C.24cm D.25cm4.如图5,四边形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,那么阴影局部的面积是〔〕A.16 B.18 C.19 D.215.在直角三角形中,斜边及较小直角边的与、差分别为18、8,那么较长直角边的长为〔〕A.20 B.16 C.12 D.86.在△ABC中,假设AB=15,AC=13,高AD=12,那么△ABC的周长是〔〕A.42 B.32 C.42或32 D.37或337.如图6,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是〔〕A.CD、EF、GH B.AB、EF、GHC.AB、CD、GH D.AB、CD、EF8.如图7,在△ABC中,∠C=90°,D为BC边的中点,DE⊥AB于E,那么AE2-BE2等于〔〕A.AC2 B.BD2C.BC2 D.DE2三、简答题〔共58分〕1.一个三角形三条边的比为5∶12∶13,且周长为60c m,求它的面积.2的点.3.如图8,是一个四边形的边角料,东东通过测量,获得了如下数据:AB=3cm,BC=12cm,CD=13cm,AD=4cm,东东由此认为这个四边形中∠A恰好是直角,你认为东东的判断正确吗?如果你认为他正确,请说明其中的理由;如果你认为他不正确,那你认为需要什么条件,才可以判断∠A是直角?4.如图9,一游泳池长48米,小方与小朱进展游泳比赛,小方平均速度为3米/秒,小朱为3.1米/秒.但小朱一心想快,不看方向沿斜线游,而小方直游,俩人到达终点的位置相距14米.按各人的平均速度计算,谁先到达终点5.如图10〔1〕所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图10〔2〕所示.展开图中每个正方形的边长为1.求在该展开图中可画出最长线段的长度?这样的线段可画几条?四、拓广探索〔此题14分〕:在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,设△ABC 的面积为S ,周长为l .〔1〕填表:〔2〕如果a +b -c =m ,观察上表猜测:l = (用含有m 的代数式表示).〔3〕证明〔2〕中的结论.参考答案:一、1.直角,222ab c +=2.1,2 3.40,2.5 4.615.14 6.12 7.4或,16或328.10 二、1~4.DBDC 5~8.CCBA三、1.2120cm2.图略3.不正确,可添加DB BC ⊥或5cm DB =4.小方先到达终点54条四、解:〔1〕从上往下依次填12,1,32;〔2〕; 〔3〕证明略.Ww点击勾股定理之特色题本文将在各地课改实验区的中考试题中,涉及勾股定理知识内容的特色创新题采撷几例,供读者学习鉴赏.一.清新扮靓的规律探究题例1〔成都市〕如图,如果以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去,…,正方形ABCD 的面积1S 为1,按上述方法所作的正方形的面积依次为23S S ,,…,S n 〔n 为正整数〕,那么第8个正方形的面积8S =_______.【解析】:求解这类题目的常见策略是:“从特殊到一般〞. 即是先通过观察几个特殊的数式中的变数及不变数,得出一 般规律,然后再利用其一般规律求解所要解决的问题.对于此题,由勾股定理、正方形的面积计算公式易求得:照此规律可知:25416S ==,新 课 标第 一网 观察数1、2、4、8、16易知:0123412,22,42,82,162=====,于是可知12n n S -=因此,817822128S -===二.考察阅读理解能力的材料分析题例2〔临安〕阅读以下题目的解题过程:a 、b 、c 为的三边,且满足,试判断的形状.AB CD EF G HI J问:〔1〕上述解题过程,从哪一步开场出现错误?请写出该步的代号:;〔2〕错误的原因为:〔3〕此题正确的结论为: .【解析】:材料阅读题是近年中考的热点命题,其类型多种多样,此题属于“判断纠错型〞题目.集中考察了因式分解、勾股定理等知识.在由得到等式2222222-=+-没有错,错在将这个等式()()()c a b a b a b两边同除了一个可能为零的式子22-=,那么有()()0-.假设220a ba b+-=,a b a b从而得a b=,这时,ABC为等腰三角形.因此:(1)选C.(2)没有考虑220-=a b(3) ABC∆是直角三角形或等腰三角形三.渗透新课程理念的图形拼接题例3〔长春〕如图,在Rt△ABC中,∠C = 90°,AC = 4,BC = 3.在Rt△ABC的外部拼接一个适宜的直角三角形,使得拼成的图形是一个等腰三角形,如下图.出正确的图形〕例如图备用图【解析】:要在Rt△ABC的外部拼接一个适宜的直角三角形,使得拼成的图形是一个等腰三角形,关键是腰及底边确实定;要求在图中标明拼接的直角三角形的三边长,这需要用到勾股定理知识.下面四种拼接方法可供参考.四.极具“热点〞的动态探究题例4〔泉州〕:如图1,一架长4米的梯子AB斜靠在及地面OM垂直的墙壁ON上,梯子及地面的倾斜角α为 60.⑴求AO及BO的长;⑵假设梯子顶端A沿NO下滑,同时底端B沿OM向右滑行. 如图2,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端A沿NO下滑多少米X k b1.c o m【解析】:对于没有学习解直角三角形知识的同学而言,求解此题有一定的难度.但假设是利用等边三角形就可以推出的一个性质:“在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半〞,结合勾股定理求解,还是容易解答的.⑴AOBRt∆中,∠O=90,∠α= 60∴,∠OAB= 30,又AB=4米,∴米.由勾股定理得:22-22OA AB OB421223=-=.⑵设2,3,==在CODAC x BD xRt∆中,根据勾股定理:222+=OC OD CD∴所以,AC=2x=即梯子顶端A沿NO下滑了米.勾股定理中的常见题型例析勾股定理是几何计算中运用最多的一个知识点.考察的主要方式是将其综合到几何应用的解答题中,常见的题型有以下几种:一、探究开放题例1如图1,设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF ,再以第二个正方形的对角线AE 为边作第三个正方形AEGH ,如此下去…….〔1〕记正方形ABCD 的边长为1a =1,依上述方法所作的正方形的边长依次为2a ,3a ,4a ,…,n a ,求出2a ,3a ,4a 的值.〔2〕根据以上规律写出第n 个正方形的边长n a 的表达式.分析:依次运用勾股定理求出a 2,a 3,a 4,再观察、归纳出一般规律.解:(1)∵四边形ABCD 为正方形,∴AB=BC=CD=AD=1.由勾股定理,得AC 222AB BC +=同理,AE =2,EH = 22.即 a 2= 2,a 3=2,a 4= 22(2) ∵011(2)a ==, 122(2)a ==, 232(2)a ==, 3422(2)a ==,点拨:探究开放题形式新颖、思考方向不确定,因此综合性与逻辑性较强,它着力于考察观察、分析、比拟、归纳、推理等方面的能力,对提高同学们的思维品质与解决问题的能力具有十分重要的作用.二、动手操作题例2如图2,图〔1〕是用硬纸板做成的两个全等的直角三角形,两条直角边长分别为a 与b ,斜边长为c .图〔2〕是以c 为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形.〔1〕画出拼成的这个图形的示意图,写出它是什么图形;〔2〕用这个图形证明勾股定理;〔3〕假设图〔1〕中的直角三角形有苦干个,你能运用图〔1〕所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图〔无需证明〕.解:〔1〕所拼图形图3所示,它是一个直角梯形.〔2〕由于这个梯形的两底分别为a 、b ,腰为〔a +b 〕,所以梯形的面积为211()()()22a b a b a b ++=+.又因为这个梯形的面积等于三个直角三角形的面积与,所以梯形的面积又可表示为:.Xk b1.c om〔3〕所拼图形如图4.点拨:动手操作题内容丰富,解法灵活,有利于考察解题者的动手能力与创新设计的才能。

八年级数学勾股定理易错点与重难点复习(一)

八年级数学勾股定理易错点与重难点复习(一)

勾股定理易错点与重难点复习(一)1、已知实数a 满足100822018a a a -+-=,那么221008a -= 。

20182、已知571x x +--=,则57x x ++-= 。

12 3、已知a +b =4,ab =1,则a bb a+= 。

4 4、已知2510x x -+= (1)求1x x +的值; (2)求221xx +的值; (3)求441x x +的值; (4)直接写出551x x +=_________,661x x +=_________。

解:1x x +=5 221x x +=3 331x x +=25 441x x +=7 551x x +=55 661x x +=18知识点 勾股定理及其逆定理 【知识梳理】1、勾股定理的基础概念(1)勾股定理的有关概念:如图所示,我们用勾(a )和股(b )分别表示直角三角形的两条直角边,用弦(c )来表示斜边。

(2)勾股定理的内容:直角三角形两直角边的平方和等于斜边的平方。

即:2勾+2股=2弦。

(3)勾股定理的表示方法:在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,则2a +2b =2c 。

(1)勾股定理的前提是,对于非直角三角形的三边之间则不存在此种关系。

(2)利用勾股定理时,必须分清谁是直角边,谁是斜边。

尤其在记忆2a+2b=2c时,此关系式只有当c是斜边时才成立。

若b是斜边,则关系式是2a+2c=2b;若a是斜边,则关系式是2b+2c=2a。

(3)勾股定理有许多变形,如c是斜边时,由2a+2b=2c,得2a=,2b=等。

熟练掌握这些变形对我们解决问题有很大的帮助。

2、勾股定理的验证方法1:用四个相同的直角三角形(直角边为a,b,斜边为c)构成如图所示的正方形。

方法2:用四个相同的直角三角形(直角边为a,b,斜边为c)构成如图所示的正方形(赵爽弦图)。

方法3:用两个完全相同的直角三角形(直角边为a,b,斜边为c)构成如图所示的梯形。

勾股定理复习易错题四套题由简到难(附带答案)

勾股定理复习易错题四套题由简到难(附带答案)

勾股定理练习卷姓名一、填空题1.三角形的三边满足a2=b2+c2,这个三角形是三角形,它的最大边是.2.在直角三角形ABC中,∠C=90°,BC=24,CA=7,AB=.3.在△ABC中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的四边形的面积是.4.如图1所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,则正方形D的面积是 cm2.5.如图2,在△ABC中,∠C=90°,BC=60c m,CA=80c m,一只蜗牛从C点出发,以每分钟20c m的速度沿CA→AB→BC的路径再回到C点,需要分钟的时间.6.已知x、y为正数,且|x2-4|+(y2-16)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为.7.在布置新年联欢会的会场时,小虎准备把同学们做的拉花用上,他搬来了一架高为2.5米的梯子,要想把拉花挂在高2.4米的墙上(设梯子上端要到达或超过挂拉花的高度才能挂上),小虎应把梯子的底端放在距离墙米处.8.如图3是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为和.(注:两直角边长均为整数)二、选择题1.下列各组数为勾股数的是()A.6,12,13 B.3,4,7 C.4,7.5,8.5 D.8,15,162.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m3.直角三角形两直角边边长分别为6cm 和8cm ,则连接这两条直角边中点的线段长为( )A .10cmB .3cmC .4cmD .5cm4.若将直角三角形的两直角边同时扩大2倍,则斜边扩大为原来的( )A .2倍B .3倍C .4倍D .5倍5.下列说法中, 不正确的是( )A .三个角的度数之比为1∶3∶4的三角形是直角三角形B .三个角的度数之比为3∶4∶5的三角形是直角三角形C .三边长度之比为3∶4∶5的三角形是直角三角形D .三边长度之比为9∶40∶41的三角形是直角三角形6.三角形的三边长满足关系:(a +b )2=c 2+2ab ,则这个三角形是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形7.某直角三角形的周长为30,且一条直角边为5,则另一直角边为( )A .3B .4C .12D .138.如果正方形ABCD 的面积为29,则对角线AC 的长度为( )A .23B .49CD .29 三、简答题1.(10分)如图4,你能计算出各直角三角形中未知边的长吗?2.(10分)如图5所示,有一条小路穿过长方形的草地ABCD ,若AB =60m ,BC =84m ,AE =100m ,则这条小路的面积是多少?3.(10分)如图6,在△ABC 中,∠BAC =120°,∠B =30°,AD ⊥AB ,垂足为A ,CD =1c m ,求AB 的长.4.(10分)小芳家门前有一个花圃,呈三角形状,小芳想知道该三角形是不是一个直角三角形,请问她可以用什么办法来作出判断?你能帮她设计一种方案吗?5.(10分)如图7,在△ABC中,AB=AC=25,点D在BC上,AD=24,BD=7,试问AD平分∠BAC吗?为什么?6.(10分)如图8所示,四边形ABCD中,AB=1,BC=2,CD=2,AD=3,且AB⊥BC.求证:AC⊥CD.参考答案:一、1.直角,a2.25 3.108 4.17 5.12 6.207.0.7 8.4,6二、1~4.CBDA 5~8.BBCA三、1.(1)5x=;(2)24x=2.2240m34.略5.所以AD平分BAC∠,理由略6.证明略四、(1)84,85.(2)任意一个大于1的奇数的平方可以拆成两个连续整数的和,并且这两个连续整数与原来的奇数构成一组勾股数.(3)略.八年级下册第十八《勾股定理》水平测试一、填空题(每小题3分,共24分)1.一个三角形的三个内角之比为1∶2∶3,则三角形是三角形;若这三个内角所对的三边分别为a、b、c(设最长边为c),则此三角形的三边的关系是.2.已知等腰直角三角形的斜边长为2,则直角边长为,若直角边长为2,则斜边长为.3.在Rt△ABC中,∠C=90°,①若AB=41,AC=9,则BC=;②若AC=1.5,BC =2,则AB=.4.已知两条线段的长分别为11cm和60cm,当第三条线段的长为 cm时,这3条线段能组成一个直角三角形.5.如图1,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为厘米.6.如图2,AC⊥CE,AD=BE=13,BC=5,DE=7,那么AC=.7.等腰直角三角形有一边长为8c m,则底边上的高是,面积是.8.如图3,一个机器人从A点出发,拐了几个直角的弯后到达B点位置,根据图中的数据,点A和点B的直线距离是.二、选择题(每小题3分,共24分)1.如图4,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.642.小丽和小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了10分钟,小芳先去家拿钱再去图书馆,小芳到家用了6分钟,从家到图书馆用了8分钟,小芳从公园到图书馆拐了个(设公园到小芳家及小芳家到图书馆都是直线)()A.锐角B.直角C.钝角D.不能确定3.一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm4.如图5,四边形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,则阴影部分的面积是()A.16 B.18 C.19 D.215.在直角三角形中,斜边与较小直角边的和、差分别为18、8,则较长直角边的长为()A.20 B.16 C.12 D.86.在△ABC中,若AB=15,AC=13,高AD=12,则△ABC的周长是()A.42 B.32 C.42或32 D.37或337.如图6,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GHC.AB、CD、GH D.AB、CD、EF8.如图7,在△ABC中,∠C=90°,D为BC边的中点,DE⊥AB于E,则AE2-BE2等于()A.AC2 B.BD2C.BC2 D.DE2三、简答题(共58分)1.一个三角形三条边的比为5∶12∶13,且周长为60c m,求它的面积.2的点.3.如图8,是一个四边形的边角料,东东通过测量,获得了如下数据:AB=3cm,BC=12cm,CD=13cm,AD=4cm,东东由此认为这个四边形中∠A恰好是直角,你认为东东的判断正确吗?如果你认为他正确,请说明其中的理由;如果你认为他不正确,那你认为需要什么条件,才可以判断∠A是直角?4.如图9,一游泳池长48米,小方和小朱进行游泳比赛,小方平均速度为3米/秒,小朱为3.1米/秒.但小朱一心想快,不看方向沿斜线游,而小方直游,俩人到达终点的位置相距14米.按各人的平均速度计算,谁先到达终点?5.如图10(1)所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图10(2)所示.已知展开图中每个正方形的边长为1.求在该展开图中可画出最长线段的长度?这样的线段可画几条?四、拓广探索(本题14分)已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,设△ABC的面积为S,周长为l.(1)填表:(用含有m的代数式表示).(2)如果a+b-c=m,观察上表猜想:l(3)证明(2)中的结论.参考答案:一、1.直角,222a b c +=2.1,2 3.40,2.5 4.615.14 6.12 7.4或,16或32 8.10 二、1~4.DBDC 5~8.CCBA 三、1.2120cm2.图略3.不正确,可添加DB BC ⊥或5cm DB =4.小方先到达终点54条四、解:(1)从上往下依次填12,1,32; (2)4S m l =; (3)证明略.点击《勾股定理》之特色题本文将在各地课改实验区的中考试题中,涉及《勾股定理》知识内容的特色创新题采撷几例,供读者学习鉴赏.一.清新扮靓的规律探究题例1(成都市)如图,如果以正方形ABCD 的对角线AC 为边作第二个正方形ACEF , 再以对角线AE 为边作第三个正方形AEGH ,如此下去,…,已知正方形ABCD 的面积1S 为1,按上述方法所作的正方形的面积依次为23S S ,,…,S n (n 为正整数),那么第8个正方形的面积8S =_______.【解析】:求解这类题目的常见策略是:“从特殊到一般”.即是先通过观察几个特殊的数式中的变数与不变数,得出一 般规律,然后再利用其一般规律求解所要解决的问题.对于 此题,由勾股定理、正方形的面积计算公式易求得:2111S ==, 222S == 2324S == 248S ==照此规律可知:25416S ==,观察数1、2、4、8、16易知:0123412,22,42,82,162=====,于是可知12n n S -= 因此,817822128S -===二.考查阅读理解能力的材料分析题例2(临安)阅读下列题目的解题过程: 已知a 、b 、c 为的三边,且满足,试判断的形状.解:2222222222()()()()()ABC c a b a b a b B c a b C ∆∴-=+-∴=+∴是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;(2)错误的原因为: (3)本题正确的结论为: .【解析】:材料阅读题是近年中考的热点命题,其类型多种多样,本题属于“判断纠错型”题目.集中考查了因式分解、勾股定理等知识.在由得到等式2222222()()()c a b a b a b -=+-没有错,错在将这个等式两边同除了一个可能为零的式子ABC D EFGHIJ22a b -.若220a b -=,则有()()0a b a b +-=,从而得a b =,这时,ABC 为等腰三角形.因此:(1) 选C .(2) 没有考虑220a b -=(3) ABC ∆是直角三角形或等腰三角形三.渗透新课程理念的图形拼接题例3(长春)如图,在Rt △ABC 中,∠C = 90°,AC = 4,BC = 3.在Rt △ABC 的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,如图所示.要求:在答题卡的两个备用图中分别画出两种与示例不同的拼接方法,并在图中标明拼接的直角三角形的三边长.(请同学们先用铅笔画现草图,确定后再用0.5毫米的黑色签字笔画出正确的图形)示例图 备用图【解析】:要在Rt △ABC 的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,关键是腰与底边的确定;要求在图中标明拼接的直角三角形的三边长,这需要用到勾股定理知识.下面四种拼接方法可供参考.四.极具“热点”的动态探究题例4(泉州):如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为 60.⑴求AO 与BO 的长;⑵若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行. 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且AC:BD=2:3,试计算梯子顶端A 沿NO 下滑多少米?X k b1.c o m【解析】:对于没有学习解直角三角形知识的同学而言,求解此题有一定的难度.但若是利用等边三角形就可以推出的一个性质:“在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半”,结合勾股定理求解,还是容易解答的.⑴AOB Rt ∆中,∠O=90,∠α= 60 ∴,∠OAB= 30,又AB=4米,∴122OB AB ==米.由勾股定理得:OA ===. ⑵设2,3,AC x BD x ==在COD Rt ∆中,2,23,4OC x OD x CD ==+= 根据勾股定理:222OC OD CD +=∴()()2222234x x ++= -∴(213120x x +-= ∵0x ≠ ∴0381213=-+x∴x =所以,即梯子顶端A 沿NO .勾股定理中的常见题型例析勾股定理是几何计算中运用最多的一个知识点.考查的主要方式是将其综合到几何应用的解答题中,常见的题型有以下几种:一、探究开放题例1如图1,设四边形ABCD 是边长为1的正方形,以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以第二个正方形的对角线AE 为边作第三个正方形AEGH ,如此下去…….(1)记正方形ABCD 的边长为1a =1,依上述方法所作的4a 正方形的边长依次为2a ,3a ,4a ,…,n a ,求出2a ,3a ,的值.(2)根据以上规律写出第n 个正方形的边长n a 的表达式. 分析:依次运用勾股定理求出a 2,a 3,a 4,再观察、归纳出一般规律.解:(1)∵四边形ABCD 为正方形,∴AB=BC=CD=AD=1.由勾股定理,得AC同理,AE =2,EH = a 2a 3=2,a 4=(2) ∵011a ==, 12a ==, 232a ==, 34a ==,∴1n n a -= ()1,n n ≥是自然数.点拨:探究开放题形式新颖、思考方向不确定,因此综合性和逻辑性较强,它着力于考查观察、分析、比较、归纳、推理等方面的能力,对提高同学们的思维品质和解决问题的能力具有十分重要的作用.二、动手操作题例2如图2,图(1)是用硬纸板做成的两个全等的直角三角形,两条直角边长分别为a 和b ,斜边长为c .图(2)是以c 为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形. (1)画出拼成的这个图形的示意图,写出它是什么图形;(2)用这个图形证明勾股定理;(3)假设图(1)中的直角三角形有苦干个,你能运用图(1)所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图(无需证明).解:(1)所拼图形图3所示,它是一个直角梯形.(2)由于这个梯形的两底分别为a 、b ,腰为(a +b ),所以梯形的面积为211()()()22a b a b a b ++=+.又因为这个梯形的面积等于三个直角三角形的面积和,所以梯形的面积又可表示为:2111222ab ab c ++.Xk b1.c om∴221111()2222a b ab ab c +=++. ∴222a b c +=. (3)所拼图形如图4.点拨:动手操作题内容丰富,解法灵活,有利于考查解题者的动手能力和创新设计的才能。

中考数学复习指导:勾股(逆)定理应用中的易错点

中考数学复习指导:勾股(逆)定理应用中的易错点

勾股(逆)定理应用中的易错点勾股定理的逆定理:若一个三角形的三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,且∠C=90°,如果已知一个三角形的三条边长,则可以利用勾股定理的逆定理来判断这个三角形是不是直角三角形.由于勾股定理及其逆定理形式上都比较简单,因而在运用这两个定理时,同学们往往因不够重视而出现这样那样的错误.现将几种典型错解列举如下,并作简要的剖析,供同学们参考.一、忽视应用的前提例1 △ABC中,a,b,c是∠A,∠B,∠C的对边,a=3,b=4,c为质数,求c.错解由勾股定理得:c2=a2+b2=32+42=25,故c=5.分析不注意定理的成立条件,而盲目使用勾股定理,这样便出现了错解.其实,只有在直角三角形中,勾3股4弦5才是成立的,但本题条件中并没有说△ABC是直角三角形,故只能用一般三角形三边之间的关系来解.正解由三角形的三边关系知:b-a<c<b+a,即1<c<7,又c为质数,故c=2,或c=3,或c=5.例2 如图1,在△ABC中,AB=10,BC=16,BC边上的中线AD=6,试说明AB=AC.错解∵AD是BC边上的中线,∴CD=BC=8,又∵AD=6,∴在△ADC中,由勾股定理,得而AB=10,故AB=AC.分析由于受题目题设、结论及图形的影响,在没有进行推证说明的情况下,就先行认为△ADC是直角三角形,忽视了运用勾股定理的前提,导致解题过程错误.正解∵AD是BC边上的中线,∴BD=CD=BC=8.又∵AB=10,AD=6,且有62+82=102,即AD2+BD2=AB2,则△ADB是直角三角形,且AD⊥BC.∴在Rt△ADC中,由勾股定理得:∴AB=AC.友情提示:勾股定理揭示了直角三角形三边的关系,值得注意的是:只有在直角三角形中才有两边(较小的两边)的平方和等于第三边(最长的边)的平方,在非直角三角形中不具备这种关系,因此,在非直角三角形中或者是不知道三角形是否是直角三角形的情况下,不能盲目地使用勾股定理.二、忽视直角所对的边是斜边例3 在△ABC中,已知∠B=90°,∠A,∠B,∠C的对边分别是a,b,c,且a=b,b=8,求c的长.错解∵△ABC为直角三角形.由勾股定理得:a2+b2=c2,且c==10.分析错解未抓住题目实质,受勾股定理的表达式:a2+b2=c2的影响而理所当然的认为c是斜边,其实,由∠B=90°,知道斜边应该是b(如图2).因此,我们在运用勾股定理时,首先要正确识别哪个角是直角,从而确定哪条边是斜边,然后准确写出勾股定理表达式进行解题.正解因为∠B=90°,则在Rt△ABC中,由勾股定理得:友情提示:在使用勾股定理时,要注意直角所对的边才是斜边,而并不一定是我们所习惯的c为斜边.三、忽视隐含情形例4 已知直角三角形的两边长分别为3,4,求第三边长,错解第三边长为:分析同学们都知道3.4.5是最小的勾股数,在我国古代就已有“勾三、股四、弦五”的说法,这意味着当两直角边分别为3和4时,斜边长为5,部分学生在解这道题时,由于思考不周全,忽略隐含情形,误认为一边是3,一边是4,第三边长也就是斜边长为5.实际上,题目中包含着两种情况:一种是已知的两边之长3,4都是直角边长,这时的第三边即斜边长为5;另一种是已知的两边中较长的边(长)4为斜边长,长为3的边为直角边,此时的第三边(另一条直角边)长为.正解(1)当两直角边为3和4时,第三边长为:;(2)当斜边为4,一直角边为3时,第三边长为:∴第三边的长为5或.友情提示:在给出直角三角形两条边长,并且没有确定它们都是直角边时,第三边既可能是斜边,也可能是直角边.四、忽视分类讨论例5 在△ABC中,AB=15,AC=13,BC边上的高AD=12.求BC的长.错解如图3,在Rt△ABD和Rt△ACD中,由勾股定理可得:分析由于题目并没有给出对应的图形,所以根据习惯画出了图3,认为三角形的高在三角形的内部,忽视了三角形的高也可能在三角形的外部(即图4所示),此时BC=BD-CD.错解忽视了分类讨论思想的运用.正解如图3,当△ABC的高AD在三角形内部时,在Rt△ABD和Rt△ACD中,由勾股定理可得:如图4,当△ABC的高AD在三角形外部时,在Rt△ABD和Rt△ACD中,由勾股定理可得:友情提示:在题目没有给出相应图形时,我们一定要周密思考,根据题意画出所有符合条件的图形进行解答.五、忽视区别应用勾股定理是直角三角形的性质定理,而其逆定理则是直角三角形的判定定理.在已知直角三角形中,需要用到三边的关系时用勾股定理;而已知三边想用直角三角形的性质定理进行有关计算或推理时,则需先用勾股定理的逆定理判断它是否是直角三角形.在使用时要特别注意区别对待,例6 △ABC的三边长分别为7,24,25,试判断△ABC的形状.错解∵72+242=252,∴由勾股定理可知△ABC是直角三角形.分析虽然最终判断的结果是对的,但是判断的根据是错误的.因为勾股定理是直角三形的性质定理,故只有在直角三角形中才能使用,而本题需对三角形形状作出判断,判断的依据是勾股定理的逆定理,错解的原因在于未能充分理解勾股定理及其逆定理的概念和区别,导致错误运用.正解∵72+242=252,∴由勾股定理的逆定理可知:△ABC是直角三角形.友情提示:勾股定理是直角三形的性质,可以用它来解决直角三角形的三边的等量关系.而勾股定理的逆定理是根据三边的一个等量关系来判断三角形的形状的.六.忽视定理实质例7 在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a-b)=c2,则( )(A)∠A为直角(B)∠C为直角(C)∠B为直角(D)不是直角三角形错解选B.分析因为常见的直角三角形表示时,一般将直角标注为∠C,因而有同学就习惯性的认为∠C就一定表示直角,加之对本题所给条件的分析不缜密,导致错误,该题中的条件应转化为a2-b2=c2,即a2=b2+c2,应根据这一等式进行判断.正解∵a2-b2=c2,∴a2=b2+c2.故选A.例8 下列各组数据中的三个数,可作为三边长构成直角三角形的是( )(A)1.2.3 (B)32,42,52(C),,(D),,错解选B.分析对勾3股4弦5的形式根深蒂固,对概念的理解流于表面形式,判断一个三角形是不是直角三角形时,应将所给三边的长进行平方看是否满足a2+b2=c2的形式.正解因为,故选C.友情提示:在使用勾股定理及其逆定理时,既要看是否满足a2+b2=c2的形式,更要看这个定理中字母a,b,.c的实质.七、忽视最大边所对的角是直角例9 一个三角形的三边的长分别是a=,b=,c=2.问这个三角形是直角三角形吗?所以这个三角形不是直角三角形.分析以上解答是错误的,因为根据三角形的边角关系可知,最大的角所对的边最大,而直角三角形中直角是最大的角,直角所对的边才是它的最大边即斜边,直角三角形中最大的边所对的角是直角.所以要判断一个三角形是不是直角三角形,先得找到它的最大边,而错解中并没有判断哪条边是最大边,却受a2+b2=c2的影响,认为c为最大边.实际上本题中b才是最大边.所以应判断a2+c2与b2之间的关系.根据勾股定理逆定理可知由a,b,c为边组成的三角形为直角三角形.例10 已知△ABC的三边的长分别是BC=41,AC=40,AB=9.试说明△ABC是直角三角形.错解∵BC=41,AC=40,AB=9,∴BC2=AC2+AB2,∴∠C=90°.∴△ABC是直角三角形.分析以上解题思路是对的,但∠C=90°是不对的.直角三角形中哪个角是直角,应以最大边所对的角来确定,这里的最大边为BC,其所对的角为∠A,所以这里的∠A=90°.而不是∠C=90°.正解∵BC=41,AC=40,AB=9,∴BC2=AC2+AB2,∴∠A=90°.∴△ABC是直角三角形.友情提示:在判断所给的线段能否组成直角三角形时,要先确定最大边,然后再通过计算,判断最大边的平方是否等于其它两边的平方和,应用勾股逆定理时,一定要注意最长边对的角为直角.勾股定理及其逆定理是初中几何中的重要工具,因此熟练掌握它们的使用方法是十分重要的,我们要加深理解这两个定理的本质意义,把“忽视”变为“重视”,尽量减少错误的发生.。

勾股定理易错题分析

勾股定理易错题分析

勾股定理易错题分析勾股定理是初中几何的重要知识,是几何中的常用工具。

初学时,很多同学常易犯各种各样的错误。

下面仅选择几例,供同学们参考和借鉴,以免犯这类错误。

【例1】在Rt△ABC中,a=3,b=4,求c.错解由勾股定理,得诊断这里默认了∠C为直角.其实,题目中没有明确哪个角为直角,当b>a 时,∠B可以为直角,故本题解答遗漏了这一种情况.当∠B为直角时,【例2】已知RT△ABC中,∠B=RT∠,c=求b.错解由勾股定理,得诊断这里错在盲目地套用勾股定理“a2+b2=c2”.殊不知,只有当∠C=Rt∠时,a2+b2=c2才能成立,而当∠B=Rt∠时,则勾股定理的表达式应为a2+c2=b2.正确解答∵∠B=Rt∠,由勾股定理知a2+c2=b2.∴【例3】若直角三角形的两条边长为6cm、8cm,则第三边长为________.错解 设第三边长为xcm .由勾股定理,得x 2=62+82.即第三边长为10cm .诊断 这里在利用勾股定理计算时,误认为第三边为斜边,其实题设中并没有说明已知的两边为直角边,所以第三边可能是斜边,也可能是直角边.正确解法 设第三边长为xcm .若第三边长为斜边,由勾股定理,得若第三边长为直角边,则8cm 长的边必为斜边,由勾股定理,得=因此,第三边的长度是10cm 或者【例4】如图,已知Rt △ABC 中,∠BAC=90°,AD 是高,AM 是中线,且AM=12AD.又RT △ABC 的周长是求AD .错解 ∵△ABC 是直角三角形,∴AC:AB:BC=3:4:5∴AC∶AB∶BC=3∶4∶5.∴AC=31232+AB=4 12BC=512)=156+又∵12AC AB∙=12BC AD∙∴AD=AC AB BC∙=25诊断我们知道,“勾三股四弦五”是直角三角形中三边关系的一种特殊情形,并不能代表一般的直角三角形的三边关系.上述解法犯了以特殊代替一般的错误.正确解法∵AD∴AD又∵MC=MA,∴CD=MD.∵点C与点M关于AD成轴对称.∴AC=AM,∴∠AMD=60°=∠C.∴∠B=30°,AC=1 2∴AC+AB+BC=12BC+2BC+BC=6+∴BC=4.∵12∴AD=122BC【例5】在△ABC中,a∶b∶c=9∶15∶12,试判定△ABC是不是直角三角形.错解依题意,设a=9k,b=15k,c=12k(k>0).∵a2+b2=(9k)2+(15k)2=306k2,c2=(12k)2=144k2,∴a2+b2≠c2.∴△ABC不是直角三角形.诊断我们知道“如果一个三角形最长边的平方等于另外两边的平方和,那么这个三角形是直角三角形”.而上面解答错在没有分辨清楚最长边的情况下,就盲目套用勾股定理的逆定理.正确解法由题意知b是最长边.设a=9k,b=15k,c=12k(k>0).∵a2+c2=(9k)2+(12k)2=81k2+144k2=225k2.b2=(15k)2=225k2,∴a2+c2=b2.∴△ABC是直角三角形.【例6】已知在△ABC中,AB>AC,AD是中线,AE是高.求证:AB2-AC2=2BC·DE.错证如图.∵AE⊥BC于E,∴AB2=BE2+AE2,AC2=EC2+AE2.∴AB2-AC2=BE2-EC2=(BE+EC)·(BE-EC)=BC·(BE-EC).∵BD=DC,∴BE=BC-EC=2DC-EC.∴AB2-AC2=BC·(2DC-EC-EC)=2BC·DE.诊断题设中既没明确指出△ABC的形状,又没给出图形,因此,这个三角形有可能是锐角三角形,也可能是直角三角形或钝角三角形.所以高AE既可以在形内,也可以与一边重合,还可以在形外,这三种情况都符合题意.而这里仅只证明了其中的一种情况,这就犯了以偏概全的错误。

八年级数学上册第一章勾股定理3勾股定理的应用勾股定理中的易错题辨析素材北师大版

八年级数学上册第一章勾股定理3勾股定理的应用勾股定理中的易错题辨析素材北师大版

勾股定理中的易错题辨析一、审题不仔细,受定势思维影响例1 在△ABC 中,,,A B C ∠∠∠的对边分别为,,a b c ,且2()()a b a b c +-=,则( )(A )A ∠为直角 (B )C ∠为直角(C)B ∠为直角 (D )不是直角三角形错解:选(B )分析:因为常见的直角三角形表示时,一般将直角标注为C ∠,因而有同学就习惯性的认为C ∠就一定表示直角,加之对本题所给条件的分析不缜密,导致错误.该题中的条件应转化为222a b c -=,即222a b c =+,因根据这一公式进行判断.正解:222a b c -=,∴222a b c =+。

故选(A)例2 已知直角三角形的两边长分别为3、4,求第三边长。

错解:5==.分析:因学生习惯了“勾三股四弦五”的说法,即意味着两直角边为3和4时,斜边长为5。

但这一理解的前提是3、4为直角边.而本题中并未加以任何说明,因而所求的第三边可能为斜边,但也可能为直角边。

正解:(1)当两直角边为3和4时,第三边长为5==;(2)当斜边为4,一直角边为3时,第三边长为.二、概念不明确,混淆勾股定理及其逆定理例3 下列各组数据中的三个数,可作为三边长构成直角三角形的是( )(A )1、2、3 (B)2223,4,5 (D 错解:选(B )分析:未能彻底区分勾股定理及其及逆定理,对概念的理解流于表面形式。

判断直角三角形时,应将所给数据进行平方看是否满足222+=的形式.a b c正解:因为222+=,故选(C)例4 在B港有甲、乙两艘渔船,若甲船沿北偏东60︒方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?错解:甲船航行的距离为BM=8216⨯=(海里),乙船航行的距离为BP=15230⨯=(海里)。

=(海里)且MP=34(海里)34∴△MBP为直角三角形,∴90∠=︒,∴乙船是沿着南偏东30︒方向航行的.MBP分析:虽然最终判断的结果也是对的,但这解题过程中存在问题.勾股定理的使用前提是直角三角形,而本题需对三角形做出判断,判断的依据是勾定理的逆定理.其形式为“若222+=,则90a b c∠=︒。

第05讲 易错易混集训:利用勾股定理求解易错(解析版)--初中数学北师大版8年级上册

第05讲 易错易混集训:利用勾股定理求解易错(解析版)--初中数学北师大版8年级上册

第05讲易错易混集训:利用勾股定理求解易错目录【典型例题】.......................................................................................................................错误!未定义书签。

【易错一没有明确斜边或直角时,考虑不全面而漏解】 (1)【易错二三角形形状不明时,考虑不全面而漏解】 (3)【易错三等腰三角形的腰和底不明时,考虑不全面而漏解】 (7)【易错四求立体图形中两点距离最短时无法找到正确的展开方式】 (10)【易错一没有明确斜边或直角时,考虑不全面而漏解】例题:(2023春·黑龙江大庆·七年级校联考期中)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是__【答案】7或25【分析】已知的这两条边可以为直角边,也可以是一条直角边一条斜边,从而分两种情况进行讨论解答.【详解】解:直角三角形的两边长分别为3和4,分两种情况:当3、4都为直角边时,第三边长的平方223425=+=;当3为直角边,4为斜边时,第三边长的平方22437=-=.故答案为:7或25.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.【变式训练】则称点M,N是线段AB的“勾股分割点”.已知点M,N是线段AB的“勾股分割点”,若AM=3,MN=4,则BN的长为______.【易错二三角形形状不明时,考虑不全面而漏解】AD 为边BC 上的高,90ADB ADC ∴∠=∠=︒,在Rt ABD 中,2BD AB =-在Rt ACD 中,2CD AC =-当点D 在线段BC 上时,BC =BC=+=,23268AB=+所以三角形ABC的周长AB=如图2:BC=-=,AB=624所以三角形ABC的周长故答案为:3513++【点睛】本题考查勾股定理,关键是根据题意画出图形,分情况讨论.2.(2022·北京·101中学八年级期中)在且BP=6,则线段AP的长为__________.AD是BC边上的高,ADB ADC∴∠=∠=︒,90∴在Rt△ABD中,2=-BD AB AD 是BC边上的高,AD【答案】4或25 4【分析】当ABP为直角三角形时,分两种情况:此时t的值即可.【详解】在Rt ABC△中,由勾股定理得:①当APB∠为直角时,如图①,点P与点C重合,4cmBP BC==,4t∴=;∠【易错三等腰三角形的腰和底不明时,考虑不全面而漏解】1.(2021·辽宁·沈阳市第一三四中学八年级阶段练习)如图,在Rt△ABC中,∠ACB=90°,AB=5cm,AC =3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒,当△ABP为等腰三角形时,t的取值为_____.(1)求BC边的长;(2)当ABP△为直角三角形时,求t的值;∴(CP BP BC =-=∵222AC CP AP =+∴()222435t t -=-+∵AC BC ⊥,∴2BP BC =,∴=5t ;当AP BP =时,如下图所示:则(3CP BC BP =-=在Rt APC 中,2AC 即()22243t t +-=,【易错四求立体图形中两点距离最短时无法找到正确的展开方式】例题:(2023春·湖北武汉·八年级校考阶段练习)如图,圆柱形玻璃杯高为16cm ,底面周长为40cm ,在杯内壁离杯底4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 且与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为()cm .(杯壁厚度不计)A .20B .25C .30D .40【答案】B故选:B【点睛】本题考查了勾股定理的应用,根据题意把圆柱展开,化曲为直是解决问题的关键.【变式训练】1.(2022秋·山东威海·七年级统考期末)如图,圆柱形玻璃杯高14cm,底面周长为18cm,在外侧距下底处1cm 有一只蜘蛛,与蜘蛛相对的圆柱形容器的上端距开口处1cm的外侧点处有一只苍蝇,蜘蛛捕到苍蝇的最短路线长是______cm.【答案】15⊥于E,求出SE、【分析】展开后连接SF,求出SF的长就是捕获苍蝇的蜘蛛所走的最短路径,过S作SE CDEF,根据勾股定理求出SF即可.【详解】解:如图展开后连接SF,求出SF的长就是捕获苍蝇的蜘蛛所走的最短路径,⊥于E,过S作SE CD【答案】30【分析】将长方形的盒子按不同方式展开,得到不同的长方形,再根据勾股定理求出正确答案.【详解】解:如图由勾股定理得()99AB =+如图2所示,当沿长方体的长展开时,【答案】85【分析】可将教室的墙面ADEF 与地面解即可.【详解】解:如图,将教室的墙面ADEF 过P 作PG BF ⊥于G ,连接∵6AG =米,AP AB ==∴221068PG =-=(米∴16BG =米,∴228PB GB PG =+=∵滑行部分的斜面是半径为∴12332AD ππ=⨯⨯=∵16AB CD ==,CE ∴16412DE =-=,在Rt ADE 中,22AE AD DE =+=(2)分两种情况:①如图,当横向展开时:∴AC 1=221AC CC +。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理中的易错题辨析
一、审题不仔细,受定势思维影响
例1 在△ABC 中,
的对边分别为,且,则(),,A B C ,,a b c 2()()a b a b c (A )
为直角(B )为直角(C )为直角(D )不是直角三角A C B 形
错解:选(B )
分析:因为常见的直角三角形表示时,一般将直角标注为
,因而有同学就习惯性的C 认为就一定表示直角,加之对本题所给条件的分析不缜密,导致错误.该题中的条件应转C 化为,即,因根据这一公式进行判断.222a b c 222a
b c 正解:,∴.故选(A )
222a b c 222a b c 例2 已知直角三角形的两边长分别为
3、4,求第三边长.错解:第三边长为.
2234255分析:因学生习惯了“勾三股四弦五”的说法,即意味着两直角边为3和4时,斜边长为5.但这一理解的前提是3、4为直角边.而本题中并未加以任何说明,因而所求的第三边可能为斜边,但也可能为直角边.
正解:(1)当两直角边为3和4时,第三边长为

2234255(2)当斜边为4,一直角边为3时,第三边长为
.
22437二、概念不明确,混淆勾股定理及其逆定理例3 下列各组数据中的三个数,可作为三边长构成直角三角形的是(
)(A )1、2、3 (B )(C )(D )2223,4,51,2,33,4,5
错解:选(B )分析:未能彻底区分勾股定理及其及逆定理,对概念的理解流于表面形式
.判断直角三角形时,应将所给数据进行平方看是否满足
的形式.222
a b c 正解:因为,故选(C )
222123例4 在B 港有甲、乙两艘渔船,若甲船沿北偏东
方向以每小时8海里的速度前60进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?
错解:甲船航行的距离为BM=(海里),
8216乙船航行的距离为BP=(海里).
15230∵(海里)且MP=34(海里)
22163034
∴△MBP 为直角三角形,∴
,∴乙船是沿着南偏东方向航行的.90MBP 30分析:虽然最终判断的结果也是对的,但这解题过程中存在问题.勾股定理的使用前提是直角三角形,而本题需对三角形做出判断,判断的依据是勾定理的逆定理.其形式为“若,则.错解的原因在于未能充分理解勾股定理及其逆定理的概念,导致222a b c 90C 错误运用.
正解:甲船航行的距离为BM=(海里),
8216乙船航行的距离为BP=(海里).
15230∵,∴,22216301156,341156222
BM BP MP ∴△MBP 为直角三角形,∴,∴乙船是沿着南偏东方向航行的.90MBP 30。

相关文档
最新文档