自动控制原理第7章 系统稳定性分析
自动控制原理第7章线性离散控制系统

状态方程
状态方程是描述线性离散控制系统动态行为的数学模型,其形 式为 X(k+1) = A*X(k) + B*U(k),其中X(k)表示在时刻k的系统 状态向量,U(k)表示在时刻k的控制输入向量,A和B是系统矩 阵。
自动控制原理第7章 线性离散控制系统
目录
CONTENTS
• 引言 • 线性离散控制系统的数学模型 • 线性离散控制系统的稳定性分析 • 线性离散控制系统的性能分析 • 线性离散控制系统的设计方法 • 线性离散控制系统的应用案例
01
引言
线性离散控制系统的定义与特点
定义
线性离散控制系统是指系统的动态行为由差分方程或离散状态方程描述的一类控制系统。
适性。
常见的智能家居控制系统包括智 能照明、智能安防、智能环境监
测等。
案例三:工业自动化控制系统设计
工业自动化控制系统是线性离散 控制系统的另一个重要应用领域, 主要用于实现生产过程的自动化
和智能化。
工业自动化控制系统通常采用分 布式控制结构,通过各种传感器、 执行器和主控制器实现对生产设
备的监测和控制。
离散控制系统的稳定性判据
劳斯-赫尔维茨稳定性判据
通过计算离散控制系统的传递函数的极点和零点,判断系统的稳定性。如果所有极点都位于复平面的左半部分,则系 统稳定;否则系统不稳定。
奈奎斯特稳定性判据
通过分析离散控制系统的频率响应,判断系统的稳定性。如果频率响应的相位曲线在-π~π范围内,则系统稳定;否则系 统不稳定。
系统实现
将设计好的控制器应用于实际系统中,并进 行实验验证。
离散控制系统设计的常用方法
自动控制原理第7章离散控制系统

Z变换
01
Z变换是分析离散时间信号和系统 的有力工具,它将离散时间信号 或系统转化为复平面上的函数或 传递函数。
02
Z变换的基本思想是通过将离散时 间信号或系统进行无限次加权和 ,将其转化为一个复数域上的函 数或传递函数。
离散状态方程
离散状态方程是描述离散控制系统动 态行为的数学模型,它的一般形式为 $mathbf{dot{x}}(k) = Amathbf{x}(k) + Bu(k)$,其中 $mathbf{x}(k)$表示在时刻$k$的系 统状态向量,$u(k)$表示在时刻$k$ 的输入向量,$A$和$B$是系统的系 数矩阵。
稳态误差主要来源于系统本身的结构 和参数,以及外部干扰和测量噪声。
离散控制系统的动态响应分析
动态响应定义
动态响应是指系统在输入信号作 用下,系统输出信号随时间变化 的特性。
动态响应的描述方
式
动态响应可以通过系统的传递函 数、频率特性、根轨迹图等方式 进行描述。
优化动态响应的方
法
通过调整系统参数、改变系统结 构、引入反馈控制等方法,可以 优化系统的动态响应。
离散控制系统的仿真工具与实例
仿真工具介绍
离散控制系统的仿真工具用于模拟和测试系统的性能和稳定性。常见的仿真工具包括MATLAB/Simulink、 LabVIEW等。这些工具提供了丰富的数学函数库和图形化界面,方便用户进行系统建模和仿真。
仿真实例分析
通过具体的仿真实例,可以深入了解离散控制系统的性能和特点。例如,可以设计一个温度控制系统,通过调整 系统参数和控制算法,观察系统在不同工况下的响应特性和稳定性。通过对比不同方案,可以评估各种参数和控 制策略对系统性能的影响,为实际应用提供参考和依据。
自动控制原理_第7章_5

1 这样, 在复平面的坐标便是非线性系统 N ( A0 )
的临界稳定点。 非线性系统的临界稳定点是随着输入信号的振幅
A 的变化而变化的。
1 非线性系统负倒描述函数曲线 是通过临界 N ( A)
稳定点的轨迹。
4
在线性部分为最小相位的前提下,给出Nyquist图 稳定性判据: 中的非线性系统稳定性判据 稳定性判据 (1) 如果线性部分频率特性 G ( jω ) 由 ω )
k =2
试求当开环增益 K = 15 时,自持振荡的振幅 A0 和 角频率 ω0 。 并求出使系统不产生自持振荡的最大 开环增益 K 的值。
22
Im
A
1 N ( A)
a
1
1 2
0
Re
ω
G ( jω )
23
2
死区特性对系统稳定性的影响 死区特性的负倒描述函数为
1 = N ( A)
1
2 2k a a a arcsin + k 1 π A A A
1 N ( A)
b2 b1
A
G( jω )
ω
31
如果线性部分传递函数为
K (τ s + 1) G (s) = 2 s (Ts + 1) 情况如下图所示。
1 k
(τ > T )
Im 0 b3 为稳定交点 代表自持振荡 Re 这类系统无论增益 K 取何值,都不可 避免自持振荡!
32
G ( jω )
∞
ω
G ( jω )
20 lg G ( jω )
∞
-160° °
1 N ( A) A
-120° ° -80° °
13
(3) ) dB
自动控制原理 第七章 非线性系统

实质上是应用谐波线性化的方法,将非线性特性线性化, 然后用频域法的结论来研究非线性系统,它是线性理论 中的频率法在非线性系统中的推广,不受系统阶次的限 制。
(2)相平面法(本质非线性):图解法。通过在相平 面上绘制相轨迹,可以求出微分方程在任何初始条件下 的解。是一种时域分析法,仅适用于一阶和二阶系统。
1
ωt
y1 (t ) B1 sint
由式(7-15)可得饱和特性的描述函数为
B1 2k a a a 2 N ( A) arcsin 1 ( ) A A A A
M sin td ( t )
yMFra bibliotek0 π2π
ωt
所以基波分量为:
y1 ( t )
4M
sin t
故理想继电器特性的描述函数为
Y1 4M N ( A) 1 A A
2.饱和特性
请牢记!
即 N(A)的相位角为零度,幅值是输入正弦信号A的函数.
当输入为x(t)=Asinωt,且A大于线性区宽度a 时, 饱和特性的输出波形如图7-10所示。
7.1.3
非线性系统的分析方法
非线性的数学模型为非线性微分方程,大多数尚无
法直接求解。到目前为止,非线性系统的研究还不成熟, 结论不能像线性系统那样具有普遍意义,一般要针对系 统的结构,输入及初始条件等具体情况进行分析。工程 上常用的方法有以下几种:
(1)描述函数法(本质非线性):是一种频域分析法,
r(t)=0 x
N
y
G(s)
c(t)
图7-8 非线性系统典型结构图
(2)非线性环节的输入输出静特性曲线是奇对称的,即 y(x)=-y(-x),以保证非线性元件在正弦信号作用下的输出不 包含直流分量。 (3)系统的线性部分具有良好的低通滤波特性。能较好的滤 除非线性环节在正弦输入下输出中的高次谐波,于是可以认 为在闭环通道中只有基波分量在流通,此时应用描述函数法 所得的分析结果才是比较准确的。实际系统基本都能满足。
自动控制原理复习资料——卢京潮版第七章

第七章 非线性控制系统分析§7.1 非线性系统概述● 非线性系统运动的规律,其形式多样。
线性系统只是一种近似描述 ● 非线性系统特征—不满足迭加原理1) 稳定性 ⎩⎨⎧平衡点灯可能有多个入有关关,而且与初条件,输不仅与自身结构参数有2) 自由运动形式,与初条件,输入大小有关。
3) 自振,在一定条件下,受初始扰动表现出的频率,振幅稳定的周期运动。
自振是非线性系统特有的运动形式。
4) 正弦响应的复杂性 (1) 跳跃谐振及多值响应 (2) 倍频振荡与分频振荡 (3) 组合振荡(混沌) (4) 频率捕捉 ● 非线性系统研究方法 1) 小扰动线性化处理2) 相平面法-----用于二阶非线性系统运动分析3) 描述函数法-----用于非线性系统的稳定性研究及自振分析。
4) 仿真研究---利用模拟机,数字机进行仿真实验研究。
常见非线性因素对系统运动特性的影响:1. 死区:(如:水表,电表,肌肉电特性等等)死区对系统运动特性的影响:⎪⎩⎪⎨⎧↓↓↑↓动不大时)]此时可能稳定(初始扰[原来不稳定的系统,,振荡性声,提高抗干扰能力差),能滤去小幅值噪跟踪阶跃信号有稳态误等效%(e K ss σ 可见:非线性系统稳定性与自由响应和初始扰动的大小有关。
2. 饱和(如运算放大器,学习效率等等)饱和对系统运动特性的影响:进入饱和后等效K ↓⎪⎩⎪⎨⎧↓↑↓↓,快速性差限制跟踪速度,跟踪误统最多是等幅振荡)(原来不稳,非线性系振荡性统一定稳定)原来系统稳定,此时系(%σ 3. 间隙:(如齿轮,磁性体的磁带特性等)间隙对系统影响:1) 间隙宽度有死区的特点----使ss e ↓2) 相当于一个延迟τ时间的延迟环节,%σ→↑ 振荡性 减小间隙的因素的方法:(1) 提高齿轮精度 ; (2) 采用双片齿轮; (3) 用校正装置补偿。
4. 摩擦(如手指擦纸) 摩擦引起慢爬现象的机理改善慢变化过程平稳性的方法1)2)3)⎧⎪⎨⎪⎩、良好润滑、采用干扰补偿、增加阻尼,减少脉冲,提高平衡性 摩擦对系统运动的影响:影响系统慢速运动的平稳性5. 继电特性:对系统运动的影响:1)K (2K %3)ss e σ⎧⎧⎪⎨⎩⎪⎪⎧↑⎪⎪⎪⎧↓⎨⎨⎪⎨⎪⎪↓⎪⎩⎩⎪⎪⎪⎪⎩一、二阶系统可以稳定、理想继电特性 等效: 一般地,很多情况下非线性系统会自振带死区))、带死区继电特性 等效: 快态影响(死区+饷)的综合效果振荡性、一般继电特性:除3、2中听情况外,多出一个延迟效果(对稳定性不利)§7.2 相平面法基础(适用于二阶系统)1. 相平面相轨迹二阶非线性系统运动方程:()[(),()]xt f x t x t = ――定常非线性运动方程即:[,][,]dxdx f xx dx dtdx f x x dx x⋅==()()xxt x t ⎧⎪⎪⎨⎪⎪⎩以为纵标,x为横标,构成一个平面(二维空间)称之为相平面(状态平面)系统运动时,,以t为参变量在相平面上描绘出的轨迹称为相轨迹(可以描述系统运动) 相平面法是用图解法求解一般二阶非线性控制系统的精确方法。
自动控制原理胡寿松第七章解析

1、线性定理 齐次性 Z [ae (t)] aE(z ) Z[e1 (t) e 2 (t)] E1 (z ) E 2 (z ) 叠加性 2、实数位移定理
Z[e(t- kT )] z -k E(z)
Z [e(t kT)] z k [E(z)- e(nT)z -n ]
n 0
k -1
z变换实际上是采样函数拉氏变换的变形,
因此又称为采样拉氏变换
z变换只适用于离散函数,或者说只能表征
连续函数在采样时刻的特性,而不能反映其 在采样时刻之间的特性。
24
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
25
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
二、Z变换的性质
0T
*
采样器可以用一个周期性闭合的采样开关S来表示。
理想采样开关S: T (t ) (t nT )
n 0
11
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
理想单位脉冲序列 采样过程可以看成是一个幅值调制过程。
12
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
1 jns t T ( t ) e T n -
1 jns t * 代入采样信号表达式:e ( t ) e( t ) T (t ) e( t )e T n
对采样信号表达式取拉氏变换: 1 E* (s) E(s jns ) T n 采样信号的付氏变换: 1 E* ( j ) E[j( ns )] T n
T (t)的付氏级数形式:
T (t)
n -
(t - nT) C e
自动控制原理第7章2

2020/12/3
上述变换关系的正确性证明如下: (a)在w平面的虚轴上,Re[w]=0,则有
w1 w1 即 z w1 1 w 1
2020/12/3
9
(b)w平面的左半平面,Re[w]<0,则有
w1 w1 即 z w1 1 w 1
(c)w平面的右半平面,Re[w]>0,则有
w1 w1 即
z w1 1 w 1
列出劳斯表,根据劳斯-赫尔维茨判据可以判定, 系统是稳定的。
2020/12/3
11
(4) z平面上的根轨迹 通常,离散时间系统的闭环特征方程为
1 G(z) 0
其中G(z)为开环脉冲传递函数。离散系统的闭环特征方程式在 形式上,与连续系统的完全相同,因此,z平面上的根轨迹作 图方法与s平面的作图方法相同。需注意:在连续时间系统中, 稳定边界是虚轴,而在离散系统中,稳定边界是单位圆。
根据pj在单位圆内的位置不同,所对应的瞬态分量的形式 也不同,如图7.30所示。只要闭环极点在单位圆内,则对应
的瞬态分量总是衰减的;极点越靠近原点,衰减越快。不过,
当极点为正时为指数衰减;极点为负或为共轭复数,对应为
振荡衰减。
Im
z平面
o
t
o
t
1
0
o
t
o
t
o
t
1 Re
不同闭环极点的瞬态分量
自动控制原理第三版习题答案

《自动控制理论》习题参考答案第二章2-1 (a)()()1121211212212122112+++⋅+=+++=CS R R R R CS R R R R R R CS R R R CS R R s U s U (b)()()1)(12221112212121++++=s C R C R C R s C C R R s U s U 2-2 (a)()()RCsRCs s U s U 112+= (b)()()141112+⋅-=Cs RR R s U s U (c)()()⎪⎭⎫⎝⎛+-=141112Cs R R R s U s U 2-3 设激磁磁通f f i K =φ恒定()()()⎥⎦⎤⎢⎣⎡++++=Θφφπφm e a a a a m a C C f R s J R f L Js L s C s U s 2602 2-4()()()φφφπφm A m e a a a a m A C K s C C f R i s J R f L i Js iL C K s R s C +⎪⎭⎫⎝⎛++++=260232-5 ()2.0084.01019.23-=⨯--d d u i2-8 (a)()()()()3113211G H G G G G s R s C +++=(b)()()()()()31243212143211H G H G G G H G G G G G G s R s C +++++=2-9 框图化简中间结果如图A-2-1所示。
图A-2-1 题2-9框图化简中间结果()()()()52.042.018.17.09.042.07.023++++++=s k s k s s s R s C 2-10()()4232121123211G H G G H G G H G G G G s R s C ++-+=2-11 系统信号流程图如图A-2-2所示。
图A-2-2 题2-11系统信号流程图()()()()2154214212654212215421421321111H H G G G G G G G H G G G G G s R s C H H G G G G G G G G G G s R s C -++=-++=2-12 (a)()()()adgi abcdi agdef abcdef cdhs R s C +++-=11(b)()()()1221211222112++++=s C R C R C R s C R C R R s R s C2-13 由选加原理,可得()()()()()()[]s D H G G s D G s D G s R G G G H G H s C 3121221221221111--+++=第三章3-1 分三种情况讨论 (a) 当1>ζ时()()()()()⎥⎥⎦⎤⎢⎢⎣⎡-+----+-=-+-=---=⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛---221221222211112121,122ζζζζωζωζωζζωζζωζζωζζt t n n nn n n e e t t c s s (b) 当10<<ζ时()()()⎪⎪⎭⎫⎝⎛-----+-=---+---=-+-=---=---22222222222121121sin 1121sin 1211cos 221,1ζζζωζωζωζωζωζζωζωζωζωζζωζζζωζωζωarctg t et t e t et t c j s j s n tnnn t nn tnnn n n n n(c) 当1=ζ时设系统为单位反馈系统,有()()()()()2222nn n r s s s s R s c s R s E ωζωζω+++=-= 系统对单位斜坡输入的稳态误差为()nn n n s sr s s s s s s im e ωζωζωζω22212220=+++⋅⋅=→ 3-2 (1) 0,0,50===a v p K K K(2) 0,,==∞=a v p K K K K (3) 10,,KK K K a v p =∞=∞= (4) 0,200,==∞=a v p K KK K 3-3 首先求系统的给定误差传递函数()101.0)11.0()(11)()(2+++=+==Φs s s s s G s R s E s e 误差系数可求得如下()⎪⎭⎫⎝⎛++-=-=-t e t t c s n t n nn n 21222,1ωωωωω()()()0)101.0()12.0(20)101.0(2lim lim 1.0)101.0()12.0(10lim lim 0101.0)11.0(lim lim 32220220222001200=+++-++=Φ==+++=Φ==+++=Φ=→→→→→→s s s s s s ds d C s s s s ds d C s s s s s C s e s s e s s e s(1) 0)(R t r =,此时有0)()(,)(0===t r t r R t r s s s ,于是稳态误差级数为()0)(0==t r C t e s sr ,0≥t(2) t R R t r 10)(+=,此时有0)(,)(,)(110==+=t r R t r t R R t r s s s ,于是稳态误差级数为()1101.0)()(R t rC t r C t e s s sr =+= ,0≥t (3) 221021)(t R t R R t r ++=,此时有t R R t rt R t R R t r s s 212210)(,21)(+=++= ,2)(R t r s= ,于是稳态误差级数为 ())(1.0)(!2)()(21210t R R t r C t rC t r C t e s s s sr +=++= ,0≥t 3-4 首先求系统的给定误差传递函数()5001.0)11.0()(11)()(2+++=+==Φs s s s s G s R s E s e 误差系数可求得如下()()()232220220222001200050098)5001.0()12.0(1000)5001.0(100lim lim 5001)5001.0()12.0(500lim lim 05001.0)11.0(lim lim =+++-++=Φ==+++=Φ==+++=Φ=→→→→→→s s s s s s ds d C s s s s ds d C s s s s s C s e s s es s e stt r t t rt t r s s s 5sin 25)(5cos 5)(5sin )(-===稳态误差级数为()[][][]tt tC t C C t e sr 5cos 1015sin 109.45cos 55sin 25224120 -⨯++⨯=-⨯+⎥⎦⎤⎢⎣⎡+⨯-=-3-5 按技术条件(1)~(4)确定的二阶系统极点在s 平面上的区域如图A-3-1 (a) ~ (d)的阴影区域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017/6/16
3
7.1 系统稳定性的基本概念
对于一个系统来说,一旦受到扰动的作 用,就会使系统偏离原来的平衡状态, 产生一定的初始偏差。所谓系统的稳定 性,就是指作用到系统的扰动消失后, 系统由初始偏差状态恢复到原来平衡状 态的性能。 在自动控制理论中,有多种稳定性的定 义,这里只讨论其中最常用的一种,即 渐近稳定性的定义。
(i ) c 其中,N0(s)是由初始条件 (0)
(i=0,1,2,…,n-1)有关的s的多项式。
2017/6/16 第7章 系统稳定性分析 9
7.2 线性定常系统稳定的充要条件
根据稳定性的定义,应该研究的是输入 信号没有作用的情况下系统的时间响应 。因此,可以取R(s)=0,则上式可变为
C0(s )
2017/6/16
第7章 系统稳定性分析f A
图7-2不稳定系统
A'
d
A
f
图7-1 单摆运动示意图
c
f
图7-1为稳定的系统。 图7-2为不稳定系统。
A
图7-3小范围稳定系统
图7-3中,小球超出了C、D范围后系统就不再是线性 的,故可以认为该系统在线性范围内是稳定的。
lim c (t ) 0
t
2017/6/16
第7章 系统稳定性分析
7
7.2 线性定常系统稳定的充要条件
设n阶线性定常系统的微分方程为
d n c(t ) d n 1c(t ) dc(t ) a0 a a an c (t ) 1 n 1 n n 1 dt dt dt d m r (t ) d m 1r (t ) dr(t ) b0 b1 bm 1 bm r (t )(m n) dt m dt 1m dt
2017/6/16
第7章 系统稳定性分析
6
7.2 线性定常系统稳定的充要条件
当线性定常系统的输入信号r(t)=0时,则 输出信号c(t)=0,即为系统的平衡工作点 。当有扰动信号作用于系统时,系统的 输出就会产生偏差,也就是说,会使得 c(t)不再为零。 假设扰动信号消失的时间为t=0时刻,那 么如果系统稳定,则输出c(t)会随着时间 的推移而逐渐回到原平衡工作点,也就 是c(t)=0的位置,即满足
i 1
r
q
pi t
Bk e k k t cos(k 1 k2 t )
k 1
r
k 1
Ck Bk k k
k 1 k2
e kk t sin(k 1 k2 t )
2017/6/16 第7章 系统稳定性分析 5
7.1 系统稳定性的基本概念
线性控制系统的稳定性可以叙述如下:
若线性控制系统在初始扰动的作用 下,其动态过程随时间的推移逐渐衰减, 并趋于零(即原平衡工作点),则称系统 渐近稳定,简称稳定;若在初始扰动作用 下,系统的动态过程随时间的推移而发散 ,则称系统不稳定。
第7章 系统稳定性 分析
1
本章内容
7.1 7.2 7.3 7.4 7.5 7.6 7.7
2017/6/16
系统稳定性的基本概念 线性定常系统稳定的充要条件 劳斯稳定判据 奈奎斯特稳定判据 对数频率特性的稳定判据 系统的相对稳定性分析
Matlab在系统稳定性分析中的应用
第7章 系统稳定性分析 2
引 言
系统的闭环传函数为
C ( s) b0 s m b1 s m1 bm1 s bm ( s ) R( s ) a0 s n a1 s n 1 an 1 s an
若考虑初始条件不为零,对上式进行拉 普拉斯变换,得
b0 s m b1 s m 1 bm 1 s bm C (s) R( s ) n n 1 a0 s a1 s an 1 s an N 0 (s) a0 s n a1 s n 1 an 1 s an
其中为C0(s)为在初始状态影响下系统的 时间响应(即零输入响应);
D(s) a0 s n a1s n1 an1s an
N 0(s ) D (s)
称为系统的特征多项式,也是系统闭环传 D( s ) 0 称为系统 递函数的分母多项式; 的特征方程。 C0(s)的极点也是系统闭环传 递函数的极点,称为系统的特征根。
r Ai Bk Ck 2 2 i 1 s pi k 1 s 2 kk s k
式中,q+2r=n,Ai,Bk,Ck为待定系数。
2017/6/16
第7章 系统稳定性分析
11
7.2 线性定常系统稳定的充要条件
对上式进行拉普拉斯反变换,可得系统 的零输入响应为
c(t ) Ai e
若初始条件为零,对上式进行拉普拉斯 变换,得
b0 s m b1 s m1 bm1 s bm C ( s) R( s ) n n 1 a0 s a1 s an 1 s an
2017/6/16
第7章 系统稳定性分析
8
7.2 线性定常系统稳定的充要条件
2017/6/16 第7章 系统稳定性分析 10
7.2 线性定常系统稳定的充要条件
设系统特征方程D(s)=0的根(即系统的 特征根)为pi,其中pi可以为单根、重根 、实根或复根,则上式可变换为
C0( s ) N 0( s )
2 2 ( s p ) ( s 2 s i k k k ) i 1 q k 1 q r