高考数学二轮复习专题九三角恒等变换与解三角形练习理
高考数学(理)总复习:解三角形(解析版)

高考数学(理)总复习:解三角形题型一 利用正、余弦定理解三角形 【题型要点解析】关于解三角形问题,一般要用到三角形的内角和定理,正、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.【例1】△ABC 的内角A 、B 、C 所对的边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2,(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .【解析】 (1)由题设及A +B +C =π,sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去),cos B =1517.(2)由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6得:b 2=a 2+c 2-2ac cos B=(a +c )2-2ac (1+cos B )=36-2×172×⎪⎭⎫ ⎝⎛+17151 =4.所以b =2.题组训练一 利用正、余弦定理解三角形1.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =2,S △ABC=2,则b 的值为( )A.3B.322 C .2 2D .2 3【解析】 ∵在锐角△ABC 中,sin A =223,S △ABC =2,∴cos A =1-sin 2A =13,12bc sin A =12bc ·223=2,∴bc =3①,由余弦定理得a 2=b 2+c 2-2bc cos A ,∴(b +c )2=a 2+2bc (1+cos A )=4+6×⎪⎭⎫⎝⎛+311=12, ∴b +c =23②.由①②得b =c =3,故选A. 【答案】 A2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A sin B +sin B sin C +cos 2B =1.若C =2π3,则ab=________.【解析】 ∵sin A sin B +sin B sin C +cos 2B =1,∴sin A sin B +sin B sin C =2sin 2B . 由正弦定理可得ab +bc =2b 2,即a +c =2b ,∴c =2b -a ,∵C =2π3,由余弦定理可得(2b -a )2=a 2+b 2-2ab cos 2π3,可得5a =3b ,∴a b =35. 【答案】 353.已知△ABC 是斜三角形,内角A ,B ,C 所对的边的长分别为a ,b ,c .若c sin A =3a cos C .(1)求角C ;(2)若c =21,且sin C +sin(B -A )=5sin 2A ,求△ABC 的面积.【解析】 (1)根据a sin A =c sin C,可得c sin A =a sin C , 又∵c sin A =3a cos C ,∴a sin C =3a cos C , ∴sin C =3cos C ,∴tan C =sin Ccos C =3,∵C ∈(0,π),∴C =π3.(2)∵sin C +sin(B -A )=5sin 2A ,sin C =sin (A +B ), ∴sin (A +B )+sin (B -A )=5sin 2A , ∴2sin B cos A =2×5sin A cos A . ∵△ABC 为斜三角形, ∴cos A ≠0,∴sin B =5sin A . 由正弦定理可知b =5a ,① ∵c 2=a 2+b 2-2ab cos C ,∴21=a 2+b 2-2ab ×12=a 2+b 2-ab ,②由①②解得a =1,b =5,∴S △ABC =12ab sin C =12×1×5×32=534.题型二 正、余弦定理的实际应用 【题型要点解析】应用解三角形知识解决实际问题一般分为下列四步:(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词术语,如坡度、仰角、俯角、视角、方位角等;(2)根据题意画出示意图,并将已知条件在图形中标出;(3)将所求的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.【例2】某学校的平面示意图如图中的五边形区域ABCDE ,其中三角形区域ABE 为生活区,四边形区域BCDE 为教学区,AB ,BC ,CD ,DE ,EA ,BE .为学校的主要道路(不考虑宽度).∠BCD =∠CDE =2π3,∠BAE =π3,DE =3BC =3CD =910km.(1)求道路BE 的长度;(2)求生活区△ABE 面积的最大值.【解析】 (1)如图,连接BD ,在△BCD 中,BD 2=BC 2+CD 2-2BC ·CD cos ∠BCD =27100,∴BD =3310km.∵BC =CD ,∴∠CDB =∠CBD =π-2π32=π6,又∠CDE =2π3,∴∠BDE =π2.∴在Rt △BDE 中, BE =BD 2+DE 2=335(km). 故道路BE 的长度为335km.(2)设∠ABE =α,∵∠BAE =π3,∴∠AEB =2π3-α.在△ABE 中,易得AB sin ∠AEB =BE sin ∠BAE =335sinπ3=65,∴AB =65sin ⎪⎭⎫⎝⎛-απ32,AE =65sin α.∴S △ABE =12AB ·AE sin π3=9325sin ⎪⎭⎫⎝⎛-απ32·sin α =9325⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-4162sin 21πα≤9325⎪⎭⎫ ⎝⎛+4121 =273100(km 2). ∵0<α<2π3,∴-π6<2α-π6<7π6.∴当2α-π6=π2,即α=π3时,S △ABE 取得最大值,最大值为273100km 2,故生活区△ABE面积的最大值为273100km 2题组训练二 正、余弦定理的实际应用1.如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.【解析】设CD =h ,则AD =h3,BD =3h ,在△ADB 中,∠ADB =180°-20°-40°=120°,∴由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2×3h ×h 3×⎪⎭⎫⎝⎛-21,解得h =1039,故塔的高度为1039 m.【答案】 10392.如图,在第一条海防警戒线上的点A ,B ,C 处各有一个水声监测点,B ,C 两点到A 的距离分别为20千米和50千米,某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A ,C 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B ,C 到P 的距离,并求x 的值;(2)求P 到海防警戒线AC 的距离. 【解析】 (1)依题意,有P A =PC =x , PB =x -1.5×8=x -12. 在△P AB 中,AB =20, cos ∠P AB =P A 2+AB 2-PB 22P A ·AB=x 2+202-(x -12)22x ·20=3x +325x ,同理,在△P AC 中,AC =50,cos ∠P AC =P A 2+AC 2-PC 22P A ·AC =x 2+502-x 22x ·50=25x .∵cos ∠P AB =cos ∠P AC , ∴3x +325x =25x,解得x =31. (2)作PD ⊥AC 于点D ,在△ADP 中,由cos ∠P AD =2531,得sin ∠P AD =1-cos 2∠P AD =42131, ∴PD =P A sin ∠P AD =31×42131=421.故静止目标P 到海防警戒线AC 的距离为421千米. 题型三 三角函数与解三角形问题 【题型要点】解三角形与三角函数的综合题,其中,解决与三角恒等变换有关的问题,优先考虑角与角之间的关系;解决与三角形有关的问题,优先考虑正弦、余弦定理.【例3】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足sin A -sin C b =sin A -sin Ba +c .(Ⅰ)求C ;(Ⅱ)若cos A =17,求cos(2A -C )的值.【解析】 (Ⅰ)由sin A -sin C b =sin A -sin B a +c 及正弦定理得a -c b =a -ba +c ,∴a 2-c 2=ab -b 2,整理得a 2+b 2-c 2=ab ,由余弦定理得cos C =a 2+b 2-c 22ab =12,又0<C <π,所以C =π3.(Ⅱ)由cos A =17知A 为锐角,又sin 2A +cos 2A =1,所以sin A =1-cos 2A =437,故cos2A=2cos 2A -1=-4749,sin2A =2sin A cos A =2×437×17=8349,所以cos(2A -C )=cos ⎪⎭⎫ ⎝⎛-32πA =cos2A cos π3+sin2A sin π3=-4749×12+8349×32=-2398.题组训练三 三角函数与解三角形问题已知函数f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x . (1)求函数f (x )的单调递增区间;(2)在△ABC 中,内角A ,B ,C 的对边为a ,b ,c ,已知f (A )=32,a =2,B =π3,求△ABC 的面积.【解析】 (1)f (x )=sin ⎪⎭⎫⎝⎛+62πx +cos 2x =sin 2x cos π6+cos 2x sin π6+cos 2x=32sin 2x +32cos 2x =3⎪⎪⎭⎫ ⎝⎛+x x 2cos 232sin 21 =3sin ⎪⎭⎫⎝⎛+32πx . 令-π2+2k π≤2x +π3≤π2+2k π⇒-5π12+k π≤x +π3≤π12+k π,k ∈Z .f (x )的单调递增区间为:⎥⎦⎤⎢⎣⎡++-ππππk k 12,125,k ∈Z .(2)由f (A )=32,sin ⎪⎭⎫ ⎝⎛+32πA =12, 又0<A <2π3,π3<2A +π3<5π3,因为2A +π3=5π6,解得:A =π4.由正弦定理a sin A =bsin B ,得b =6,又由A =π4,B =π3可得:sin C =6+24.故S △ABC =12ab sin C =3+32.题型四 转化与化归思想在解三角形中的应用 【题型要点】利用正弦、余弦定理解三角形的模型示意图如下:【例4】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a cos 2C 2+c cos 2A 2=32b .(1)求证:a ,b ,c 成等差数列;(2)若∠B =60°,b =4,求△ABC 的面积. 【解析】 (1)证明:a cos 2C 2+c cos 2A2=a ·1+cos C 2+c ·1+cos A 2=32b ,即a (1+cos C )+c (1+cos A )=3b . ①由正弦定理得:sin A +sin A cos C +sin C +cos A sin C =3sin B , ② 即sin A +sin C +sin(A +C )=3sin B , ∴sin A +sin C =2sinB.由正弦定理得,a +c =2b , ③ 故a ,b ,c 成等差数列.(2)由∠B =60°,b =4及余弦定理得: 42=a 2+c 2-2ac cos 60°,∴(a +c )2-3ac =16, 又由(1)知a +c =2b ,代入上式得4b 2-3ac =16. 又b =4,所以ac =16, ④∴△ABC 的面积S =12ac sin B =12ac sin 60°=4 3.题组训练四 转化与化归思想在解三角形中的应用 如图,在平面四边形ABCD 中,AD =1,CD =2,AC =7.(1)求cos ∠CAD 的值;(2)若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.【解析】 (1)在△ADC 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =7+1-427=277. (2)设∠BAC =α,则α=∠BAD -∠CAD . 因为cos ∠CAD =277,cos ∠BAD =-714,所以sin ∠CAD =1-cos 2∠CAD =217,sin ∠BAD =1-cos 2∠BAD =32114. 于是sin ∠BAC =sin (∠BAD -∠CAD )=sin ∠BAD cos ∠CAD -cos ∠BAD ·sin ∠CAD =32114×277-⎪⎪⎭⎫ ⎝⎛-1417×217=32. 在△ABC 中,由正弦定理得,BC =AC ·sin ∠BACsin ∠CBA=7×32216=3. 【专题训练】 一、选择题1.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且b 2=a 2+bc ,A =π6,则内角C 等于( )A.π6 B.π4 C.3π4D.π4或3π4【解析】 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,即a 2-b 2=c 2-2bc cos A ,由已知,得a 2-b 2=-bc ,则c 2-2bc cos π6=-bc ,即c =(3-1)b ,由正弦定理,得sin C=(3-1)sin B =(3-1)sin ⎪⎭⎫⎝⎛-C 65π, 化简,得sin C -cos C =0,解得C =π4,故选B.【答案】 B2.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =2,c =22,且C =π4,则△ABC 的面积为( )A.3+1B.3-1 C .4 D .2【解析】 法一 由余弦定理可得(22)2=22+a 2-2×2×a cos π4,即a 2-22a -4=0,解得a =2+6或a =2-6(舍去),△ABC 的面积S =12ab sin C =12×2×(2+6)sin π4=12×2×22×(6+2)=3+1,选A.法二 由正弦定理b sin B =c sin C ,得sin B =b sin C c =12,又c >b ,且B ∈(0,π),所以B =π6,所以A =7π12,所以△ABC 的面积S =12bc sin A =12×2×22sin 7π12=12×2×22×6+24=3+1.【答案】 A3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34B.43C .-43D .-34【解析】 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,则结合面积公式与余弦定理,得ab sin C =2ab cos C +2ab ,即sin C -2cos C =2,所以(sin C -2cos C )2=4,sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去),故选C.【答案】 C4.如图,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( )A.223B.24 C.64D.63【解析】 依题意得:BD =AD =DE sin A =22sin A ,∠BDC =∠ABD +∠A =2∠A .在△BCD 中, BC sin ∠BDC =BD sin C ,则4sin 2A =22sin A ×23=423sin A ,即42sin A cos A =423sin A,由此解得cos A =64,选C.【答案】 C5.如图所示,为测一建筑物的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得建筑物顶端的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则该建筑物的高度为( )A .(30+303) mB .(30+153) mC .(15+303) mD .(15+153) m【解析】 设建筑物高度为h ,则h tan 30°-h tan 45°=60,即(3-1)h =60,所以建筑物的高度为h =(30+303)m.【答案】 A6.在三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则三角形ABC 中最小角的正弦值等于( )A.45B.34C.35D.74【解析】 ∵20aBC →+15bCA →+12cAB →=0,∴20a (AC →-AB →)+15bCA →+12cAB →=0, ∴(20a -15b )AC →+(12c -20a )AB →=0.∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0⇒⎩⎨⎧b =43a ,c =53a ,∴三角形ABC 中最小角为角A , ∴cos A =b 2+c 2-a22bc =169a 2+259a 2-a 22×43×53a 2=45,∴sin A =35,故选C. 【答案】 C 二、填空题7.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若(a +b -c )(a +b +c )=ab ,c =3,当ab 取得最大值时,S △ABC =________.【解析】 因为(a +b -c )(a +b +c )=ab ,a 2+b 2-c 2=-ab ,所以cos C =-12,所以sinC =32,由余弦定理得(3)2=a 2+b 2+ab ≥3ab ,即ab ≤1,当且仅当a =b =1时等号成立.所以S △ABC =34. 【答案】348.已知△ABC 中,AB =1,sin A +sin B =2sin C ,S △ABC =316sin C ,则cos C =________. 【解析】 ∵sin A +sin B =2sin C ,由正弦定理可得a +b =2c .∵S △ABC =316sin C ,∴12ab sin C =316sin C ,sin C ≠0,化为ab =38.由余弦定理可得c 2=a 2+b 2-2ab cos C =(a +b )2-2ab-2ab cos C ,∴1=(2)2-2×38(1+cos C ),解得cos C =13.【答案】139.已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )·sin C ,则△ABC 面积的最大值为________.【解析】 由正弦定理得(2+b )(a -b )=(c -b )c , 即(a +b )·(a -b )=(c -b )c ,即b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =12,又A ∈(0,π),所以A =π3,又b 2+c 2-a 2=bc ≥2bc -4,即bc ≤4,故S △ABC =12bc sin A ≤12×4×32=3,当且仅当b =c =2时,等号成立,则△ABC 面积的最大值为 3. 【答案】310.如图,△ABC 中,AB =4,BC =2,∠ABC =∠D =60°,若△ADC 是锐角三角形,则DA +DC 的取值范围是________.【解析】 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =12,即AC =2 3.设∠ACD =θ(30°<θ<90°),则在△ADC 中,由正弦定理得23sin 60°=DA sin θ=DCsin (120°-θ),则DA +DC =4[sin θ+sin(120°-θ)]=4⎪⎪⎭⎫ ⎝⎛+θθcos 23sin 23=43sin(θ+30°),而60°<θ+30°<120°,43sin 60°<DA +DC ≤43sin 90°,即6<DA +DC ≤4 3.【答案】 (6,43] 三、解答题11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35. (1)求b 和sin A 的值;(2)求sin ⎪⎭⎫⎝⎛+42πA 的值. 【解析】 (1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知及余弦定理,有b 2=a 2+c 2-2ac cos B =13,所以b =13.由正弦定理a sin A =b sin B ,得sin A =a sin B b =31313.所以b 的值为13,sin A 的值为31313.(2)由(1)及a <c ,得cos A =21313,所以sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513.故sin ⎪⎭⎫⎝⎛+42πA =sin 2A cos π4+cos 2A sin π4=7226. 12.如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin ∠ABD 的值;(2)若∠BCD =2π3,求CD 的长.【解析】(1)∵AD ∶AB =2∶3,∴可设AD =2k ,AB =3k .又BD =7,∠DAB =π3,∴由余弦定理,得(7)2=(3k )2+(2k )2-2×3k ×2k cos π3,解得k =1,∴AD =2,AB =3,sin ∠ABD =AD sin ∠DABBD=2×327=217.(2)∵AB ⊥BC ,∴cos ∠DBC =sin ∠ABD =217,∴sin ∠DBC =277,∴BD sin ∠BCD =CDsin ∠DBC,∴CD=7×27732=433.。
高三数学二轮复习解三角形练习含试题答案

解三角形[明考情]高考中主要考查正弦定理、余弦定理在解三角形中的应用.求三角形的面积问题一般在解答题的17题位置. [知考向]1.利用正弦、余弦定理解三角形.2.三角形的面积.3.解三角形的综合问题.考点一 利用正弦、余弦定理解三角形方法技巧 (1)公式法解三角形:直接利用正弦定理或余弦定理,其实质是将几何问题转化为代数问题,适用于求三角形的边或角.(2)边角互化法解三角形:合理转化已知条件中的边角关系,适用于已知条件是边角混和式的解三角形问题.1.(2017·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin A =4b sin B ,ac =5(a 2-b 2-c 2).(1)求cos A 的值; (2)求sin(2B -A )的值.解 (1)由a sin A =4b sin B 及a sin A =bsin B ,得a =2b .由ac =5(a 2-b 2-c 2)及余弦定理,得cos A =b 2+c 2-a 22bc=-55ac ac=-55. (2)由(1),可得sin A =255,代入a sin A =4b sin B ,得sin B =a sin A 4b =55. 由(1)知,A 为钝角,所以cos B =1-sin 2B =255. 于是sin 2B =2sin B cos B =45,cos 2B =1-2sin 2B =35,故sin(2B -A )=sin 2B cos A -cos 2B sin A =45×⎝ ⎛⎭⎪⎫-55-35×255=-255.2.如图,在△ABC 中,∠ABC =90°,AB =3,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求PA ;(2)若∠APB =150°,求tan∠PBA .解 (1)由已知得∠PBC =60°,∠PBA =30°.在△PBA 中,由余弦定理,得PA 2=3+14-2×3×12cos 30°=74,∴PA =72. (2)设∠PBA =α,由已知得PB =sin α,在△PBA 中,由正弦定理得3sin 150°=sin αsin (30°-α),化简得3cos α=4sin α,故tan α=34,即tan∠PBA =34. 3.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且1a +b +1a +c =3a +b +c. (1)求角A 的大小;(2)若c b =12+3,a =15,求b 的值.解 (1)由题意,可得a +b +c a +b +a +b +c a +c =3,即c a +b +ba +c=1, 整理得b 2+c 2-a 2=bc ,由余弦定理知,cos A =b 2+c 2-a 22bc =12,因为0<A <π,所以A =π3.(2)根据正弦定理,得cb =sin C sin B =sin (A +B )sin B =sin A cos B +cos A sin B sin B =sin Atan B+cos A =32tan B +12=12+3, 解得tan B =12,所以sin B =55.由正弦定理得,b =a sin Bsin A=15×5532=2.4.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B . (1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值. 解 (1)∵b sin A =3a cos B ,由正弦定理得sin B sin A =3sin A cos B . 在△ABC 中,sin A ≠0, 即得tan B = 3. ∵B ∈(0,π),∴B =π3.(2)∵sin C =2sin A ,由正弦定理得c =2a , 由余弦定理b 2=a 2+c 2-2ac cos B , 即9=a 2+4a 2-2a ·2a cos π3,解得a =3,∴c =2a =2 3. 考点二 三角形的面积方法技巧 三角形面积的求解策略(1)若所求面积的图形为不规则图形,可通过作辅助线或其他途径构造三角形,转化为三角形的面积.(2)若所给条件为边角关系,则运用正弦、余弦定理求出其两边及其夹角,再利用三角形面积公式求解.5.(2016·全国Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cosA )=c .(1)求角C 的大小;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B ·cos A )=sin C ,2cos C sin(A +B )=sin C ,故2sin C cos C =sin C .因为0<C <π,所以cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cosC =7,故a 2+b 2=13,从而(a +b )2=25,可得a +b =5.所以△ABC 的周长为5+7.6.在△ABC 中,已知C =π6,向量m =(sin A ,1),n =(1,cos B ),且m ⊥n .(1)求A 的大小;(2)若点D 在边BC 上,且3BD →=BC →,AD =13,求△ABC 的面积. 解 (1)由题意知m ·n =sin A +cos B =0,又C =π6,A +B +C =π,所以sin A +cos ⎝ ⎛⎭⎪⎫5π6-A =0. 所以sin A -32cos A +12sin A =0,即sin ⎝⎛⎭⎪⎫A -π6=0.又0<A <5π6,所以A -π6∈⎝ ⎛⎭⎪⎫-π6,2π3,所以A -π6=0,即A =π6.(2)设|BD →|=x ,由3BD →=BC →,得|BC →|=3x , 由(1)知,A =C =π6,所以|BA →|=3x ,B =2π3.在△ABD 中,由余弦定理,得(13)2=(3x )2+x 2-2·3x ·x cos 2π3,解得x =1,所以AB =BC =3,所以S △ABC =12BA ·BC ·sin B =12·3·3·sin 2π3=934.7.(2017·全国Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2.(1)求cos B 的值;(2)若a +c =6,△ABC 面积为2,求b .解 (1)由题设及A +B +C =π,得sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去)或cos B =1517.故cos B =1517.(2)由cos B =1517,得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6, 得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B ) =36-2×172×⎝ ⎛⎭⎪⎫1+1517=4.所以b =2.8.(2017·延边州一模)已知函数f (x )=sin 2ωx -sin 2⎝⎛⎭⎪⎫ωx -π6⎝ ⎛⎭⎪⎫x ∈R ,ω为常数且12<ω<1,函数f (x )的图象关于直线x =π对称. (1)求函数f (x )的最小正周期;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =1,f ⎝ ⎛⎭⎪⎫35A =14,求△ABC 面积的最大值.解 (1)f (x )=12-12cos 2ωx -⎣⎢⎡⎦⎥⎤12-12cos ⎝ ⎛⎭⎪⎫2ωx -π3=12cos ⎝ ⎛⎭⎪⎫2ωx -π3-12cos 2ωx =-14cos 2ωx +34sin 2ωx =12sin ⎝ ⎛⎭⎪⎫2ωx -π6.令2ωx -π6=π2+k π,解得x =π3ω+k π2ω,k ∈Z .∴f (x )的对称轴为x =π3ω+k π2ω,k ∈Z .令π3ω+k π2ω=π, 解得ω=2+3k6,k ∈Z .∵12<ω<1, ∴当k =1时,ω=56,∴f (x )=12sin ⎝ ⎛⎭⎪⎫53x -π6.∴f (x )的最小正周期T =2π53=6π5.(2)∵f ⎝ ⎛⎭⎪⎫35A =12sin ⎝⎛⎭⎪⎫A -π6=14,∴sin ⎝⎛⎭⎪⎫A -π6=12.∴A =π3.由余弦定理得,cos A =b 2+c 2-a 22bc =b 2+c 2-12bc =12,∴b 2+c 2=bc +1≥2bc , ∴bc ≤1.∴S △ABC =12bc sin A =34bc ≤34,∴△ABC 面积的最大值是34. 考点三 解三角形的综合问题方法技巧 (1)题中的关系式可以先利用三角变换进行化简.(2)和三角形有关的最值问题,可以转化为三角函数的最值问题,要注意其中角的取值. (3)和平面几何有关的问题,不仅要利用三角函数和正弦、余弦定理,还要和三角形、平行四边形的一些性质结合起来.9.(2017·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值. 解 (1)在△ABC 中,因为a >b , 所以由sin B =35,得cos B =45.由已知及余弦定理,得b 2=a 2+c 2-2ac cos B =13, 所以b =13.由正弦定理a sin A =bsin B , 得sin A =a sin Bb =31313. 所以b 的值为13,sin A 的值为31313.(2)由(1)及a <c ,得cos A =21313,所以sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513.所以sin ⎝⎛⎭⎪⎫2A +π4=sin 2A cos π4+cos 2A sin π4=7226.10.△ABC 的三个角A ,B ,C 所对的边分别为a ,b ,c ,1+tan A tan B =2c3b .(1)求角A 的大小;(2)若△ABC 为锐角三角形,求函数y =2sin 2B -2sin B cosC 的取值范围.解 (1)因为1+tan A tan B =2c 3b ,所以由正弦定理,得1+sin A cos B cos A sin B =sin (A +B )cos A sin B =2sin C3sin B .因为A +B +C =π,所以sin(A +B )=sin C ,所以sin C cos A sin B =2sin C3sin B ,因为sin C ≠0,sin B ≠0,所以cos A =32,故A =π6. (2)因为A +B +C =π,A =π6,所以B +C =5π6. 所以y =2sin 2B -2sin B cosC =1-cos 2B -2sin B cos ⎝ ⎛⎭⎪⎫5π6-B=1-cos 2B +3sin B cos B -sin 2B =1-cos 2B +32sin 2B -12+12cos 2B =12+32sin 2B -12cos 2B =sin ⎝ ⎛⎭⎪⎫2B -π6+12.又△ABC 为锐角三角形,所以π3<B <π2⇒π2<2B -π6<5π6,所以y =sin ⎝⎛⎭⎪⎫2B -π6+12∈⎝ ⎛⎭⎪⎫1,32.故函数y =2sin 2B -2sin B cosC 的取值范围是⎝ ⎛⎭⎪⎫1,32.11.(2017·咸阳二模)设函数f (x )=sin x cos x -sin 2⎝ ⎛⎭⎪⎫x -π4(x ∈R ), (1)求函数f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫C 2=0,c =2,求△ABC 面积的最大值.解 (1)函数f (x )=sin x cos x -sin 2⎝⎛⎭⎪⎫x -π4(x ∈R ).化简可得f (x )=12sin 2x -12⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫2x -π2=sin 2x -12. 令2k π-π2≤2x ≤2k π+π2(k ∈Z ),则k π-π4≤x ≤k π+π4(k ∈Z ),即f (x )的递增区间为⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z ).令2k π+π2≤2x ≤2k π+3π2(k ∈Z ),则k π+π4≤x ≤k π+3π4(k ∈Z ),即f (x )的递减区间为⎣⎢⎡⎦⎥⎤k π+π4,k π+3π4(k ∈Z ).(2)由f ⎝ ⎛⎭⎪⎫C 2=0,得sin C =12, 又因为△ABC 是锐角三角形, 所以C =π6.由余弦定理得c 2=a 2+b 2-2ab cos C ,将c =2,C =π6代入得4=a 2+b 2-3ab ,由基本不等式得a 2+b 2=4+3ab ≥2ab ,即ab ≤4(2+3), 所以S △ABC =12ab sin C ≤12·4(2+3)·12=2+3,即△ABC 面积的最大值为2+ 3.12.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且m =(2a -c ,cos C ),n =(b ,cos B ),m ∥n .(1)求角B 的大小;(2)若b =1,当△ABC 的面积取得最大值时,求△ABC 内切圆的半径.解 (1)由已知可得(2a -c )cos B =b cos C ,结合正弦定理可得(2sin A -sin C )cos B =sinB cosC ,即2sin A cos B =sin(B +C ),又sin A =sin(B +C )>0,所以cos B =12,所以B =π3.(2)由(1)得B =π3,又b =1,在△ABC 中,b 2=a 2+c 2-2ac cos B ,所以12=a 2+c 2-ac ,即1+3ac =(a +c )2.又(a +c )2≥4ac ,所以1+3ac ≥4ac , 即ac ≤1,当且仅当a =c =1时取等号.从而S △ABC =12ac sin B =34ac ≤34,当且仅当a =c =1时,S △ABC 取得最大值34.设△ABC 内切圆的半径为r ,由S △ABC =12(a +b +c )r ,得r =36.例 (12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(a +b ,sin A -sin C ),向量n =(c ,sin A -sin B ),且m ∥n . (1)求角B 的大小;(2)设BC 的中点为D ,且AD =3,求a +2c 的最大值及此时△ABC 的面积. 审题路线图向量m ∥n ―→边角关系式――――→利用正弦定理转化△ABC 三边关系式――――→余弦定理求得角B ――――→引进变量(设角θ)用θ表示a +2c (目标函数)―→辅助角公式求最值―→求S △ABC 规范解答·评分标准 解 (1)因为m ∥n ,所以(a +b )(sin A -sin B )-c (sin A -sin C )=0,………………………………………………………………………………………………1分 由正弦定理,可得(a +b )(a -b )-c (a -c )=0,即a 2+c 2-b 2=ac . ……………………3分由余弦定理可知,cos B =a 2+c 2-b 22ac =ac 2ac =12.因为B ∈(0,π),所以B =π3.…………5分(2)设∠BAD =θ,则在△BAD 中,由B =π3可知,θ∈⎝ ⎛⎭⎪⎫0,2π3.由正弦定理及AD =3,有BDsin θ=ABsin ⎝ ⎛⎭⎪⎫2π3-θ=3sinπ3=2,所以BD =2sin θ,AB =2sin ⎝⎛⎭⎪⎫2π3-θ=3cos θ+sin θ,所以a =2BD =4sin θ,c =AB =3cos θ+sin θ,………………………………………8分 从而a +2c =23cos θ+6sin θ=43sin ⎝ ⎛⎭⎪⎫θ+π6.由θ∈⎝⎛⎭⎪⎫0,2π3可知,θ+π6∈⎝ ⎛⎭⎪⎫π6,5π6,所以当θ+π6=π2,即当θ=π3时,a +2c 取得最大值4 3 (11)分此时a =23,c =3,所以S △ABC =12ac sin B =332.………………………………………………………………………………………………12分 构建答题模板[第一步] 找条件:分析寻找三角形中的边角关系.[第二步] 巧转化:根据已知条件,选择使用的定理或公式,确定转化方向,实现边角互化. [第三步] 得结论:利用三角恒等变换进行变形,得出结论. [第四步] 再反思:审视转化过程的合理性.1.(2016·山东)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2(tan A +tan B )=tan Acos B +tan Bcos A. (1)证明:a +b =2c ; (2)求cos C 的最小值. (1)证明 由题意知,2⎝⎛⎭⎪⎫sin A cos A +sin B cos B =sin A cos A cos B +sin B cos A cos B.化简得2(sin A cos B +sin B cos A )=sin A +sin B , 即2sin(A +B )=sin A +sin B ,因为A +B +C =π, 所以sin(A +B )=sin(π-C )=sin C ,从而sin A +sin B =2sin C ,由正弦定理得a +b =2c .(2)解 由(1)知c =a +b2,所以cos C =a 2+b 2-c22ab=a 2+b 2-⎝⎛⎭⎪⎫a +b 222ab =38⎝ ⎛⎭⎪⎫a b +b a -14≥12,当且仅当a =b 时,等号成立,故cos C 的最小值为12.2.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,A 为锐角,向量m =(2sin A ,-3),n =⎝⎛⎭⎪⎫cos 2A ,2cos 2A 2-1,且m ∥n .(1)求A 的大小;(2)如果a =2,求△ABC 面积的最大值.解 (1)由m ∥n ,可得2sin A ·⎝ ⎛⎭⎪⎫2cos 2A 2-1+3cos 2A =0,即2sin A ·cos A +3cos 2A =0,所以sin 2A =-3cos 2A ,即tan 2A =- 3.因为A 为锐角,故0°<2A <180°,所以2A =120°,A =60°.(2)如果a =2,在△ABC 中,由余弦定理a 2=b 2+c 2-2bc cos A ,可得4=b 2+c 2-bc ≥2bc -bc =bc ,即bc ≤4,所以S =12bc sin A ≤12×4×32=3, 故△ABC 面积的最大值为 3.3.在海岸A 处,发现北偏东45°方向距A 为3-1海里的B 处有一艘走私船,在A 处北偏西75°方向,距A 为2海里的C 处的缉私船奉命以103海里/小时的速度追截走私船.此时走私船正以10海里/小时的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?并求出所需要的时间.(注:6≈2.449)解 设缉私船追上走私船所需时间为t 小时,如图所示,则CD =103t 海里,BD =10t 海里.在△ABC 中,因为AB =(3-1)海里,AC =2海里,∠BAC =45°+75°=120°, 根据余弦定理,可得BC =(3-1)2+22-2·2·(3-1)cos 120°=6(海里). 根据正弦定理,可得sin∠ABC =AC ·sin 120°BC =2·326=22. 所以∠ABC =45°,易知CB 方向与正北方向垂直,从而∠CBD =90°+30°=120°. 在△BCD 中,根据正弦定理,可得sin∠BCD =BD ·sin∠CBD CD =10t ·sin 120°103t=12, 所以∠BCD =30°,∠BDC =30°, 所以DB =BC =6海里.则有10t =6,t =610≈0.245(小时)=14.7(分钟).故缉私船沿北偏东60°方向,最快需约14.7分钟才能追上走私船.4.(2017·济南一模)已知f (x )=23sin x cos x -cos(π+2x ).(1)求f (x )的单调增区间;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若f (C )=1,c =3,a +b =23,求△ABC 的面积.解 (1)f (x )=23sin x cos x -cos(π+2x ).化简可得f (x )=3sin2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π6. 由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z , 得-π3+k π≤x ≤π6+k π,k ∈Z . ∴f (x )的单调增区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π,k ∈Z . (2)由(1)可知,f (x )=2sin ⎝⎛⎭⎪⎫2x +π6. ∵f (C )=1,即2sin ⎝⎛⎭⎪⎫2C +π6=1, 0<C <π,可得2C +π6=5π6,∴C =π3. 由a +b =23,可得a 2+b 2=12-2ab . ∵c =3,根据余弦定理cos C =a 2+b 2-c 22ab, 可得12-2ab -c 22ab =12,解得ab =3. 故△ABC 的面积S =12ab sin C =12×3×32=334. 5.已知向量a =⎝⎛⎭⎪⎫sin x ,34,b =(cos x ,-1). (1)当a ∥b 时,求cos 2x -sin 2x 的值;(2)设函数f (x )=2(a +b )·b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a =3,b =2,sin B =63,求f (x )+4cos ⎝ ⎛⎭⎪⎫2A +π6⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π3的取值范围. 解 (1)因为a ∥b ,所以34cos x +sin x =0,所以tan x =-34.cos 2x -sin 2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85. (2)f (x )=2(a +b )·b =2sin ⎝⎛⎭⎪⎫2x +π4+32. 由正弦定理a sin A =b sin B ,得sin A =22, 所以A =π4或A =3π4,因为b >a ,所以A =π4, f (x )+4cos ⎝ ⎛⎭⎪⎫2A +π6=2sin ⎝ ⎛⎭⎪⎫2x +π4-12. 因为x ∈⎣⎢⎡⎦⎥⎤0,π3,所以2x +π4∈⎣⎢⎡⎦⎥⎤π4,11π12, 所以32-1≤f (x )+4cos ⎝⎛⎭⎪⎫2A +π6≤2-12. 所以所求取值范围是⎣⎢⎡⎦⎥⎤32-1,2-12.。
高三理科数学二轮复习专题能力提升训练:三角恒等变换与解三角形(含答案解析).pdf

训练 三角恒等变换与解三角形 一、选择题(每小题5分,共25分) 1.已知α,β都是锐角,若sin α=,sin β=,则α+β=( ). A. B. C.和 D.-和- 2.已知sin α-cos α=,α(0,π),则tan α=( ). A.-1 B.- C. D.1 3.在ABC中,a=4,b=,5cos(B+C)+3=0,则角B的大小为( ). A. B. C. D.π 4.ABC中,角A、B、C所对的边分别为a、b、c,若<cos A,则ABC为( ). A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形 5.若ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则a+b的最小值为( ). A. . C. D. 二、填空题(每小题5分,共15分) 6.在ABC中,三个内角A,B,C的对边分别为a,b,c,若b=2,B=,sin C=,则c=________;a=________.7.在ABC中,sin2C=sin Asin B+sin2B,a=2b,则角C=________. 8.在ABC中,角A,B,C的对边分别为a,b,c,已知4sin2-cos 2C=,且a+b=5,c=,则ABC的面积为________.三、解答题(本题共3小题,共35分) 9.(11分)已知函数f(x)=2sin, xR. (1)求f的值; (2)设α,β,f=,f(3β+2π)=,求cos(α+β)的值. 10.(12分)在ABC中,a,b,c分别是角A,B,C的对边,且2sin2-cos 2A=. (1)求角A的度数; (2)若a=,b+c=3(b>c),求b和c的值. 11.(12分)如图,某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:在C处进行该仪器的垂直弹射,观测点A、B两地相距100米,BAC=60°,在A地听到弹射声音的时间比B地晚秒.A地测得该仪器在C处时的俯角为15°,A地测得最高点H的仰角为30°,求该仪器的垂直弹射高度CH.(声音的传播速度为340米/秒)1.A [因为α、β都为锐角,所以cos α==,cos β==.所以cos(α+β)=cos α·cos β-sin α·sin β=,所以α+β=,故选A.] 2.A [利用辅助角公式求出α,再求其正切值.由sin α-cosα=sin=,α(0,π),解得α=,所以tanα=tan=-1.] 3.A [由5 cos(B+C)+3=0,得cos A=,则sin A=, =,sin B=.又a>b,B必为锐角,所以B=.] 4.A [依题意,得<cos A,sin C<sin Bcos A,所以sin(A+B)<sin Bcos A,即sin Bcos A+cos BsinA-sin Bcos A<0,所以cos Bsin A<0.又sin A>0,于是有cos B<0,B为钝角,ABC是钝角三角形,选A.] 5.D [由余弦定理可得:c2=a2+b2-2abcos C=a2+b2-ab=(a+b)2-3ab=(a+b)2-4,所以有ab=≤2,解得a+b≥.] 6.解析 利用正弦定理可知:c==2,b2=a2+c2-2accos B,a2-4a-12=0,a=6. 答案:2 6 7.解析 由正弦定理知,c2=ab+b2,所以cos C=====,所以C=. 答案 8.解析 因为4sin2-cos 2C=, 所以2[1-cos(A+B)]-2cos2C+1=, 2+2cos C-2cos2C+1=, cos2C-cos C+=0,解得cos C=. 根据余弦定理有cos C==,ab=a2+b2-7, 3ab=a2+b2+2ab-7=(a+b)2-7=25-7=18, ab=6. 所以S=absin C=×6×=. 答案 9.解 (1)由题设知:f=2sin=2sin=. (2)由题设知:=f=2sin α, =f(3β+2π)=2sin=2cos β, 即sin α=,cos β=.又α,β,cos α=,sin β=,cos(α+β)=cos αcos β-sin αsinβ=×-×=. 10.解 (1)由2sin2-cos 2A=及A+B+C=180°, 得2[1-cos (B+C)]-2cos2A+1=, 4(1+cos A)-4cos2A=5. 4cos2A-4cos A+1=0.cos A=. ∵0°<A<180°,A=60°. (2)由余弦定理,得cos A=.∵cos A=,=.∴(b+c)2-a2=3bc.将a=,b+c=3代入上式得bc=2. 由及b>c,得 11.解 由题意,设|AC|=x,则|BC|=x-×340=x-40, 在ABC内,由余弦定理:|BC|2=|BA|2+|CA|2-2|BA|·|CA|·cosBAC,即(x-40)2=x2+10 000-100x,解得x=420. 在ACH中,|AC|=420,CAH=30°+15°=45°,CHA=90°-30°=60°,由正弦定理:=,可得|CH|=|AC|·=140. 答:该仪器的垂直弹射高度CH为140米.。
高考数学二轮复习考点知识与题型专题讲解19---三角恒等变换与解三角形

高考数学二轮复习考点知识与题型专题讲解第19讲 三角恒等变换与解三角形[考情分析] 1.三角恒等变换主要考查化简、求值,解三角形主要考查求边长、角度、面积等,三角恒等变换作为工具,将三角函数与三角形相结合考查求解最值、范围问题.2.三角恒等变换以选择题、填空题为主,解三角形以解答题为主,中等难度.考点一 三角恒等变换 核心提炼1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β;(2)cos(α±β)=cos αcos β∓sin αsin β;(3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;(3)tan 2α=2tan α1-tan 2α.例1 (1)(2022·新高考全国Ⅱ)若sin(α+β)+cos(α+β)=22cos ⎝⎛⎭⎫α+π4sin β,则() A .tan(α-β)=1B .tan(α+β)=1C .tan(α-β)=-1D .tan(α+β)=-1答案 C解析 由题意得sin αcos β+cos αsin β+cos αcos β-sin αsin β=22×22(cos α-sin α)sin β,整理,得sin αcos β-cos αsin β+cos αcos β+sin αsin β=0,即sin(α-β)+cos(α-β)=0,所以tan(α-β)=-1.(2)(2021·全国甲卷)若α∈⎝⎛⎭⎫0,π2,tan 2α=cos α2-sin α,则tan α等于( ) A.1515 B.55 C.53 D.153答案 A解析 方法一因为tan 2α=sin 2αcos 2α=2sin αcos α1-2sin 2α, 且tan 2α=cos α2-sin α, 所以2sin αcos α1-2sin 2α=cos α2-sin α,解得sin α=14. 因为α∈⎝⎛⎭⎫0,π2, 所以cos α=154,tan α=sin αcos α=1515. 方法二 因为tan 2α=2tan α1-tan 2α=2sin αcos α1-sin 2αcos 2α=2sin αcos αcos 2α-sin 2α=2sin αcos α1-2sin 2α, 且tan 2α=cos α2-sin α, 所以2sin αcos α1-2sin 2α=cos α2-sin α,解得sin α=14. 因为α∈⎝⎛⎭⎫0,π2, 所以cos α=154,tan α=sin αcos α=1515. 规律方法 三角恒等变换的“4大策略”(1)常值代换:特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45°等;(2)项的拆分与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等;(3)降幂与升幂:正用二倍角公式升幂,逆用二倍角公式降幂;(4)弦、切互化:一般是切化弦.跟踪演练1 (1)(多选)(2022·张家口模拟)已知sin θcos θ+3cos 2θ=cos θ+32,θ∈⎝⎛⎭⎫0,π2,则θ等于( ) A.π3 B.π6 C.π12 D.π18答案 BD解析 sin θcos θ+3cos 2θ =12sin 2θ+3×1+cos 2θ2=cos ⎝⎛⎭⎫2θ-π6+32=cos θ+32, 故cos ⎝⎛⎭⎫2θ-π6=cos θ, 所以2θ-π6=θ+2k π或2θ-π6=-θ+2k π(k ∈Z ), 故θ=π6+2k π或θ=π18+2k π3(k ∈Z ). 又θ∈⎝⎛⎭⎫0,π2,所以θ=π6或π18. (2)已知函数f (x )=sin x -2cos x ,设当x =θ时,f (x )取得最大值,则cos θ=________.答案 -255解析 f (x )=sin x -2cos x =5sin(x -φ),其中cos φ=55,sin φ=255, 则f (θ)=5sin(θ-φ)=5,因此θ-φ=π2+2k π,k ∈Z ,则cos θ=cos ⎝⎛⎭⎫φ+π2+2k π=-sin φ=-255. 考点二 正弦定理、余弦定理核心提炼1.正弦定理:在△ABC 中,a sin A =b sin B =c sin C=2R (R 为△ABC 的外接圆半径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C ,sin A =a 2R ,sin B =b 2R ,sin C =c 2R ,a ∶b ∶c =sin A ∶sin B ∶sin C 等.2.余弦定理:在△ABC 中,a 2=b 2+c 2-2bc cos A .变形:b 2+c 2-a 2=2bc cos A ,cos A =b 2+c 2-a 22bc . 3.三角形的面积公式:S =12ab sin C =12ac sin B =12bc sin A .例2 (1)(2022·济南模拟)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b sin 2A =a sin B ,且c =2b ,则a b等于( ) A .3 B.13 C.33D. 3 答案 D解析 因为b sin 2A =a sin B ,所以2b sin A cos A =a sin B ,利用正弦定理可得2ab cos A =ab , 所以cos A =12,又c =2b , 所以cos A =b 2+c 2-a 22bc =b 2+4b 2-a 24b 2=12, 解得a b= 3.(2)(2022·全国乙卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin C sin(A -B )=sin B sin(C -A ).①证明:2a 2=b 2+c 2;②若a =5,cos A =2531,求△ABC 的周长. ①证明 方法一由sin C sin(A -B )=sin B sin(C -A ),可得sin C sin A cos B -sin C cos A sin B=sin B sin C cos A -sin B cos C sin A ,结合正弦定理a sin A =b sin B =c sin C, 可得ac cos B -bc cos A =bc cos A -ab cos C ,即ac cos B +ab cos C =2bc cos A (*).由余弦定理可得ac cos B =a 2+c 2-b 22, ab cos C =a 2+b 2-c 22,2bc cos A =b 2+c 2-a 2, 将上述三式代入(*)式整理,得2a 2=b 2+c 2.方法二 因为A +B +C =π,所以sin C sin(A -B )=sin(A +B )sin(A -B )=sin 2A cos 2B -cos 2A sin 2B=sin 2A (1-sin 2B )-(1-sin 2A )sin 2B=sin 2A -sin 2B ,同理有sin B sin(C -A )=sin(C +A )sin(C -A )=sin 2C -sin 2A .又sin C sin(A -B )=sin B sin(C -A ),所以sin 2A -sin 2B =sin 2C -sin 2A ,即2sin 2A =sin 2B +sin 2C ,故由正弦定理可得2a 2=b 2+c 2.②解 由①及a 2=b 2+c 2-2bc cos A 得,a 2=2bc cos A ,所以2bc =31.因为b 2+c 2=2a 2=50,所以(b +c )2=b 2+c 2+2bc =81,得b +c =9,所以△ABC 的周长l =a +b +c =14.规律方法 正、余弦定理的适用条件(1)“已知两角和一边”或“已知两边和其中一边的对角”应采用正弦定理.(2)“已知两边和这两边的夹角”或“已知三角形的三边”应采用余弦定理.注意:应用定理要注意“三统一”,即“统一角、统一函数、统一结构”.跟踪演练2 (1)在△ABC 中,若cos C =79,b cos A +a cos B =2,则△ABC 外接圆的面积为() A.49π8 B.81π8 C.81π49 D.81π32答案 D解析 根据正弦定理可知b =2R sin B ,a =2R sin A ,得2R sin B cos A +2R sin A cos B=2R sin(A +B )=2,因为sin(A +B )=sin(π-C )=sin C =1-cos 2C =429,所以R =928,所以△ABC 外接圆的面积S =πR 2=81π32.(2)(2022·衡水中学模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且tan A tan B =2c -bb .①求角A 的大小;②若a =2,求△ABC 面积的最大值及此时边b ,c 的值.解 ①在△ABC 中,由正弦定理得,c =2R sin C ,b =2R sin B ,则tan A tan B =2c b -1=2sin C sin B -1,tan A tan B +1=2sin C sin B, 化简得cos A sin B +sin A cos B =2sin C cos A .即sin(A +B )=2sin C cos A ,∵A +B =π-C ,∴sin(A +B )=sin C ≠0,∴cos A =12, ∵0<A <π,∴A =π3. ②由余弦定理得a 2=b 2+c 2-2bc cos A ,又A =π3,∴b 2+c 2-bc =4, 又b 2+c 2≥2bc ,∴bc ≤4,则S △ABC =12bc sin A ≤12×4×32=3,当且仅当b =c =2时,等号成立, ∴△ABC 面积的最大值为3,此时b =2,c =2.考点三 解三角形的实际应用核心提炼解三角形应用题的常考类型(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.例3 (1)滕王阁,位于江西省南昌市西北部沿江路赣江东岸,始建于唐朝永徽四年,因唐代诗人王勃的诗句“落霞与孤鹜齐飞,秋水共长天一色”而流芳后世.如图,小明同学为测量滕王阁的高度,在滕王阁的正东方向找到一座建筑物AB ,高为12 m ,在它们的地面上的点M (B ,M ,D 三点共线)测得楼顶A 、滕王阁顶部C 的仰角分别为15°和60°,在楼顶A 处测得滕王阁顶部C 的仰角为30°,则小明估算滕王阁的高度为(精确到1 m)()A .42 mB .45 mC .51 mD .57 m答案 D解析 由题意得,在Rt △ABM 中,AM =AB sin 15°, 在△ACM 中,∠CAM =30°+15°=45°,∠AMC =180°-15°-60°=105°,所以∠ACM =30°,由正弦定理得AM sin ∠ACM =CM sin ∠CAM, 所以CM =sin ∠CAM sin ∠ACM·AM =2AB sin 15°, 又sin 15°=sin(45°-30°) =22×32-22×12=6-24, 在Rt △CDM 中,CD =CM sin 60°=6AB 2sin 15°=1262×6-24=36+123≈57(m). (2)雷达是利用电磁波探测目标的电子设备,电磁波在大气中大致沿直线传播,受地球表面曲率的影响,雷达所能发现目标的最大直视距离L =(R +h 1)2-R 2+(R +h 2)2-R 2=2Rh 1+h 21+2Rh 2+h 22(如图),其中h 1为雷达天线架设高度,h 2为探测目标高度,R 为地球半径.考虑到电磁波的弯曲、折射等因素,R等效取8 490 km,故R远大于h1,h2.假设某探测目标高度为25 m,为保护航母的安全,须在直视距离412 km外探测到目标,并发出预警,则舰载预警机的巡航高度至少约为(参考数据:2×8.49≈4.12)()A.6 400 m B.8 100 mC.9 100 m D.1 000 m答案 C解析根据题意可知L=412 km,R=8 490 km,h2=0.025 km,因为L=(R+h1)2-R2+(R+h2)2-R2=2Rh1+h21+2Rh2+h22,即412=(8 490+h1)2-8 4902+(8 490+0.025)2-8 4902≈(8 490+h1)2-8 4902+20.6,解得h1≈9.02(km)≈9 100(m).所以舰载预警机的巡航高度至少约为9 100 m.规律方法解三角形实际问题的步骤跟踪演练3(1)如图,已知A,B,C,D四点在同一条直线上,且平面P AD与地面垂直,在山顶P点测得点A ,C ,D 的俯角分别为30°,60°,45°,并测得AB =200 m ,CD =100 m ,现欲沿直线AD 开通穿山隧道,则隧道BC 的长为()A .100(3+1)mB .200(3+1)mC .200 3 mD .100 3 m答案 C解析 由题意可知A =30°,D =45°,∠PCB =60°,所以∠PCD =120°,∠APC =90°,∠DPC =15°,因为sin 15°=sin(45°-30°) =22×32-22×12=6-24, 所以在△PCD 中,由正弦定理得CD sin ∠DPC =PC sin D, 即1006-24=PC 22, 解得PC =100(3+1)m ,所以在Rt △P AC 中,AC =2PC =200(3+1)m ,所以BC =AC -AB =2003(m).(2)如图是建党百年展览的展馆——国家博物馆.现欲测量博物馆正门柱楼顶部一点P 离地面的高度OP (点O 在柱楼底部).现分别从地面上的两点A ,B 测得点P 的仰角分别为30°,45°,且∠ABO =60°,AB =60 2 米,则OP 等于( )A.40米B.30米C.30 2 米D.30 3 米答案 C解析如图所示,设OP=h,由题意知∠OAP=30°,∠OBP=45°.在Rt△AOP中,OA=OPtan 30°=3h,在Rt△BOP中,OB=h.在△ABO中,由余弦定理,得OA2=AB2+OB2-2AB·OB cos 60°,代入数据计算得到h=302(米).即OP=302(米).专题强化练一、单项选择题1.(2021·全国甲卷)在△ABC中,已知B=120°,AC=19,AB=2,则BC等于() A.1 B. 2 C. 5 D.3答案 D解析 由余弦定理AC 2=AB 2+BC 2-2AB ·BC cos B ,得BC 2+2BC -15=0,解得BC =3或BC =-5(舍去).2.(2021·全国乙卷)cos 2π12-cos 25π12等于( ) A.12 B.33 C.22 D.32答案 D解析 cos 2π12-cos 25π12=1+cos π62-1+cos 5π62=1+322-1-322=32. 3.(2022·榆林模拟)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为3154,b -c =1,cos A =14,则a 等于( ) A .10 B .3 C.10 D. 3答案 C解析 因为cos A =14,所以sin A =154, 又S △ABC =12bc sin A =158bc =3154, 所以bc =6,又b -c =1,可得b =3,c =2,所以a 2=b 2+c 2-2bc cos A =10,即a =10.4.已知cos α=55,sin(β-α)=-1010,α,β均为锐角,则β等于( ) A.π12B.π6C.π4D.π3答案 C解析 ∵α,β均为锐角,即α,β∈⎝⎛⎭⎫0,π2, ∴β-α∈⎝⎛⎭⎫-π2,π2, ∴cos(β-α)=1-sin 2(β-α)=31010, 又sin α=1-cos 2α=255, ∴cos β=cos[(β-α)+α]=cos(β-α)cos α-sin(β-α)sin α =31010×55-⎝⎛⎭⎫-1010×255=22, 又β∈⎝⎛⎭⎫0,π2,∴β=π4. 5.故宫是世界上现存规模最大、保存最为完整的木质结构古建筑群,故宫宫殿房檐设计恰好使北房在冬至前后阳光满屋,夏至前后屋檐遮阴.已知北京地区夏至前后正午太阳高度角约为75°,冬至前后正午太阳高度角约为30°.图1是顶部近似为正四棱锥、底部近似为正四棱柱的宫殿,图2是其示意图,则其出檐AB 的长度(单位:米)约为( )A .3米B .4米C .6(3-1)米D .3(3+1)米答案 C解析 如图,根据题意得∠ACB =15°,∠ACD =105°,∠ADC =30°,∠CAD =45°,CD =24米,所以∠CAD =45°,在△ACD 中,由正弦定理得CDsin ∠CAD =ACsin ∠ADC ,即24sin 45°=AC sin 30°,解得AC =122(米),在Rt △ACB 中,sin ∠ACB =AB AC ,即sin 15°=AB122,解得AB =122sin 15°=122sin(60°-45°)=122×⎝⎛⎭⎫32×22-12×22 =122×6-24=32(6-2)=6(3-1)米.6.(2022·济宁模拟)已知sin α-cos β=3cos α-3sin β,且sin(α+β)≠1,则sin(α-β)的值为() A .-35B.35C .-45D.45答案 C解析 由sin α-cos β=3cos α-3sin β得,sin α-3cos α=cos β-3sin β=sin ⎝⎛⎭⎫π2-β-3cos ⎝⎛⎭⎫π2-β,设f (x )=sin x -3cos x =10⎝⎛⎭⎫110sin x -310cos x=10sin(x -φ), 其中cos φ=110,sin φ=310,φ为锐角,已知条件即为f (α)=f ⎝⎛⎭⎫π2-β,所以π2-β=2k π+α,或π2-β-φ+α-φ=2k π+π,k ∈Z ,若π2-β=2k π+α,k ∈Z ,则α+β=-2k π+π2,k ∈Z ,sin(α+β)=sin π2=1与已知矛盾,所以π2-β-φ+α-φ=2k π+π,k ∈Z ,α-β=2k π+π2+2φ,k ∈Z ,则sin(α-β)=sin ⎝⎛⎭⎫2k π+π2+2φ =sin ⎝⎛⎭⎫π2+2φ=cos 2φ=2cos 2φ-1=-45.二、多项选择题7.(2022·张家口质检)下列命题中,正确的是( )A .在△ABC 中,若A >B ,则sin A >sin BB .在锐角△ABC 中,不等式sin A >cos B 恒成立C .在△ABC 中,若a cos A =b cos B ,则△ABC 是等腰直角三角形D .在△ABC 中,若B =π3,b 2=ac ,则△ABC 必是等边三角形 答案 ABD解析 对于A ,由A >B ,可得a >b ,利用正弦定理可得sin A >sin B ,正确;对于B ,在锐角△ABC 中,A ,B ∈⎝⎛⎭⎫0,π2, ∵A +B >π2, ∴π2>A >π2-B >0, ∴sin A >sin ⎝⎛⎭⎫π2-B =cos B ,因此不等式sin A >cos B 恒成立,正确;对于C ,在△ABC 中,a cos A =b cos B ,利用正弦定理可得sin A cos A =sin B cos B ,∴sin 2A =sin 2B ,∵A ,B ∈(0,π),∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2, ∴△ABC 是等腰三角形或直角三角形,错误;对于D ,由于B =π3,b 2=ac ,由余弦定理可得 b 2=ac =a 2+c 2-ac ,可得(a -c )2=0,解得a =c ,则A =C =B =π3, ∴△ABC 必是等边三角形,正确.8.函数f (x )=sin x (sin x +cos x )-12,若f (x 0)=3210,x 0∈⎝⎛⎭⎫0,π3,下列结论正确的是( ) A .f (x )=22sin ⎝⎛⎭⎫2x -π4 B .直线x =π4是f (x )图象的一条对称轴C .f (x )在⎝⎛⎭⎫0,π3上的最小值为-22D .cos 2x 0=210答案 AD解析 f (x )=sin 2x +sin x cos x -12 =1-cos 2x2+12sin 2x -12=12(sin 2x -cos 2x )=22sin ⎝⎛⎭⎫2x -π4,故A 正确;当x =π4时,sin ⎝⎛⎭⎫2x -π4=22,∴x =π4不是f (x )的对称轴,故B 错误;当x ∈⎝⎛⎭⎫0,π3时,2x -π4∈⎝⎛⎭⎫-π4,5π12,∴f (x )在⎝⎛⎭⎫0,π3上单调递增,∴f (x )在⎝⎛⎭⎫0,π3上无最小值,故C 错误;∵f (x 0)=3210,∴sin ⎝⎛⎭⎫2x 0-π4=35, 又2x 0-π4∈⎝⎛⎭⎫-π4,5π12, ∴cos ⎝⎛⎭⎫2x 0-π4=45, ∴cos 2x 0=cos ⎣⎡⎦⎤⎝⎛⎭⎫2x 0-π4+π4 =22⎣⎡⎦⎤cos ⎝⎛⎭⎫2x 0-π4-sin ⎝⎛⎭⎫2x 0-π4=210, 故D 正确.三、填空题9.(2022·烟台模拟)若sin α=cos ⎝⎛⎭⎫α+π6,则tan 2α的值为________. 答案 3解析 由sin α=cos ⎝⎛⎭⎫α+π6, 可得sin α=cos αcos π6-sin αsin π6 =32cos α-12sin α,则tan α=33, tan 2α=2tan α1-tan 2α=2×331-⎝⎛⎭⎫332= 3. 10.(2022·泰安模拟)已知sin ⎝⎛⎭⎫π3-α=14,则sin ⎝⎛⎭⎫π6-2α=________. 答案 -78解析 sin ⎝⎛⎭⎫π6-2α=sin ⎣⎡⎦⎤2⎝⎛⎭⎫π3-α-π2 =-cos ⎣⎡⎦⎤2⎝⎛⎭⎫π3-α =-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π3-α=-⎝⎛⎭⎫1-18=-78. 11.(2022·开封模拟)如图,某直径为55海里的圆形海域上有四个小岛,已知小岛B 与小岛C 相距5海里,cos ∠BAD =-45.则小岛B 与小岛D 之间的距离为________海里;小岛B ,C ,D 所形成的三角形海域BCD 的面积为________平方海里.答案 35 15解析 由圆的内接四边形对角互补,得cos ∠BCD =cos(π-∠BAD )=-cos ∠BAD=45>0, 又∠BCD 为锐角,所以sin ∠BCD =1-cos 2∠BCD =35, 在△BCD 中,由正弦定理得BD sin ∠BCD =BD 35=55,则BD =35(海里). 在△BCD 中,由余弦定理得 (35)2=CD 2+52-2×CD ×5×45, 整理得CD 2-8CD -20=0,解得CD =10(负根舍去).所以S △BCD =12×10×5×35=15(平方海里). 12.(2022·汝州模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a =2,cos 2C =cos 2A +4sin 2B ,则△ABC 面积的最大值为________.答案23解析 由cos 2C =cos 2A +4sin 2B 得,1-2sin 2C =1-2sin 2A +4sin 2B ,即sin 2A =sin 2C +2sin 2B ,由正弦定理得a 2=c 2+2b 2=4,由余弦定理得a 2=b 2+c 2-2bc cos A =4,∴c 2+2b 2=b 2+c 2-2bc cos A ,即cos A =-b 2c<0, ∵A ∈(0,π),∴sin A =1-b 24c 2, ∴S △ABC =12bc sin A =12b 2c 2⎝⎛⎭⎫1-b 24c 2 =12b 2c 2-14b 4, ∵c 2+2b 2=4,∴c 2=4-2b 2,∴S △ABC =12b 2(4-2b 2)-14b 4 =12-94b 4+4b 2, 则当b 2=89时, ⎝⎛⎭⎫-94b 4+4b 2max =-94×6481+4×89=169, ∴(S △ABC )max =12×43=23. 四、解答题13.(2022·新高考全国Ⅱ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为S 1,S 2,S 3.已知S 1-S 2+S 3=32,sin B =13. (1)求△ABC 的面积;(2)若sin A sin C =23,求b . 解 (1)由S 1-S 2+S 3=32, 得34(a 2-b 2+c 2)=32, 即a 2-b 2+c 2=2,又a 2-b 2+c 2=2ac cos B ,所以ac cos B =1.由sin B =13, 得cos B =223或cos B =-223(舍去), 所以ac =322=324, 则△ABC 的面积S =12ac sin B =12×324×13=28. (2)由sin A sin C =23,ac =324及正弦定理知 b 2sin 2B =ac sin A sin C =32423=94, 即b 2=94×19=14,得b =12. 14.(2022·抚顺模拟)在①(2c -a )sin C =(b 2+c 2-a 2)sin B b ;②cos 2A -C 2-cos A cos C =34;③3c b cos A=tan A +tan B 这三个条件中,任选一个,补充在下面问题中,问题:在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =23,________.(1)求角B ;(2)求2a -c 的取值范围.解 (1)选择①:∵(2c -a )sin C =(b 2+c 2-a 2)sin B b, ∴由正弦定理可得(2c -a )c =b 2+c 2-a 2=2bc cos A ,∴2c -a =2b cos A ,可得cos A =2c -a 2b, ∴由余弦定理可得cos A =2c -a 2b =b 2+c 2-a 22bc , 整理可得c 2+a 2-b 2=ac ,∴cos B =c 2+a 2-b 22ac =ac 2ac =12, ∵B ∈(0,π),∴B =π3. 选择②:∵cos 2A -C 2-cos A cos C =1+cos (A -C )2-cos A cos C =1-cos A cos C +sin A sin C 2=1-cos (A +C )2=34, ∴cos(A +C )=-12, ∴cos B =-cos(A +C )=12, 又∵B ∈(0,π),∴B =π3. 选择③: 由正弦定理可得3c b cos A =3sin C sin B cos A,又tan A +tan B =sin A cos A +sin Bcos B=sin A cos B +cos A sin Bcos A cos B =sin Ccos A cos B , 由3cb cos A =tan A +tan B , 可得3sin Csin B cos A =sin Ccos A cos B ,∵sin C >0,∴tan B =3, ∵B ∈(0,π),∴B =π3.(2)在△ABC 中,由(1)及b =23, 得b sin B =a sin A =c sin C =2332=4,故a =4sin A ,c =4sin C ,2a -c =8sin A -4sin C=8sin A -4sin ⎝⎛⎭⎫2π3-A=8sin A -23cos A -2sin A =6sin A -23cos A=43sin ⎝⎛⎭⎫A -π6,∵0<A <2π3,则-π6<A -π6<π2,-12<sin ⎝⎛⎭⎫A -π6<1,-23<43sin ⎝⎛⎭⎫A -π6<43﹒∴2a -c 的取值范围为()-23,43.。
高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是()A.B.C.D.【答案】A【解析】原函数在轴左侧是一段正弦型函数图象,在轴右侧是一条对数函数的图象,要使得图象上关于轴对称的点至少有对,可将左侧的图象对称到轴右侧,即,应该与原来轴右侧的图象至少有个公共点如图,不能满足条件,只有此时,只需在时,的纵坐标大于,即,得.【考点】分段函数,函数图象,正弦型函数,对数函数2.若,则函数的最大值是___________.【答案】【解析】由题意因为,所以,所以函数的最大值是.【考点】求最大值.3.已知,,则下列不等式一定成立的是A.B.C.D.【答案】D【解析】,【考点】三角函数的性质4.若,且为第二象限角,则()A.B.C.D.【答案】B【解析】由得又为第二象限角,所以,选B.【考点】两角差余弦公式5.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.-2D.【答案】C【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选C.【考点】三角函数的性质.6.设的最小值为,则.【答案】【解析】,根据题意,结合二次函数在某个区间上的最值问题,对参数进行讨论,当时,其最小值为,所以不合题意,当时,其最小值为,解得,当时,其最小值为,无解,所以.【考点】倍角公式,二次函数在给定区间上的最值问题.7.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.D.-2【答案】D【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选D.【考点】三角函数的性质.8.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x【答案】D【解析】因为A项为非奇非偶函数,B项是奇函数,C项是奇函数,只有D项是符合题意的,故选D.【考点】诱导公式,倍角公式,三角函数的奇偶性和周期.9.函数的最大值为.【答案】【解析】解析式表示过的直线的斜率,由几何意义,即过定点(4,3)与单位圆相切时的切线斜率为最值.所以设切线得斜率为k,则直线方程为,即 ,【考点】三角函数最值【方法点睛】本题主要考查三角函数最值问题及转化的思想,解决问题的根据是根据所给函数式子转化为直线与圆的位置关系问题,即将所给式子看做定点与单位圆上点的连线的斜率的范围问题,通过模型转化使问题定点巧妙解决,属于经典试题.10.(本题满分12分)如图,在中,边上的中线长为3,且,.(1)求的值;(2)求边的长.【答案】(1)(2)4【解析】(1)利用角的关系,再结合两角差正弦公式展开就可求解(2)先在三角形ABD中,由正弦定理解出BD长,即CD长:由正弦定理,得,即,解得…故;再在三角形ADC中由余弦定理解出AC:;AC= 4试题解析:(1)(2)在中,由正弦定理,得,即,解得…故,从而在中,由余弦定理,得;AC= 4 ;【考点】正余弦定理11.中,,则的最大值为.【答案】【解析】设,由余弦定理的推论,所以,设,代入上式得,,故,当时,此时,符合题意,因此最大值为,故答案为:.【考点】解三角形.【思路点睛】首先假设,然后再根据余弦定理的推论,可得,找到与的关系,再设,代入上式得,利用根的判别式,进而求出结果.本题的关键是利用余弦定理的推论.12.已知函数的部分图象如图所示.(1)求函数的解析式;(2)若,求函数在区间上的单调减区间.【答案】(1);(2),.【解析】(1)由图象中的最高点和最低点的纵坐标得到关于的方程组求得,再利用图象得到函数的周期,进而得到值,最后代入最低点坐标或最高点坐标结合的范围求出,即得到函数的解析式;(2)先求出,利用两角和差的正弦公式将其化为的形式,再利用整体思想求其单调递减区间.试题解析:(1)由图知,解得,又,所以,所以,将点代入,得,再由,得,所以;(2)因为由,解得;又,故所求的单调减区间为,.【考点】1.三角函数的图象与性质;2.三角恒等变形.13.已知角的终边经过点(-4,3),则= ,= ;【答案】;【解析】由题意可得.【考点】任意角三角函数的定义.14.在△ABC中,a、b、c分别是角A、B、C的对边,且.(Ⅰ)求角B的大小;(Ⅱ)若,求△ABC的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)在解三角形的背景下,考查正弦定理,余弦定理,知值求值.(Ⅱ)综合余弦定理,求三角形的面积公式,需要把作为整体求之.试题解析:(Ⅰ)由正弦定理得将上式代入已知即,即.∵∵∵B为三角形的内角,∴.(Ⅱ)由余弦定理得,结合,可得,所以△ABC的面积.【考点】正弦定理,余弦定理,三角形的面积公式.15.在△中,角,,所对的边分别为,,,表示△的面积,若,,则.【答案】【解析】∵,∴,∴,∴,.∵,∴,∴,∴,∴.【考点】解三角形.【思路点睛】先利用余弦定理和三角形的面积公式可得,可得,再用正弦定理把中的边换成角的正弦,利用两角和公式化简整理可求得,最后根据三角形内角和,进而求得.16.中,角A,B,C的对边分别为a,b,c,若的面积,则 .【答案】【解析】由余弦定理,,又,,,即,,.【考点】1、余弦定理;2、同角三角函数的基本关系;3、三角形面积公式.【思路点睛】本题主要考查的是余弦定理、同角三角函数基本关系、三角形的面积公式,属于容易题.因为题目求,且的面积,边的平方的形式一般想到余弦定理,面积展开后利用余弦定理即可求得与的关系,从而利用同角三角函数的基本关系求得.17.(2012•安徽)设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据2sinBcosA=sinAcosC+cosAsinC,可得2sinBcosA=sin(A+C),从而可得2sinBcosA=sinB,由此可求求角A的大小;(Ⅱ)利用b=2,c=1,A=,可求a的值,进而可求B=,利用D为BC的中点,可求AD的长.解:(Ⅰ)∵2sinBcosA=sinAcosC+cosAsinC∴2sinBcosA=sin(A+C)∵A+C=π﹣B∴sin(A+C)=sinB>0∴2sinBcosA=sinB∴cosA=∵A∈(0,π)∴A=;(Ⅱ)∵b=2,c=1,A=∴a2=b2+c2﹣2bccosA=3∴b2=a2+c2∴B=∵D为BC的中点,∴AD=.【考点】余弦定理;三角函数的恒等变换及化简求值.18.在中,已知.(Ⅰ)求sinA与角B的值;(Ⅱ)若角A,B,C的对边分别为的值.【答案】(Ⅰ);(Ⅱ),.【解析】(I)给出了关于角的两个三角函数值,利用诱导公式和同角三角函数的基本关系式可求得其正弦、余弦,再根据三角形的性质可求得的值;(II)在第一问的基础上,利用正弦定理可求得边,再由余弦定理求边,注意利用三角形基本性质舍解.试题解析:(Ⅰ)∵,,又∵,.∵,且,.(Ⅱ)由正弦定理得,,另由得,解得或(舍去),,.【考点】三角函数的诱导公式,同角三角函数的基本关系式及利用正、余弦定理在解三角形.19.已知,则的值为.【答案】.【解析】,故填:.【考点】三角恒等变形.20.在中,角A,B,C的对边分别为,,,若,则角的值为()A.或B.或C.D.【答案】A.【解析】,,∴或,故选A.【考点】余弦定理.【思路点睛】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.21.为了得到函数的图象,只需把函数图象上的所有点()A.横坐标缩短到原来的倍,纵坐标不变B.横坐标伸长到原来的2倍,纵坐标不变C.纵坐标缩短到原来的倍,横坐标不变D.纵坐标缩短到原来的2倍,横坐标不变【答案】A【解析】这是一个三角函数的图象变换问题,一般的为了得到函数的图象,只需把函数的图象上所有点的横坐标伸长()或缩短()到原来的倍(纵坐标不变)即可,因此为了得到函数的图象,只需把函数图象上的所有点横坐标缩短到原来的倍,纵坐标不变,故选A.【考点】三角函数的图象变换.【方法点睛】本题是一个三角函数的图象变换问题,属于容易题.一般的要得到函数(其中)的图像可按以下步骤进行:先把的图象向左()或向右()平移个单位,再将所得函数的图象上各点的横坐标扩大()或缩小()为原来的(纵坐标不变),再把所得函数图象上各点的纵坐标扩大()或缩小()为原来的倍(横坐标不变),最后再将所得图像向上()或向下()平移个单位,即可得到函数的图象.22.如图,在中,,,点在边上,且,.(I)求;(II)求的长.【答案】(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由图可知,所以,又,所以,再由两角差的正弦公式可求得;(Ⅱ)由题意可用正弦定理、余弦定理即可求出、的长,在中,有,又从而可求得;在中,由余弦定理得,,从而可求出.试题解析:(Ⅰ)在中,因为,所以,所以(Ⅱ)在中,由正弦定理得,在中,由余弦定理得,所以【考点】1.解三角形;2.两角差的正弦公式.23.设的内角对边分别为,已知,且.(1)求角的大小;(2)若向量与共线,求的值.【答案】(1);(2)。
2015届高考理科数学二轮复习:提能专训9 三角函数的图象与性质Word版含解析

提能专训(九) 三角恒等变换与解三角形一、选择题1.(2014·皖南八校联考)sin 2α=2425,0<α<π2,则2cos ⎝ ⎛⎭⎪⎫π4-α的值为( )A.15 B .-15 C.75 D .±15 [答案] C[解析] 因为sin 2α=cos ⎝⎛⎭⎪⎫π2-2α=2cos 2⎝⎛⎭⎪⎫π4-α-1,所以2cos ⎝ ⎛⎭⎪⎫π4-α=±1+sin 2α,因为sin 2α=2425,所以2cos ⎝ ⎛⎭⎪⎫π4-α=±75, 因为0<α<π2,所以-π4<π4-α<π4,所以2cos ⎝ ⎛⎭⎪⎫π4-α=75,故选C.2.(2014·温州十校联考)若sin α+cos α=713(0<α<π),则tan α=( )A .-13 B.125 C .-125 D.13 [答案] C[解析] 由sin α+cos α=713(0<α<π)两边平方,得1+sin 2α=49169,sin 2α=-120169,又sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1,∴2tan αtan 2α+1=-120169,60tan 2α+169tan α+60=0,∴tan α=-125或tan α=-512, 又sin α+cos α>0,∴|sin α|>|cos α|, 即|tan α|>1,故tan α=-125,故选C.3.(2014·大连双基测试)在斜三角形ABC 中,“A >B ”是“|tan A |>|tan B |”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 [答案] A[解析] 在斜三角形ABC 中,|tan A |>|tan B |⇔|sin A cos B |>|cos A sin B |⇔(sin A cos B )2-(cos A sin B )2>0⇔(sin A cos B +cos A sin B )·(sin A cos B -cos A sin B )>0⇔sin(A +B )·sin(A -B )>0⇔sin C sin(A -B )>0⇔sin(A -B )>0;又-π<A -B <π,因此sin(A -B )>0⇔0<A -B <π,即A >B .因此,在斜三角形ABC 中,“A >B ”是“|tan A |>|tan B |”的充分必要条件,故选A.4.(2014·辽宁五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,S 表示△ABC 的面积,若a cos B +b cos A =c sin C ,S =14(b 2+c 2-a 2),则角B 等于( )A .90°B .60°C .45°D .30° [答案] C[解析] 由正弦定理,得sin A cos B +sin B cos A =sin C sin C ,即sin(B +A )=sin C sin C ,因为sin(B +A )=sin C ,所以sin C =1,∠C=90°.根据三角形面积公式和余弦定理,得S =12bc sin A ,b 2+c 2-a 2=2bc cos A ,代入已知得12bc sin A =14·2bc cos A ,所以tan A =1,A =45°,因此B =45°,故选C.5.(2014·昆明调研)已知△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,若A =π3,b =2a cos B ,c =1,则△ABC 的面积等于( )A.32B.34C.36D.38 [答案] B[解析] 由正弦定理,得sin B =2sin A cos B ,故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π3,又A =B =π3,则△ABC 是正三角形,所以S △ABC =12bc sin A =12×1×1×32=34,故选B.6.(2014·合肥质检)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2=b 2+c 2+3bc .若a =3,S 为△ABC 的面积,则S +3cos B cos C 的最大值为( )A .3 B. 2 C .2 D. 3 [答案] A[解析] 由cos A =b 2+c 2-a 22bc =-3bc 2bc =-32⇒A =5π6,又a =3,故S =12bc sin A =12·a sin Bsin A ·a sin C =3sin B sin C ,因此S +3cos B cos C =3sin B sin C +3cos B cos C =3cos(B -C ),于是当B =C 时取得最大值3,故选A.7.若sin θ,cos θ是方程4x 2+2mx +m =0的两个根,则m 的值为( )A .1+ 5B .1- 5C .1±5D .-1- 5 [答案] B[解析] 由题意,得sin θ+cos θ=-m 2,sin θcos θ=m4,又(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m 2,解得m =1±5,又∵Δ=4m 2-16m ≥0,解得m ≤0或m ≥4,∴m =1-5,故选B.8.(2014·河北衡水中学五调)已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α+2π3等于( )A .-45B .-35 C.45 D .35 [答案] C[解析] ∵sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,∴32sin α+32cos α=-435, ∴32sin α+12cos α=-45.∴cos ⎝⎛⎭⎪⎫α+2π3=cos αcos 2π3-sin αsin 2π3=-12cos α-32sin α=45,故选C.9.(2014·东北四市二联)△ABC 中角A ,B ,C 的对应边分别为a ,b ,c ,满足b a +c +ca +b≥1,则角A 的范围是( )A.⎝⎛⎦⎥⎤0,π3 B.⎝⎛⎦⎥⎤0,π6 C.⎣⎢⎡⎭⎪⎫π3,π D.⎣⎢⎡⎭⎪⎫π6,π [答案] A [解析] 由b a +c +c a +b≥1,得b (a +b )+c (a +c )≥(a +c )(a +b ),化简得b 2+c 2-a 2≥bc ,即b 2+c 2-a 22bc ≥12,即cos A ≥12(0<A <π),所以0<A ≤π3,故选A.10.如图所示,某电力公司为保护一墙角处的电塔,计划利用墙OA ,OB ,再修建一长度为AB 的围栏,围栏的造价与AB 的长度成正比.现已知墙角∠AOB 的度数为120°,当△AOB 的面积为3时,就可起到保护作用.则当围栏的造价最低时,∠ABO =( )A .30°B .45°C .60°D .90° [答案] A[解析] 只要AB 的长度最小,围栏的造价就最低.设OA =a ,OB =b ,则由余弦定理,得AB 2=a 2+b 2-2ab cos 120°=a 2+b 2+ab ≥2ab +ab =3ab (当且仅当a =b 时取等号),又S △AOB =12ab sin 120°=3,所以ab =4.故AB 2≥12,即AB 的最小值为2 3.由a =b 及3ab =12,得a =b =2.由正弦定理,得sin ∠ABO =a sin 120°AB =223×32=12.故∠ABO =30°,故选A. 11.(2014·德阳二诊)已知△ABC 的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小内角的余弦值为( )A.34B.56C.710D.23 [答案] A[解析] 依题意,不妨设三边长a =m -1,b =m ,c =m +1,其中m ≥2,m ∈N ,则有C =2A ,sin C =sin 2A =2sin A cos A ,c =2a ×b 2+c 2-a 22bc ,bc 2=a (b 2+c 2-a 2),m (m +1)2=(m -1)(m 2+4m ),由此解得m =5,因此cos A =b 2+c 2-a 22bc =52+62-422×5×6=34,故选A.12.(2014·石家庄一模)在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且满足c sin A =3a cos C ,则sin A +sin B 的最大值是( )A .1 B. 2 C .3 D. 3 [答案] D[解析] ∵c sin A =3a cos C , ∴sin C sin A =3sin A cos C , ∵sin A ≠0,∴tan C =3, ∵0<C <π,∴C =π3,∴sin A +sin B =sin A +sin ⎝ ⎛⎭⎪⎫2π3-A =32sin A +32cos A =3sin ⎝⎛⎭⎪⎫A +π6,∵0<A <2π3,∴π6<A +π6<5π6, ∴32<3sin ⎝ ⎛⎭⎪⎫A +π6≤3, ∴sin A +sin B 的最大值为3,故选D. 二、填空题13.(2014·广州综合测试一)设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=35,则sin ⎝⎛⎭⎪⎫α-π12=________. [答案] 210[解析] 由于α为锐角,则0<α<π2, 则π6<α+π6<2π3,因此sin ⎝ ⎛⎭⎪⎫α+π6>0, 所以sin ⎝⎛⎭⎪⎫α+π6=1-cos 2⎝⎛⎭⎪⎫α+π6=1-⎝ ⎛⎭⎪⎫352=45, 所以sin ⎝ ⎛⎭⎪⎫α-π12=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π6-π4 =sin ⎝ ⎛⎭⎪⎫α+π6cos π4-cos ⎝ ⎛⎭⎪⎫α+π6sin π4 =45×22-35×22=210.14.(2014·潍坊一模)若α∈⎝⎛⎭⎪⎫0,π2,则sin 2αsin 2α+4cos 2α的最大值为________.[答案] 12[解析] ∵α∈⎝ ⎛⎭⎪⎫0,π2,∴tan α∈(0,+∞), ∴sin 2αsin 2α+4cos 2α=2sin αcos αsin 2α+4cos 2α=2tan αtan 2α+4 =2tan α+4tan α≤22tan α×4tan α=12, 当且仅当tan α=4tan α,即tan α=2时取等号.15.(2014·贵阳适应性考试)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0,则A =________.[答案] π3[解析] 由题意,得sin A cos C +3sin A sin C =sin B +sin C , ∴sin A cos C +3sin A sin C =sin(A +C )+sin C ,∴sin A cos C +3sin A sin C =sin A cos C +cos A sin C +sin C . ∵sin C ≠0,∴3sin A -cos A =1, 即32sin A -12cos A =12, ∴sin ⎝ ⎛⎭⎪⎫A -π6=12, ∴A -π6=π6,∴A =π3.16.(2014·云南第一次检测)已知a ,b ,c 分别为△ABC 三个内角A 、B 、C 的对边,若cos B =45,a =10,△ABC 的面积为42,则b +asin A 的值等于________.[答案] 16 2[解析] 依题,可得sin B =35,又S △ABC =12ac sin B =42,则c =14. 故b =a 2+c 2-2ac cos B =62, 所以b +a sin A =b +bsin B =16 2. 三、解答题17.(2014·江南十校联考)已知函数f (x )=12λsin ωx +32λcos ωx (λ>0,ω>0)的部分图象如图所示,其中点A 为最高点,点B ,C 为图象与x 轴的交点,在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,b =c =3,且满足(2c -3a )cos B -3b cos A =0.(1)求△ABC 的面积;(2)求函数f (x )的单调递增区间.解:(1)由(2c -3a )cos B -3b cos A =0,得B =π6.在△ABC 中,BC 边上的高h =c sin B =32,BC =2c cos B =3, 故S △ABC =12×BC ×h =334.(2)f (x )=12λsin ωx +32λcos ωx =λsin ⎝⎛⎭⎪⎫ωx +π3,又T =2BC =2πω=6,则ω=π3, 故f (x )=λsin ⎝ ⎛⎭⎪⎫π3x +π3由-π2+2k π≤πx 3+π3≤π2+2k π(k ∈Z ), 可得6k -52≤x ≤6k +12(k ∈Z ). 所以函数f (x )的单调递增区间为 ⎣⎢⎡⎦⎥⎤6k -52,6k +12(k ∈Z ).18.(2014·四川5月高考热身)已知向量m =(3sin x ,-1),n =(cos x ,cos 2x ),函数f (x )=m ·n +12.(1)若x ∈⎣⎢⎡⎦⎥⎤0,π4,f (x )=33,求cos 2x 的值; (2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足2b cos A ≤2c -3a ,求f (B )的取值范围.解:(1)f (x )=m ·n +12=3sin x cos x -cos 2x +12=32sin 2x -12cos 2x -12+12=sin ⎝ ⎛⎭⎪⎫2x -π6.∵x ∈⎣⎢⎡⎦⎥⎤0,π4,∴-π6≤2x -π6≤π3.又∵f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6=33>0,∴cos ⎝ ⎛⎭⎪⎫2x -π6=63. ∴cos 2x =cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2x -π6+π6 =cos ⎝ ⎛⎭⎪⎫2x -π6×32-12sin ⎝ ⎛⎭⎪⎫2x -π6 =63×32-12×33=22-36.(2)由2b cos A ≤2c -3a ,得2b ·b 2+c 2-a 22bc ≤2c -3a ,即a 2+c 2-b 2≥3ac .∴cos B =a 2+c 2-b 22ac ≥32,∴0<B ≤π6,从而得-π6<2B -π6≤π6,故f (B )=sin ⎝ ⎛⎭⎪⎫2B -π6∈⎝ ⎛⎦⎥⎤-12,12. 19.(2014·贵阳适应性考试)已知向量a =(sin x ,-1),b =⎝⎛⎭⎪⎫3cos x ,-12,函数f (x )=(a +b )·a -2. (1)求函数f (x )的最小正周期T ;(2)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,其中A 为锐角,a =23,c =4,且f (A )=1,求△ABC 的面积S .解:(1)f (x )=(a +b )·a -2=|a |2+a ·b -2=sin 2x +1+3sin x cos x +12-2=1-cos 2x 2+32sin 2x -12=32sin 2x -12cos 2x=sin ⎝ ⎛⎭⎪⎫2x -π6. 因为ω=2,所以T =2π2=π.(2)f (A )=sin ⎝ ⎛⎭⎪⎫2A -π6=1. 因为A ∈⎝ ⎛⎭⎪⎫0,π2,2A -π6∈⎝ ⎛⎭⎪⎫-π6,5π6, 所以2A -π6=π2,A =π3.又a 2=b 2+c 2-2bc cos A ,所以12=b 2+16-2×4b ×12, 即b 2-4b +4=0,则b =2.从而S =12bc sin A =12×2×4×sin π3=2 3.20.(2014·衡水一模)在△ABC 中,a ,b ,c 是角A ,B ,C 对应的边,向量m =(a +b ,c ),n =(a +b ,-c ),且m ·n =(3+2)ab .(1)求角C ;(2)函数f (x )=2sin(A +B )cos 2(ωx )-cos(A +B )sin(2ωx )-12(ω>0)的相邻两个极值的横坐标分别为x 0-π2,x 0,求f (x )的单调递减区间.解:(1)因为m =(a +b ,c ),n =(a +b ,-c ),m ·n =(3+2)ab ,所以a 2+b 2-c 2=3ab ,故cos C =32, ∵0<C <π,∴C =π6.(2)f (x )=2sin(A +B )cos 2(ωx )-cos(A +B )sin(2ωx )-12 =2sin C cos 2(ωx )+cos C sin(2ωx )-12 =cos 2(ωx )+32sin(2ωx )-12=sin ⎝ ⎛⎭⎪⎫2ωx +π6. 因为相邻两个极值的横坐标分别为x 0-π2,x 0,所以f (x )的最小正周期为T =π,ω=1,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6. 由2k π+π2<2x +π6<2k π+3π2,k ∈Z ,得k π+π6<x <k π+2π3,所以f (x )的单调递减区间为k π+π6,k π+2π3,k ∈Z .。
高三数学三角函数三角恒等变换解三角形试题答案及解析
高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知中,那么角=【答案】π/4【解析】略2.已知f(α)=(1)化简f(α);(2)若α是第三象限角,且cos(α-)=,求f(α)的值.【答案】(1)f(α)==-cosα.(2)∵α是第三象限角,且cos(α-)=-sinα=,∴sinα=-,∴cosα=-=-,∴f(α)=-cosα=.【解析】略3.已知函数为奇函数,且,其中(1)求的值;(2)若,求的值.【答案】(1) , ;(2)【解析】(1)由为奇函数,可得,函数化为,又根据可求;(2)由(1)可得,由得又因为,所以,再根据两角和的正弦可求试题解析:因为为奇函数,所以,,则(2),因为,即又因为,所以,【考点】函数的奇偶性,三角函数的性质4.设命题函数是奇函数;命题函数的图象关于直线对称.则下列判断正确的是()A.为真B.为假C.为假D.为真【答案】C【解析】因为是偶函数,所以命题是假命题,由余弦函数的性质可知命题是假命题,选项C正确.【考点】1.三角函数性质;2.逻辑联结词与命题.5.(本小题满分12分)某同学用五点法画函数在某一个周期内的图像时,列表并填入了部分数据,如下表:5-5(1)请将上表数据补充完整,并直接写出函数的解析式;(2)若函数的图像向左平移个单位后对应的函数为,求的图像离原点最近的对称中心.【答案】(1);(2).【解析】第一问结合三角函数的性质,确定出对应的值,完善表格,从而确定出函数解析式,第二问利用图形的平移变换,将函数的解析式求出来,利用函数的性质,找出函数图像的对称中心,给赋值,比较从而确定出离原点最近的对称中心.试题解析:(1)根据表中已知数据,解得数据补全如下表:050-50函数表达式为(2)函数图像向左平移个单位后对应的函数是,其对称中心的横坐标满足,所以离原点最近的对称中心是.【考点】三角函数的性质,图像的变换.6.(本小题满分10分)已知函数.(1)求的最小正周期;(2)设,求的值域和单调递减区间.【答案】(1);(2)【解析】(1)先根据二倍角公式和两角和与差的公式进行化简,再求出周期即可;(2)先根据x的范围求得,再结合正弦函数的性质可得到函数f(x)的值域,求得单调递减区间.试题解析:(1)(2)∵,,的值域为.的递减区间为.【考点】三角函数的周期性及其求法;正弦函数的定义域和值域;正弦函数的单调性7.(本小题满分12分)在中,角的对边分别为,已知,向量,且∥.(1)求角的大小;(2)若成等差数列,求边的大小.【答案】(1);(2)【解析】(1)利用数量积运算、正弦定理即可得出;(2)由成等差数列,可得,或,即2a=b.再利用直角三角形的边角关系、余弦定理即可得出.试题解析:(1)∥,得,由正弦定理可得,(2)成等差,所以化简整理得:即或得或若若【考点】正弦定理;平面向量数量积运算8.在中,角所对的边为.已知,且.(1)求的值;(2)当时,求的面积.【答案】(1);(2).【解析】(1)根据已知条件中的式子,结合正弦定理,将其化为的方程,即可求解;(2)利用已知条件,结合余弦定理,可求得,的值,再利用三角形面积计算公式即可求得的值.试题解析:(1)∵,∴①,又∵,∴②,联立①②,即可求得,;(2)由(1)结合余弦定理可知,或,由已知易得,∴,∴,.【考点】1.正余弦定理解三角形;2.三角恒等变形.9.(本题满分12分)已知,,函数.(1)求的最小正周期,并求其图像对称中心的坐标;(2)当时,求函数的值域.【答案】(1)的最小正周期为,其对称中心的坐标为()();(2)的值域为.【解析】(1)先用降幂公式和辅助角公式,将进行化简整理得到,然后根据正弦函数的周期公式可得函数的最小正周期,进而求出函数的零点,即为函数的图像对称中心的坐标;(2)根据可得到,最后结合正弦函数的图像与性质可得函数的值域.试题解析:(1)因为=,所以的最小正周期为,令,得,∴故所求对称中心的坐标为()().(2)∵,∴,∴,即的值域为.【考点】1、三角函数中的恒等变换;2、三角函数的周期性及其求法;3、正弦函数的图像及其性质.【方法点晴】本题考查了三角函数中的恒等变换、三角函数的周期性及其求法和正弦函数的图像及其性质,重点考查学生对三角函数的基本概念、基本性质和基本原理,属中档题.解决这类问题最关键的一步是运用降幂公式、倍角公式及三角函数的和差公式等将函数的表达式化简为同角的正弦或余弦形式.因此需要大家应熟练掌握相关公式并结合三角函数的图像及其性质进行求解.10.若函数在上单调递减,且在上的最大值为,则的值为()A.B.C.D.【答案】A【解析】由题意得:,解得,选A.【考点】正切函数性质11.(本小题满分12分)已知向量,.(1)当时,求的值;(2)设函数,已知在中,内角、、的对边分别为、、,若,,,求当时,的取值范围.【答案】(1);(2).【解析】(1)平方关系和商数关系式中的角都是同一个角,且商数关系式中,利用,得出,把转化为的式子,从而求解;(2)熟悉三角公式的整体结构,灵活变换,要熟悉三角公式的代数结构,更要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形,把形如化为,研究函数的性质由的取值范围确定的取值范围,再确定的取值范围.试题解析:(1),,,(2)由正弦定理得,得或,,因此,,即.【考点】1、同角三角函数的基本关系;2、三角函数的化简;3、求三角函数的值域.12.(2012秋•泰安期中)已知函数f(x)=2sinωxcosωx﹣2sin2ωx+(ω>0),直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为.(Ⅰ)求ω的值;(Ⅱ)求函数f(x)的单调增区间;(Ⅲ)若f(α)=,求sin(π﹣4α)的值.【答案】(Ⅰ)1;(Ⅱ)见解析;(Ⅲ)﹣.【解析】(I)利用二倍角公式即辅助角公式,化简函数,利用直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为,可得函数的最小正周期为π,根据周期公式,可求ω的值;(II)利用正弦函数的单调性,可得函数f(x)的单调增区间;(III)由f(a)=,可得sin(2a+)=,根据sin(π﹣4a)=sin[﹣2(2a+)]=﹣cos[2(2a+)]=2sin2(2a+)﹣1,即可求得结论.解:(I)∵f(x)=2sinωxcosωx﹣2sin2ωx+=sin2ωx+cos2ωx=2sin(2ωx+)∵直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为,∴函数的最小正周期为π∴=π∴ω=1;(II)由(I)知,f(x)=2sin(2x+)∴﹣+2kπ≤2x+≤+2kπ,k∈Z∴﹣+kπ≤x≤+kπ,k∈Z∴函数f(x)的单调增区间为[﹣+kπ,+kπ],k∈Z;(III)∵f(a)=,∴sin(2a+)=∴sin(π﹣4a)=sin[﹣2(2a+)]=﹣cos[2(2a+)]=2sin2(2a+)﹣1=﹣.【考点】三角函数中的恒等变换应用;由y=Asin(ωx+φ)的部分图象确定其解析式;复合三角函数的单调性.13.已知向量,且函数在时取得最小值.(Ⅰ)求的值;(Ⅱ)在中,分别是内角的对边,若,,,求的值.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)利用向量的数量积公式,结合辅助角公式,求的值;(Ⅱ)先求出,再利用正弦定理,即可求的值.试题解析:(Ⅰ)由于(Ⅱ)由上知,于是由正弦定理得:【考点】正弦定理,余弦定理,两角和与差的三角函数,向量的数量积14.已知,函数在单调递减,则的取值范围是.【答案】【解析】,,由题意,所以,由于,所以只有,.【考点】三角函数的单调性.【名师】求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中A≠0,ω>0)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“ωx+φ(ω>0)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与y=sin x(x∈R),y=cos x(x∈R)的单调区间对应的不等式方向相同(反).15.(2015秋•南京校级期中)将函数f(x)=2sin(2x﹣)的图象向左平移m个单位(m>0),若所得的图象关于直线x=对称,则m的最小值为.【答案】【解析】由条件利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得m的最小值.解:将函数f(x)=2sin(2x﹣)的图象向左平移m个单位(m>0),可得y=2sin[2(x+m)﹣]=2sin(2x+2m﹣)的图象.∵所得的图象关于直线x=对称,∴2•+2m﹣=kπ+,k∈Z,即 m=+,k∈Z,则m的最小值为,故答案为:.【考点】函数y=Asin(ωx+φ)的图象变换.16.(2015秋•昌平区期末)已知函数.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)的单调递减区间.【答案】(Ⅰ);(Ⅱ)函数f(x)的单调递减区间是.)【解析】(Ⅰ)利用三角函数的倍角公式以及辅助角公式进行化简,即可求函数f(x)的最小正周期;(Ⅱ)利用三角函数的单调性即可求函数f(x)的单调递减区间.解:(Ⅰ)==所以最小正周期.(Ⅱ)由,得.所以函数f(x)的单调递减区间是.)【考点】三角函数中的恒等变换应用;正弦函数的图象.17.已知函数.(1)求的最小正周期和在上的单调递减区间;(2)若为第四象限角,且,求的值.【答案】(1);(2).【解析】(1)对的表达式进行三角恒等变形,利用三角函数的性质即可求解;(2)利用同角三角函数的基本关系求得的值后即可求解.试题解析:(1)由已知,所以最小正周期,由,得,故函数在上的单调递减区间;(2)因为为第四象限角,且,所以,所以.【考点】三角函数综合.18.已知是第二象限角,且,则()A.B.C.D.【答案】C【解析】由,得,又∵是第二象限角,∴,∴原式=;故选C.【考点】1.诱导公式;2.同角三角函数基本关系式.19.在中,角所对的边分别为,且,则的最大值为_____.【答案】【解析】由及正弦定理得,又因为,于是可得,所以,所以,则的最大值为,故答案填.【考点】1、正弦定理;2、两角和与差的三角函数;3、基本不等式.20.将函数图象上各点的横坐标伸长到原来的倍,再向左平移个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()A.B.C.D.【答案】D【解析】将函数图象上各点的横坐标伸长到原来的倍,得,再向左平移个单位,得,令,解得,令,得,即所得函数图象的一条对称轴的方程是,故选D.【考点】三角函数的图象变换与三角函数的性质.21.设平面向量.(1)若,求的值;(2)若,求的取值范围.【答案】(1);(2).【解析】(1)先利用向量数量积的坐标表示求出,利用商数关系求出得值,再利用二倍角公式求出的值,最后代入到的展开式即可求得;(2)欲求,先求出,再根据求的范围,从而可得的取值范围.试题解析:(1)因为,所以,∴,∴.(2),,.【考点】1、向量数量积的坐标表示;2、二倍角公式;3、三角函数;4、商数关系;5、向量的模.22.设中的内角所对的边长分别为,且.(1)当时,求角的度数;(2)求面积的最大值.【答案】(1);(2).【解析】(1)求出,再由正弦定理求出,求出角;(2)求三角形面积的最大值,即求的最大值,由,,求出,就可以求出面积的最大值.试题解析:解:(1)因为,所以.因为,由正弦定理可得.因为,所以是锐角,所以.(2)因为的面积,所以当最大时,的面积最大.因为,所以.因为,所以,所以(当时等号成立).所以面积的最大值为.【考点】1.正弦定理;2.余弦定理;3.重要不等式.23.在中,内角的对边为,已知.(1)求角的值;(2)若,且的面积为,求.【答案】(1);(2).【解析】根据正弦定理可得,根据内角和定理和两角和的正弦公式整理可得,即得角的值;(2)由的面积为,求得的值,根据余弦定理表示构造的另一个方程,解方程组即可求得.试题解析:(1)∵,∴,∴,即,∴,∴,又∵是三角形的内角,∴(2)∵,∴,∴,又∵,∴,∴,∴【考点】正余弦定理解三角形.24.的三个内角满足:,则()A.B.C.D.或【答案】B【解析】由已知条件以及正弦定理可得:,即,再由余弦定理可得,所以,故选B.【考点】正弦定理、余弦定理.25.在中,角,,的对边分别是,,,已知,.(I)求的值;(II)若角为锐角,求的值及的面积.【答案】(I);(II)【解析】(I)根据题意和正弦定理求出a的值;(II)由二倍角的余弦公式变形求出sin2A,由A 的范围和平方关系求出cosA,由余弦定理列出方程求出b的值,代入三角形的面积公式求出△ABC的面积.试题解析:(I)因为,且,所以.因为,由正弦定理,得.(II)由得.由余弦定理,得.解得或(舍负).所以.【考点】正弦定理;余弦定理26.如图所示的是函数和函数的部分图象,则函数的解析式是()A.B.C.D.【答案】C.【解析】由题意得,,故排除B,D;又∵,故排除A,故选C.【考点】三角函数的图象和性质.27.已知,则=()A.B.C.D.【答案】A【解析】,故选A.【考点】和差倍半的三角函数.28.在中,角所对的边分别为,.(Ⅰ)求的值;(Ⅱ)若,,求的面积.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)先根据正弦定理将边统一成角:,再利用三角形内角关系、诱导公式、两角和正弦公式将三角统一成两角:,最后根据同角三角函数关系将弦化切:(Ⅱ)由(Ⅰ)易得,已知两角一对边,根据正弦定理求另一边:,利用三角形内角关系求第三角的正弦值:,最后根据面积公式求面积:试题解析:解:(Ⅰ)由及正弦定理得.所以,所以.(Ⅱ),所以, ,,所以的面积为.【考点】正弦定理,弦化切【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.29.同时具有性质“①最小正周期是,②图象关于直线对称;③在上是增函数”的一个函数是()A.B.C.D.【答案】C【解析】由题意得,函数的最小周期为,则,又函数图象关于直线对称,则函数为函数的最小值,则只有B、C满足,由当时,,则函数是单调递增函数,故选C.【考点】三角函数的性质.30.若函数的最大值为5,则常数______.【答案】【解析】,其中,故函数的最大值为,由已知得,,解得.【考点】三角函数的图象和性质.【名师】解决三角函数性质问题的基本思路是通过化简得到,结合角的范围求解.. 本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.31.定义在区间[0,]上的函数的图象与的图象的交点个数是 .【答案】7【解析】由,因为,所以故两函数图象的交点个数是7.【考点】三角函数图象【名师】求函数图象的交点个数,有两种方法:一是直接求解,如本题,解一个简单的三角方程,此方法立足于易于求解;二是数形结合,分别画出函数图象,数出交点个数,此法直观,但对画图要求较高,必须准确,尤其是要明确函数的增长幅度.32.△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=(A)(B)(C)2 (D)3【答案】D【解析】由余弦定理得,解得(舍去),选D.【考点】余弦定理【名师】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!33.将函数y=2sin(2x+)的图像向右平移个周期后,所得图像对应的函数为A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x–)D.y=2sin(2x–)【答案】D【解析】函数的周期为,将函数的图像向右平移个周期即个单位,所得图像对应的函数为,故选D.【考点】三角函数图像的平移【名师】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减”;二是平移多少个单位是对x而言的,不要忘记乘以系数.34.如图,在Rt△ABC中,AC⊥BC,D在边AC上,已知BC=2,CD=1,∠ABD=45°,则AD=.【答案】5【解析】,,所以,.【考点】解三角形.【名师】在解直角三角形时,直角三角形中的三角函数定义是解题的桥梁,利用它可以很方便地建立边与角之间的关系.35.设函数的部分图象如图所示,直线是它的一条对称轴,则函数的解析式为()A.B.C.D.【答案】C【解析】因为直线是它的一条对称轴,排除B,D,因为图象过点,排除选项A,选C.【考点】三角函数图象与性质.36.在中,角,,的对边分别为,,,且满足,则角等于()A.B.C.D.【答案】A【解析】由正弦定理可得,即,由余弦定理可得,所以,故应选A。
三角恒等变换与解三角形专题
12 3 x-2 + ,x∈R. 2
因为 sin x∈[-1,1], 1 3 所以,当 sin x=2时,f(x)取最大值2; 当 sin x=-1 时,f(x)取最小值-3. 所以函数
3 f(x)的值域为-3,2.
考 点 核 心 突 破
训 练 高 效 提 能
菜
单
高考专题辅导与训练· 数学(理科)
训 练 高 效 提 能
菜
单
高考专题辅导与训练· 数学(理科)
第一部分 量
基 础 要 点 整 合
专题二
三角函数与平面向
解 题 规 范 流 程
【考点集训】
3 1. (2013· 日照一模)已知 sin α=5, 且 α 为第二象限角, 则 tan α 的值为________.
解析 因为 α 为第二象限角, 4 sin α 3 所以 cos α=- ,tan α= =- . 5 cos α 4
菜 单
训 练 高 效 提 能
高考专题辅导与训练· 数学(理科)
第一部分 量
基 础 要 点 整 合
专题二
三角函数与平面向
解 题 规 范 流 程
【考点集训】
1 5 3.(2013· 汕头模拟)已知 tan α=-3,cos β= 5 ,α, β∈(0,π). (1)求 tan(α+β)的值; (2)求函数 f(x)= 2sin(x-α)+cos(x+β)的最大值.
第一部分 量
基 础 要 点 整 合
专题二
三角函数与平面向
解 题 规 范 流 程
1 (2)因为 tan α=-3,α∈(0,π), 1 3 所以 sin α= ,cos α=- , 10 10 3 5 5 5 2 5 f(x)=- 5 sin x- 5 cos x+ 5 cos x- 5 sin x =- 5sin x,
高三数学三角函数三角恒等变换解三角形试题答案及解析
高三数学三角函数三角恒等变换解三角形试题答案及解析1.命题P:实数x满足其中a<0,命题q:实数x满足或且是的必要不充分条件,求a的取值范围【答案】或【解析】本试题主要是考查了充分条件的判定和运用。
由于不等式的解集的关系可知q是P的必要不充分条件,然后利用集合的包含关系得到参数a的范围。
2.已知的图象与直线的两个交点的最短距离是,要得到的图象,只需要把的图象A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【答案】A【解析】由于的图象与直线的两个交点的最短距离是,,,即,将的图象向左平移个单位得到,故答案为A.【考点】函数图象的平移.3.在中,若,则此三角形形状是A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形【答案】B【解析】由得则原式可化为,整理得即此三角形为直角三角形【考点】解三角形4.在中,角的对边分别为,,,,则_______.【答案】【解析】由正弦定理得:即,∴,∵,∴.【考点】正弦定理.5.已知,,则下列不等式一定成立的是()A.B.C.D.【答案】D【解析】设函数,所以.显然,时,,即此时函数为增函数.易知函数为偶函数,所以在时,函数单调递减.又因,所以即,所以,故.选D.【考点】构造函数法并利用单调性解不等式.【方法点睛】题目中条件,启发我们构造函数,而选项从整体上看,是比较与的大小关系的.以上两点结合考虑,应判断函数的单调性,而函数是偶函数,由及单调性直接判断变量与的大小比较难,应利用偶函数的性质得到,从而得到.这样显然答案选D.本题综合性较强、难度较大,要有构造函数的意识,同时要灵活运用函数性质.6.(本题满分12分)已知函数(1)求函数的最小正周期和最大值;(2)求函数单调递增区间【答案】(1)最小正周期为,最大值为;(2)【解析】三角函数问题,一般利用两角和与差的正弦、余弦公式、二倍角公式化为一个角的一个三角函数,然后利用正弦函数(或余弦函数)的性质得出结论.试题解析:(1)函数的最小正周期为,函数的最大值为(2)由得函数的单调递增区间为【考点】三角函数的周期、最值、单调区间.7.如图,正五边形的边长为2,甲同学在中用余弦定理解得,乙同学在中解得,据此可得的值所在区间为()A.B.C.D.【答案】C【解析】由题意有,即,整理得:,构造函数,因为,,且函数在定义域内为增函数,所以函数有唯一零点在区间上,即方程的解在区间上,所以的值所在区间为,故选C.【考点】1.诱导公式;2.函数与方程;3.零点存在定理.【名师】本题主要考查零点存在定理、函数与方程思想以用诱导公式,属难题.求方程解所在区间通常转化为求函数零点所在区间问题求解,解决函数零点所在区间是通过零点存在定理来实现的,需要注意的是零点存在定理只能解决变号零点的问题.本题由求一个数的了以值区间问题转化为求一个方程的近似解的问题,进一步转化为求函数零点所在区间,体现数学中的转化转化思想.8.已知函数的部分图象如图所示.(Ⅰ)求函数的解析式;(Ⅱ)在△中,角的对边分别是,若,求的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)观察图像可知函数的一条对称轴为,进而求出其最小正周期,于是运用公式可求出的值,再将点代入的解析式即可求出,即可求出函数的解析式;(Ⅱ)运用正弦定理并结合已知,可得,再由三角形的内角和为可得出角的值,进而得出的大小,即可得出的取值范围.试题解析:(Ⅰ)由的一条对称轴为,从而的最小正周期,故.将点代入的解析式得,又,故,将点代入的解析式得,所以.(Ⅱ)由得,所以,因为,所以,,,,.【考点】1、由函数的图像求函数的解析式;2、正弦定理的应用;3、三角函数的图像及其性质.【易错点睛】本题主要考查了由函数的图像求函数的解析式、正弦定理的应用和三角函数的图像及其性质,属中档题.其解题过程中容易出现以下两处错误:其一是不能仔细观察函数图像,并结合已知条件求出函数的解析式,尤其是求的时候不知道怎么合理取点代值计算,不知道怎么舍去增根,导致出现增根;其二是未能将正弦定理与三角恒等变换结合起来综合运用并准确地进行化简求值.9.设函数,则该函数的最小正周期为,在的最小值为.【答案】,【解析】由题意可知,;,所以,所以在的最小值为.【考点】函数的性质.10.在锐角中,角的对边分别为,已知依次成等差数列,且求的取值范围.【答案】.【解析】由三角形内角和定理和等差中项易求,,根据正弦定理把边,用角的三角函数表示出来,通过三角恒等变换构造正弦型函数,把问题转化为求正弦型函数在给定区间上的值域问题,求角的取值范围时,不要忽略为锐角三角形.试题解析:解:角成等差数列根据正弦定理的又为锐角三角形,则【考点】等差中项、正弦定理、三角恒等变换及正弦型函数值域.11.如图,D,C,B三点在地面同一直线上,,从C,D两点测得A点仰角分别是,则A点离地面的高度AB等于()A.B.C.D.【答案】A【解析】由题意,即,即.故选A.【考点】解三角形.12.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为()A.B.C.D.【答案】B【解析】将函数的图象沿轴向左平移个单位得,又是一个偶函数,所以,根据选项可知的一个可能取值为,故选B.【考点】三角函数的图像.13.在中,内角的对边分别为,且,则的面积最大值为.【答案】【解析】由余弦定理得:,代入得解得,那么根据三角形面积公式所以当时,面积取得最大值.【考点】1.余弦定理;2.三角形面积公式.【方法点睛】考察到了解三角形的最值问题,属于中档题型,解决此问题的关键是面积的表达公式,,将这样的三个量用一个量表示,尤其是,但不可用正弦定理,而要用余弦定理,用表示出,再转化为,最后代入面积公式,将面积表示为的函数关系求最值.14.同时具有性质“①最小周期是;②图象关于直线对称;③在上是增函数”的一个函数是()A.B.C.D.【答案】C【解析】故A不正确.对于选项B,如果为对称轴.则但在上是减函数不满足题意,对于选项C,因为为对称轴.所以,在上是增函数满足题意,故选C.【考点】正弦函数的图像15.已知,则()A.B.C.D.【答案】B【解析】因为,所以,又,所以,从而,因此,选B.【考点】同角三角函数关系16.若点在角的终边上,则的值为()A.B.C.D.【答案】D【解析】因为,所以,故选D.【考点】任意角的三角函数值.17.中,分别为的重心和外心,且,则的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.上述均不是【答案】B【解析】,而,∴.,故为钝角.【考点】平面向量的运算及余弦定理解三角形.【方法点晴】本题主要考查了平面向量的线性运算和数量积运算及利用余弦定理判断三角形的形状问题,属于中档题.解答本题的关键是:选择三角形的两边表示的向量作为平面的基底,通过向量的线性运算把转化为基底的关系,结合平面向量数量积的运算律得到,进而利用余弦定理得到问题的答案.18.若点在直线上,则的值等于()A.B.C.D.【答案】A【解析】由题意得,所以,故选B.【考点】三角函数的化简求值.19.已知函数向右平移个单位后,所得的图像与原函数图像关于轴对称,则的最小正值为()A.B.C.D.【答案】D【解析】原函数向右平移个单位后所得函数为其与原函数关于轴对称,则必有,由三角函数诱导公式可知的最小正值为,故本题的正确选项为D.【考点】函数的平移,对称,以及三角函数的诱导公式.20.若、,且,则下面结论正确的是()A.B.C.D.【答案】D【解析】因为函数,,,所以函数是偶函数,,当时,,所以在上是增函数,由知,所以,即,故选D.【考点】1、函数的奇偶性;2、利用导数研究函数的单调性.21.已知中,,,分别是角,,的对边,且,是关于的一元二次方程的两根.(1)求角的大小;(2)若,设,的周长为,求的最大值.【答案】(1);(2).【解析】(1)根据韦达定理得到三边所满足的一个关系式,进而利用余弦定理的变式求解;(2)利用正弦定理得到的解析式,再利用三角恒等变形将其化简,利用三角函数的性质求其最值.试题解析:(1)在中,依题意有:,∴,又∵,∴;(2)由,及正弦定理得:,∴,,故,即,由得:,∴当,即时,. .【考点】1.正余弦定理解三角形;2.三角恒等变形;3.韦达定理;4.三角函数的性质.22.已知函数f(x)=(sin x+ cos x)cos x一(x R,>0).若f(x))的最小止周期为4.( I)求函数f(x)的单调递增区间;(II)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】( I)先利用二倍角公式和配角公式化简函数解析式,再利用三角函数的周期公式确定参数值和函数的解析式,进而利用整体思想求其单调递增区间; (II)先利用正弦定理将边角关系转化为角角关系,再利用三角形的内角和定理和两角和的正弦公式进行求解.(I).,.由,得.∴的单调递增区间为(Ⅱ)由正弦定理得,,∴.∵,∴或:,,∴.又,..【考点】1.三角恒等变换;2.正弦定理.23.已知函数,.(1)求函数的图像的对称轴方程;(2)求函数的最小正周期和值域.【答案】(1);(2),值域.【解析】(1)用二倍角公式将函数降幂,根据余弦函数的对称轴公式可求得此函数的对称轴方程. (2)根据(1)中所得函数的解析式与相加,用化一公式将其化简变形可得,根据周期公式可得其周期,根据正弦的值域可得其值域.试题解析:(1)由题设知.令,所以函数图像对称轴的方程为.(2).所以最小正周期是,值域.【考点】1三角函数的化简;2三角函数的周期,对称轴,值域.24.已知是锐角三角形,则点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】是锐角三角形,则,,同理可得,故选B.【考点】诱导公式.25.关于函数(),下列命题正确是()A.由可得是的整数倍;B.的表达式可改写成;C.的图象关于点对称;D.的图象关于直线对称.【答案】C【解析】,,,因此,A错;,但时,,B错,事实上;,,时,,因此是其对称中心,C正确;,,不含,D错.故选C.【考点】函数的性质.26.已知函数, 先将的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再将得到的图象上所有点向右平行移动()个单位长度,得到的图象关于直线x=对称,则的最小值为()A.B.C.D.【答案】A【解析】,将的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),得,再将得到的图象上所有点向右平行移动()个单位长度,得,则,,,因为,最小值为.故选A.【考点】三角函数图象变换,三角函数的对称轴.27.已知函数对称,现将的图象向左平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数的图象,则的表达式为()A.B.C.D.【答案】B【解析】设上一点与上点关于对称,则有,,,,,现将的图象向左平移个单位后,得到再将得到的图象上各点的横坐标伸长到原来的倍,纵坐标不变,得到函数的图象,故选B.【考点】三角函数图象的变换.28.同时具有性质“①最小正周期是,②图象关于直线对称;③在上是增函数”的一个函数是()A.B.C.D.【答案】C【解析】由题意得,函数的最小周期为,则,又函数图象关于直线对称,则函数为函数的最小值,则只有B、C满足,由当时,,则函数是单调递增函数,故选C.【考点】三角函数的性质.29.在中,内角的对边边长分别为,且.若,则的面积最大值为________.【答案】【解析】设三角形面积为,所以,又,两式相除得,同理,因为,所以,化简得,故,,,,故.【考点】解三角形.【思路点晴】本题属于一个综合性的题目背景是解三角形,设计三角形面积公式、余弦定理,同脚三角函数关系,基本不等式的知识.已知条件中关键的突破口在,我们由同角三角函数关系,结合余弦定理,就可以求出,然后代入三角形的面积公式,最后利用基本不等式来求面积的最大值.注意运算不要出错.30.在中,AC=6,(1)求AB的长;(2)求的值.【答案】(1)(2)【解析】(1)利用同角三角函数的基本关系求再利用正弦定理求AB的长;(2)利用诱导公式及两角和与差正余弦公式分别求,然后求试题解析:解(1)因为,,所以由正弦定理知,所以(2)在中,,所以,于是又故因为,所以因此【考点】同角三角函数的基本关系、正余弦定理、两角和与差的正余弦公式【名师】三角函数是以角为自变量的函数,因此解三角函数题,首先应从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数的基本关系、两角和与差的三角公式、二倍角公式、配角公式等,选用恰当的公式是解决三角问题的关键,同时应明确角的范围、开方时正负的取舍等.31.△ABC的内角A,B,C的对边分别为a,b,c,若,,a=1,则b=____________.【答案】【解析】因为,且为三角形的内角,所以,,又因为,所以.【考点】正弦定理,两角和、差的三角函数公式【名师】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.32.如图,平面四边形中,,则的面积为_____________.【答案】【解析】在中,由正弦定理得:,在中,由余弦定理得:,所以.因为,所以.因为.所以.故答案为.【考点】1、正弦定理、余弦定理的应用;2、两角和的正弦公式及三角形面积公式.【方法点睛】以三角形和平面向量为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心,此外,解三角形时三角形面积公式往往根据不同情况选用下列不同形式能简化计算过程,.33.函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图,则其解析式为__________________.【答案】【解析】由图象可知:A=1,…可得:T=2×(﹣)=π=,∴解得:ω=2,…∵函数的图象经过(,1),∴1=sin(2×+φ),∵φ=2kπ+,|φ|<,∴φ=…∴函数的解析式y=sin(2x+).34.设的内角的对边分别为,且,则____.【答案】【解析】,.【考点】解三角形、正余弦定理.35.等于()A.B.C.D.【答案】D【解析】因,故,故应选D.【考点】两角和的余弦公式及运用.36.已知函数,则要得到其导函数的图象,只需将函数的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.左平移个单位【答案】B【解析】函数,所以函数,所以将函数函数的图象上所有的点向左平移个单位长度得到,故选B.【考点】函数的图象变换.37.已知,则 .【答案】【解析】.【考点】三角恒等变换.38.函数的部分图象如图所示,则 .【答案】【解析】,,,即,,又,∴.【考点】函数的图象与性质.39.设当时,函数取得最大值,则__________.【答案】【解析】,其中,故当函数取得最大值时,【考点】辅助角公式,三角函数的最值和值域【名师】本题考查三角函数的辅助角公式以及取得最大值时的值,属中档题.解题时正确确定函数在取得最大值时的值是解题的关键40.如图,在凸四边形中,,,,.设.(1)若,求的长;(2)当变化时,求的最大值.【答案】(1);(2).【解析】(1)由余弦定理可得,解得.从而,解得;(2)设,,由余弦定理得,再由正弦定理得.从而.再由得:当,时取到最大值.试题解析:(1)在中,,∴,∴.在中,,∴.(2)设,,在中,,.∵,∴.在中,.∵,∴,当,时取到最大值.【考点】解三角形.41.已知函数的最小正周期是,将函数图象向左平移个单位长度后所得的函数图象过点,则函数()A.在区间上单调递减B.在区间上单调递增C.在区间上单调递减D.在区间上单调递增【答案】B【解析】依题, ,平移后得到的函数是,其图象过(0,1),∴,因为,∴,,故选B.【考点】三角函数的图象与性质.42.海上有三个小岛,,,则得,,,若在,两岛的连线段之间建一座灯塔,使得灯塔到,两岛距离相等,则,间的距离为()A.B.C.D.【答案】B【解析】设由余弦定理可得,,故选B.【考点】解三角形.43.已知角为第四象限角,且,则()A.B.C.D.【答案】A【解析】,,又,得出.因为角为第四象限角, ,;.故选A.【考点】同角三角函数的运算.44.如图,某广场中间有一块边长为2百米的菱形状绿化区ABCD,其中BMN是半径为1百米的扇形,.管理部门欲在该地从M到D修建小路:在弧MN上选一点P(异于M、N两点),过点P修建与BC平行的小路PQ.问:点P选择在何处时,才能使得修建的小路与PQ及QD的总长最小?并说明理由.【答案】当时,总路径最短.【解析】借助题设条件建立函数关系,再运用三角变换的公式求解和探求.试题解析:连接, 过作垂足为 , 过作垂足为设,…………………2分若,在中,若则若则…………………………4分在中,…………………………6分所以总路径长……………………10分………………12分令,当时,当时,…………………………14分所以当时,总路径最短.答:当时,总路径最短. ……16分【考点】解三角形及三角变换的公式等有关知识的综合运用.【易错点晴】应用题是高考必考的重要题型之一,也是检测数学知识在实际问题中的的运用的一种重要题型之一.求解这类问题的一般步骤是先仔细阅读题设中的文字信息.再将问题中的数量关系找出来,通过构造数量关系构建数学模型.最后运用数知识求解数学模型,依据题设写出答案.本题是以绿化过程中的一个实际问题为背景设置了一道最值问题,求解时,先,然后建立以为变量的函数关系式从而将问题进行转化求函数的最值问题.最后通过求该函数的最值,从而使得问题简捷巧妙获解.45.已知,则__________.【答案】【解析】试题分析: ,故应填答案.【考点】诱导公式及同角关系的综合运用.46.已知,且,则()A.B.C.D.【答案】C【解析】因为,所以,又因为,所以,故选C.【考点】1、诱导公式的应用;2、同角三角函数之间的关系.47.方程在区间内的解是.【答案】【解析】因为,所以,,即或,,,故答案为.【考点】1、特殊角的三角函数;2、简单的三角方程.【思路点睛】本题主要考查特殊角的三角函数、简单的三角方程,属于中档题.由于近年来高考对三角函数考查难度的降低,对三角方程的考查也以容易题和中档题为主,该题型往往根据特殊角的三角函数解答.本题首先将原方程变形为,然后根据的余弦值为,确定或,再根据确定方程的解.48.若,则的值为______.【答案】【解析】由,解得,又.【考点】三角函数的化简求值.49.在中,角的对边分别是,若,,则面积是_______.【答案】1【解析】在中,,,当且仅当时取等号, ,又,故,则面积是1【考点】正弦定理,基本不等式【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.50.已知函数(,,)的最大值为3,的图象与轴的交点坐标为,其相邻两条对称轴间的距离为2,则的值为()A.2468B.3501C.4032D.5739【答案】C【解析】∵已知函数的最大值为,故.的图象与轴的交点坐标为,∵,∴,,即.再根据其相邻两条对称轴间的距离为,可得,,故函数的周期为.∵,∴,故选C.【考点】(1)三角函数中的恒等变换应用;(2)余弦函数的图象.51.在△中,,,所对的边分别是,,,,且,则的值为()A.B.C.D.【答案】B【解析】∵,∴,即.又∵,∴,∴,即,解得,故选B.【考点】余弦定理.52.若,则()A.1B.2C.3D.4【答案】B【解析】.【考点】三角恒等变换.53.在中,角,,的对边分别为,,,已知,,且.(1)求角的大小;(2)求的面积.【答案】(1);(2).【解析】(1)由,化简题设条件得,求得,即可求解角的值;(2)由余弦定理得,得到,再由条件,可化简求得,即可求解三角形的面积.试题解析:(1)∵,由,得,∴,整理得,解得,∵,∴.(2)由余弦定理得,即,∴,由条件,得,解得,∴.【考点】余弦定理及三角恒等变换.54.已知函数的最小正周期为,为了得到函数的图象,只要将的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】C【解析】∵函数的最小正周期为,∴,得,,故将的图象向左平移个单位长度可得,故选C.【考点】三角函数图象的变换.55.在三角形中,角,,所对的边分别是,,.已知,.(1)若,求的值;(2)若,求的值.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)已知两边一角求第三边,一般利用余弦定理,将角化为边的条件:,代入条件即得,(Ⅱ)同(Ⅰ)可先利用余弦定理,将角化为边的条件:,代入,可得,再利用余弦定理求,也可先利用正弦定理,将边的条件转化为角的关系,再根据正弦定理求的值试题解析:(1)由余弦定理,,…………………3分将,代入,解得:.…………………6分(2)由正弦定理,,化简得:,则,…………………8分因为,,所以,,所以或(舍去),则.………………10分由正弦定理可得,,将,代入解得.……………………14分【考点】正余弦定理【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.56.已知函数.⑴求的最小正周期和单调递增区间;⑵求在区间上的最大值和最小值.【答案】(1),增区间为;(2) 最大值为,最小值为.【解析】(1)借助题设条件余弦二倍角公式及余弦函数单调性求解;(2)依据题设运用余弦函数的有界性进行探求.试题解析:⑴由已知,有,所以的最小正周期,当时,单调递增,解得:,所以的单调递增区间为,⑵由⑴可知,在区间上是减函数,在区间上是增函数,而,,所以在区间上的最大值为,最小值为.【考点】余弦二倍角公式及余弦函数的图象和性质等有关知识的综合运用.57.已知,,分别为的三个内角,,所对边的边长,且满足.(Ⅰ)求;(Ⅱ)若,的面积为,求,.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)由正弦定理将条件中的边换为角的正弦,利用三角变换公式,化简可得,从而可求得角的值;(Ⅱ)由余弦定理及三角形面积公式列出关于的方程组,解之即可.试题解析:(Ⅰ),由正弦定理得:,…(2分),,…………(3分),,…(5分),…(6分)(Ⅱ),所以,……(7分),,则(或),……(8分)解得:.………(10分)【考点】1.正弦定理与余弦定理;2.三角恒等变换.【名师】本题考查正弦定理与余弦定理、三角恒等变换,属中档题;解三角形问题实质是附加条件的三角变换,因此在解三角形问题的处理中,正弦定理、余弦定理就起到了适时、适度转化边角的作用,分析近几年的高考试卷,有关的三角题,大部分以三角形为载体考查三角变换.58.已知函数与函数的部分图像如右图所示,则____________.【答案】【解析】令.【考点】1、三角函数的图象与性质;2、一次函数.59.要得到函数的图象,只需将函数的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【答案】C【解析】由题意得,,因此只需要将函数的图象向右平移个单位即可得到函数的图象,故选C.60.已知函数相邻两条对称轴之间的距离为.(I)求的值及函数的单调递减区间;(Ⅱ)已知分别为中角的对边,且满足,,求的面积.【答案】(I);(II).【解析】(I)利用降幂公式将函数化为,再由函数的图象相邻两条对称轴之间的距离为,求出,结合三角函数的单调性可得其单调区间;(Ⅱ)将代入函数解析式,结合的范围可求出的值,由正弦定理和余弦定理可求出边,故而可得三角形的面积.试题解析:解:(Ⅰ).因为相邻两条对称轴之间的距离为,所以,即,所以.所以.令,解得.所以的单调递减区间为.(Ⅱ)由得,因为.所以,.已知及正弦定理得.由余弦定理得,代入得,解得,所以.61. (江淮十校2017届高三第一次联考文数试题第7题)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式为:弧田面积=1/2(弦矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,半。
高二数学三角函数三角恒等变换解三角形试题答案及解析
高二数学三角函数三角恒等变换解三角形试题答案及解析1..【答案】【解析】故答案为:.【考点】两角和与差的三角公式.2.若函数在区间上单调递增,则的最小值是()A.B.C.D.【答案】D【解析】依题意,,令,在区间上,,单调递增,,所以;【考点】1.导数与单调性;2.化归的思想;3.函数在内是()A.增函数B.减函数C.有增有减D.不能确定【答案】A【解析】函数,可得,所以函数在内是增函数.故选:A.【考点】利用导数研究函数的单调性.4.(12分).已知在△ABC中,内角A,B,C所对的边长分别为a,b,c,且tan A+tan B=.(1)求角B的大小;(2)若,求sinA·sinC的值.【答案】(1);(2)【解析】(Ⅰ)已知等式左边利用同角三角函数间的基本关系化简,整理后根据sinC不为0求出cosB的值,即可确定出B的度数;(Ⅱ)已知等式去分母整理后得到关系式,利用余弦定理列出关系式,把得出关系式及cosB的值代入,并利用正弦定理化简,即可求出sinAsinC的值试题解析:(Ⅰ)已知等式变形得:sinAcosA+sinBcosB=2sinCcosA,去分母得:sinAcosB+sinBcosA=2sinCcosB,即sin(A+B)=2sinCcosB=sinC,∵sinC≠0,∴cosB=12,则B=60°;(Ⅱ)由,整理得:,∵cosB=12,∴,由正弦定理得:sin2B=2sinA·sinC=,则sinA·sinC=【考点】1.同角间三角函数关系;2.正弦定理5.将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得图象向左平移个单位,则所得函数图象对应的解析式为()A.B.C.D.【答案】D【解析】将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图像,再将所得图象向左平移个单位,则所得函数图象对应的解析式为.故选D.【考点】三角函数图像变换:周期变换、左右平移.6.已知在△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且,则tanC等于()A.B.C.D.【答案】C【解析】【考点】1.余弦定理解三角形;2.同角间三角函数关系7.已知在△ABC中,内角A,B,C所对的边长分别为a,b,c,且tan A+tan B=.(1)求角B的大小;(2)若+=3,求sin Asin C的值.【答案】(1);(2)【解析】(1)由题意切化弦,同分可得,整理可得,即可求得;(2)根据已知式子同分可得,由余弦定理得到,再结合正弦定理即可得到试题解析:(1)由题意可得:因为,所以,又因为,所以(2)有题意可得:即由余弦定理可得:,得到有正弦定理:【考点】1.正余弦定理;2.化简求值8.(本题满分11分)若的内角所对的边分别为,且满足(1)求;(2)当时,求的面积.【答案】(1);(2).【解析】(1)因为正弦定理,所以化为,因为三角形内角有,所以即,所以;(2)由余弦定理,得,而,,得,即,因为三角形的边,所以,则.试题解析:(1)因为由正弦定理,得,又,从而,由于所以(2)解法一:由余弦定理,得,而,,得,即因为,所以,故面积为.解法二:由正弦定理,得从而又由知,所以故,所以面积为.【考点】1.正弦定理与余弦定理;2.三角形的面积公式.9.在中,已知,,则的长为____________________.【答案】【解析】由正弦定理可得【考点】正弦定理解三角形10.(本小题满分10分)在△ABC中,是方程的一个根,(1)求;(2)当时,求△ABC周长的最小值.【答案】(1)(2)【解析】(1)解一元二次方程得到方程的根,结合三角函数有界性得到的值,从而求得大小;(2)由三角形余弦定理结合,可将转化为的表达式,从而求得其最小值,得到周长的最小值试题解析:(1)又是方程的一个根(2)由余弦定理可得:则:当时,c最小且,此时△ABC周长的最小值为.【考点】1.余弦定理解三角形;2.一元二次方程的根11.在△ABC中,角A,B,C所对的边分别为a,b,c,若(b-c)cosA=acosC,则cosA=_____【答案】【解析】由正弦定理可将已知条件转化为【考点】正弦定理与三角函数基本公式12.在△ABC中,cosA=,sinB=,则cosC的值为.【答案】【解析】由cosA=,sinB=得【考点】三角函数基本公式13.在△ABC中,如果,且为锐角,试判断此三角形的形状.【答案】等腰直角三角形.【解析】判定三角形的形状由三角形的三边长或三个角来确定.由可确定.根据正弦定理,可确定角,从而确定三角形的形状.试题解析:因为,所以,又为锐角,所以.,.由正弦定理得:,即展开得:,即,则,所以△ABC是等腰直角三角形.【考点】1.三角形形状;2.正弦定理;14.在△中,分别为角所对的边,若,则此三角形一定是()A.正三角形B.直角三角形C.等腰三角形D.等腰或直角三角形【答案】C【解析】,三角形为等腰三角形【考点】1.正弦定理解三角形;2.三角函数基本公式15.在中,、、分别是三内角A、B、C的对应的三边,已知(1)求角C的大小;(2)满足的是否存在?若存在,求角A的大小.【答案】(1);(2)不存在【解析】(1)由正弦定理将变形可得到关于角C的关系式,进而求得角C的大小;(2)结合角C的大小将变形求解A角,若A角存在则三角形存在试题解析:(1)由正弦定理,得因为由则(2)由(1)知,于是=这样的三角形不存在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题限时集训(九)[三角恒等变换与解三角形](时间:5分钟+40分钟)基础演练夯知识1. 在钝角三角形ABC 中,AB =3,AC =1,B =30°,则△ABC 的面积为( )A.14B. 32C. 34D.122.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若a =2,A =45°,B =105°,则c = ( )A.32B. 1C. 3D.6+223. 函数f (x )=sin 2x -sin ⎝⎛⎭⎪⎫2x +π3的最小值为( ) A .0 B .-1 C .- 2 D .-24.已知α,β都是锐角,且cos α=55,sin(α+β)=45,则tan β为( )A .2B .-211C .-211或2 D.211或-25.在△ABC 中,已知2a cos B =c ,sin A sin B (2-cos C )=sin 2C 2+12,则△ABC 为( )A .等边三角形B .等腰直角三角形C .锐角非等边三角形 D. 钝角三角形 提升训练强能力6. 已知sin 2α=13,则cos 2 ⎝⎛⎭⎪⎫α-π4=( ) A.13 B.-13C.23D.-237.已知△ABC 的外接圆O 的半径为1,且OA →·OB →=-12,C =π3.从圆O 内随机取一点M ,若点M 在△ABC 内的概率恰为334π,则△ABC 为( )A . 直角三角形B .等边三角形C .钝角三角形D . 等腰直角三角形8.已知A ,B ,C 是△ABC 的三个内角,其对边分别为a ,b ,c .若(sin A +sin B )(sin A-sin B )=sin C (2sin A -sin C ),则B =( )A.π4B.π3C.π2D.2π39. 在△ABC 中,若AB →·AC →=7,||AB →-AC→=6,则△ABC 的面积的最大值为( ) A .24 B .16C .12D .810.已知△ABC 的重心为G ,内角A ,B ,C 的对边分别为a ,b ,c .若aGA →+bGB →+33cGC→=0,则A 等于( )A. π6B. π4C. π3D.π211. 已知α∈⎝ ⎛⎭⎪⎫-π2,0,cos(π-α)=-45,则tan 2α=______ .12.在△ABC 中,C =60°,AB =3,AB 边上的高为43,则AC +BC =________.13.已知∠MON =60°,由此角内一点A 向角的两边引垂线,垂足分别为B ,C ,AB =a ,AC =b ,若a +b =2,则△ABC 外接圆的直径的最小值是________.14.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知平面向量m =(sin C ,cos C ),n =(cos B ,sin B ),且m ·n =sin 2A .(1)求sin A 的值;(2)若a =1,cos B +cos C =1,求边c 的值.15. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos A +C 2=12.(1)若a =3,b =7,求c 的值;(2)若f (A )=sin A (3cos A -sin A ),求f (A )的取值范围.16. 如图91所示,已知OPQ 是半径为3,圆心角为π3的扇形,C 是扇形弧上的动点(不与P ,Q 重合),ABCD 是扇形的内接矩形,记∠COP =x ,矩形ABCD 的面积为f (x ).(1)求函数f (x )的解析式,并写出其定义域;(2)求函数y =f (x )+f ⎝⎛⎭⎪⎫x +π4的最大值及相应的x 值.图91专题限时集训(九)【基础演练】 1.C [解析] 由ABsin C =AC sin B ,即3sin C =112,得sin C =32,所以C =120°(C =60°舍去).又B =30°,所以A =30°,所以S △ABC =12AB ·AC sin A =34.2.B [解析] 易知C =30°.由正弦定理得2sin 45°=csin 30°,所以c =1.3.B [解析] f (x )=sin 2x -12sin 2x -32cos 2x =12sin 2x -32 cos 2x =sin ⎝⎛⎭⎪⎫2x -π3,易知f (x )的最小值为-1.4.A [解析] 由cos α=55,且α是锐角知sin α=255>45=sin(α+β),又β是锐角,因此α+β是钝角,从而cos(α+β)=-35.于是cos β=cos[(α+β)-α]=55,所以sin β=255,tan β=2. 5.B [解析] 由2a cos B =c 得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-180°<A -B <180°,因此A =B .又由sin A sin B (2-cos C )=sin 2C 2+12得sin A sin B (2-cos C )=1-cos C 2+12=2-cos C 2,从而sin A sin B =sin 2A=12,A =B =45°, 为等腰直角三角形. 【提升训练】6.C [解析] cos 2⎝⎛⎭⎪⎫α-π4=1+cos ⎝ ⎛⎭⎪⎫2α-π22=1+sin 2α2=1+132=23.7.B [解析] 由题意得12CA ·CB ·sin π3π×12=334π,所以CA ·CB =3.在△AOB 中,由OA =OB =1,OA →·OB →=-12,得∠AOB =2π3,所以AB = 3.由余弦定理得AB 2=CA 2+CB 2-2CA ·CB cos π3,即CA 2+CB 2=6,结合CA ·CB =3,得CA =CB =3,所以△ABC 为等边三角形.8.A [解析] 依题意得sin 2A -sin 2B =2sin A sin C -sin 2C ,∴由正弦定理可得a 2-b 2=2ac -c 2,∴a 2+c 2-b 2=2ac ,∴cos B =a 2+c 2-b 22ac =22,∴B =π4.9.C [解析] 设内角A ,B ,C 的对边分别为a ,b ,c ,则由已知条件可知bc cos A =7,a =6.根据余弦定理可得36=b 2+c 2-14,所以b 2+c 2=50,所以bc ≤25.S △ABC =12bc sin A =12bc 1-cos 2A =12bc 1-49(bc )2=12(bc )2-49≤12252-49=12,当且仅当b =c =5时等号成立,故所求最大值为12.10.A [解析] 由于G 为△ABC 的重心,所以GA →+GB →+GC →=0,即GC →=-GA →-GB →,所以⎝ ⎛⎭⎪⎫a -33c GA →+⎝⎛⎭⎪⎫b -33c GB →=0,所以a =b =33c ,所以cos A =b 2+c 2-a 22bc =13c 2+c 2-13c 22×33c ·c =32.又0<A <π,所以A =π6.11.-247 [解析] 因为α∈⎝ ⎛⎭⎪⎫-π2,0,cos(π-α)=-45,所以sin α=-35,tan α=-34,所以tan 2α=2tan α1-tan 2α=-247. 12.11 [解析] △ABC 的面积S =12×3×43=233,又S =12AC ·BC ·sin C =34AC ·BC ,所 以AC ·BC =83.根据余弦定理有AB 2=AC 2+BC 2-2AC ·BC ·cos C =(AC +BC )2-3AC ·BC ,所以(AC +BC )2=3+3×83=11,所以AC +BC =11.13.2 [解析] 设△ABC 外接圆的半径为R ,则2R =BC sin 120°=a 2+b 2-2ab cos 120°32=(a +b )2-ab 32≥4-⎝ ⎛⎭⎪⎫a +b 2232=2,当且仅当a =b =1时等号成立.14.解: (1)由题意,sin 2A =sin C cos B +cos C sin B , 得2sin A cos A =sin(B +C )=sin A .由于△ABC 中,sin A >0,∴2cos A =1,cos A =12,A =π3,∴sin A =32. (2)由cos B +cos C =1得-cos(A +C )+cos C =1,即sin A sin C -cos A cos C +cos C =1,∴32sin C +12cos C =1.得sin ⎝ ⎛⎭⎪⎫C +π6=1,∵0<C <2π3,π6<C +π6<5π6,∴C =π3,所以△ABC 为正三角形,故c =1.15.解: (1)在△ABC 中,A +B +C =π.所以cos A +C 2=cos π-B 2=sin B 2=12.B 2=π6,所以B =π3. 由余弦定理b 2=a 2+c 2-2ac cos B ,得c 2-3c +2=0.解得c =1或c =2.(2)f (A )=sin A (3cos A -sin A )=32sin 2A -1-cos 2A2=sin ⎝ ⎛⎭⎪⎫2A +π6-12.由(1)得B =π3,所以A +C =2π3,A ∈⎝⎛⎭⎪⎫0,2π3,则2A +π6∈⎝ ⎛⎭⎪⎫π6,3π2.∴sin ⎝ ⎛⎭⎪⎫2A +π6∈(-1,1].∴f (A )∈⎝ ⎛⎦⎥⎤-32,12. ∴f (A )的取值范围是⎝ ⎛⎦⎥⎤-32,12. 16.解:(1)∵在Rt △COB 中,CB =3sin x ,OB =3cos x ,∴OA =DA tan π6=CB tan π6=sin x ,AB =OB -OA =3cos x -sin x ,∴f (x )=AB ·BC =(3cos x -sin x )·3sin x =3sin x ·cos x - 3 sin 2x =32sin 2x-32(1-cos 2x )=3sin ⎝ ⎛⎭⎪⎫2x +π6-32,x ∈⎝⎛⎭⎪⎫0,π3. (2)y =f (x )+f ⎝ ⎛⎭⎪⎫x +π4=3sin ⎝ ⎛⎭⎪⎫2x +π6-32+3sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4+π6-32=3⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫2x +π6+cos ⎝ ⎛⎭⎪⎫2x +π6- 3 =6sin ⎝ ⎛⎭⎪⎫2x +5π12- 3. 由0<x <π3,0<x +π4<π3,得0<x <π12,∴5π12<2x +5π12<7π12, ∴当2x +5π12=π2,即x =π24时,y max =6- 3.。