平面直角坐标系中的全等三角形

合集下载

人教版八年级数学上册第十二章《全等三角形》判定与性质培优练习(五)

人教版八年级数学上册第十二章《全等三角形》判定与性质培优练习(五)

第十二章《全等三角形》判定与性质培优练习(五)1.如图(1),在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,m),A (n,m),且(m﹣4)2+n2﹣8n=﹣16,过C点作∠ECF分别交线段AB、OB于E、F两点.(1)求A点的坐标;(2)若OF+BE=AB,求证:CF=CE;(3)如图(2),若∠ECF=45°,给出两个结论:OF+AE﹣EF的值不变;OF+AE+EF 的值不变,其中有且只有一个结论正确,请你判断出正确的结论,并加以证明和求出其值.2.如图1,我们定义:在四边形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,则把四边形ABCD叫做互补等对边四边形.(1)如图2,在等腰△ABE中,AE=BE,四边形ABCD是互补等对边四边形,求证:∠ABD=∠BAC=∠AEB.(2)如图3,在非等腰△ABE中,若四边形ABCD仍是互补等对边四边形,试问∠ABD =∠BAC=∠AEB是否仍然成立?若成立,请加以证明;若不成立,请说明理由.43.如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD.(1)图①中有对全等三角形,并把它们写出来.(2)求证:G是BD的中点.(3)若将△ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立?如果成立,请予证明.4.八年级一班数学兴趣小组在一次活动中进行了探究试验活动,请你和他们一起活动吧.【探究与发现】(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接BE,写出图中全等的两个三角形【理解与应用】(2)填空:如图2,EP是△DEF的中线,若EF=5,DE=3,设EP=x,则x的取值范围是.(3)已知:如图3,AD是△ABC的中线,∠BAC=∠ACB,点Q在BC的延长线上,QC=BC,求证:AQ=2AD.5.如图,已知AB∥CD,点E在BC上且BE=CD,AB=CE,EF平分∠AED.(1)求证:△ABE≌△ECD;(2)猜测EF与AD的位置关系,并说明理由;(3)若DF=AE,请判断△AED的形状,并说明理由.6.如图1,已知A(0,a),B(b,0),且a、b满足a2﹣4a+20=8b﹣b2.(1)求A、B两点的坐标;(2)如图2,连接AB,若D(0,﹣6),DE⊥AB于点E,B、C关于y轴对称,M是线段DE上的一点,且DM=AB,连接AM,试判断线段AC与AM之间的位置和数量关系,并证明你的结论;(3)如图3,在(2)的条件下,若N是线段DM上的一个动点,P是MA延长线上的一点,且DN=AP,连接PN交y轴于点Q,过点N作NH⊥y轴于点H,当N点在线段DM上运动时,△MQH的面积是否为定值?若是,请求出这个值;若不是,请说明理由.7.在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于E.(1)如图1,连接CE,求证:△BCE是等边三角形;(2)如图2,点M为CE上一点,连结BM,作等边△BMN,连接EN,求证:EN∥BC;(3)如图3,点P为线段AD上一点,连结BP,作∠BPQ=60°,PQ交DE延长线于Q,探究线段PD,DQ与AD之间的数量关系,并证明.8.如图,在△ABC中,AB=AC,D、A、E在直线m上,∠ADB=∠AEC=∠BAC.(1)求证:DE=DB+EC;(2)若∠BAC=120°,AF平分∠BAC,且AF=AB,连接FD、FE,请判断△DEF的形状,并写出证明过程.9.教学实验:画∠AOB的平分线OC.(1)将一块最够大的三角尺的直角顶点落在OC的任意一点P上,使三角尺的两条直角边分别于OA,OB交于E,F(如图①).度量PE、PF的长度,PE PF(填>,<,=);(2)将三角尺绕点P旋转(如图②):①PE与PF相等吗?若相等请进行证明,若不相等请说明理由;②若OP=,请直接写出四边形OEPF的面积:.10.(1)如图(1)在△ABC中,∠ACB=2∠B,∠C=90°,AD为∠BAC的平分线交BC于D,求证:AB=AC+CD.(提示:在AB上截取AE=AC,连接DE)(2)如图(2)当∠C≠90°时,其他条件不变,线段AB、AC、CD又有怎样的数量关系,直接写出结果,不需要证明.(3)如图(3)当∠ACB≠90°,AD为△ABC的外角∠CAF的平分线,交BC的延长线于点D,则线段AB、AC、CD又有怎样的数量关系?写出你的猜想,并加以证明.参考答案1.解:(1)(m﹣4)2+n2﹣8n=﹣16,即(m﹣4)2+(n﹣4)2=0,则m﹣4=0,n﹣4=0,解得:m=4,n=4.则A的坐标是(4,4);(2)∵AB⊥x轴,AC⊥y轴,A(4,4),∴AB=AC=OC=OB,∠ACO=∠COB=∠ABO=90°,又∵四边形的内角和是360°,∴∠A=90°,∵OF+BE=AB=BE+AE,∴AE=OF,∴在△COF和△CAE中,,∴△COF≌△CAE,得∴CF=CE;(3)结论正确,值为0.证明:在x轴负半轴上取点H,使OH=AE,∵在△ACE和△OCH中,,∴△ACE≌△OCH,∴∠1=∠2,CH=CE,又∵∠EOF=45°,∴∠HCF=45°,∴在△HCF和△ECF中,,∴△HCF≌△ECF,∴HF=EF,∴OF+AE﹣EF=0.2.解:(1)∵AE=BE,∴∠EAB=∠EBA,∵四边形ABCD是互补等对边四边形,∴AD=BC,在△ABD和△BAC中,,∴△ABD≌△BAC(SAS),∴∠ADB=∠BCA,又∵∠ADB+∠BCA=180°,∴∠ADB=∠BCA=90°,在△ABE中,∵∠EAB=∠EBA==90°﹣∠AEB,∴∠ABD=90°﹣∠EAB=90°﹣(90°﹣∠AEB)=∠AEB,同理:∠BAC=∠AEB,∴∠ABD=∠BAC=∠AEB;(2)仍然成立;理由如下:如图③所示:过点A、B分别作BD的延长线与AC的垂线,垂足分别为G、F,∵四边形ABCD是互补等对边四边形,∴AD=BC,∠ADB+∠BCA=180°,又∠ADB+ADG=180°,∴∠BCA=∠ADC,又∵AG⊥BD,BF⊥AC,∴∠AGD=∠BFC=90°,在△AGD和△BFC中,∴△AGD≌△BFC,∴AG=BF,在△ABG和△BAF中,∴△ABG≌△BAF,∴∠ABD=∠BAC,∵∠ADB+∠BCA=180°,∴∠EDB+∠ECA=180°,∴∠AEB+∠DHC=180°,∵∠DHC+∠BHC=180°,∴∠AEB=∠BHC.∵∠BHC=∠BAC+∠ABD,∠ABD=∠BAC,∴∠ABD=∠BAC=∠AEB.3.解:(1)图①中全等三角形有:△ABF≌△CDE,△ABG≌△CDG,△BFG≌△DEG.故答案是:3;(2)∵AE=CF,∴AF=CE,∴在直角△ABF和直角△CDE中,,∴△ABF≌△CDE,∴BF=DE,在△DEG和△BFG中,,∴△DEG≌△BFG,∴BG=DG,即G是BD的中点;(3)结论仍成立.理由是:)∵AE=CF,∴AF=CE,在直角△ABF和直角△CDE中,,∴△ABF≌△CDE,∴BF=DE,在△DEG和△BFG中,,∴△DEG≌△BFG,∴BG=DG,即G是BD的中点.4.(1)证明:在△ADC与△EDB中,,∴△ADC≌△EDB;故答案为:△ADC≌△EDB;(2)解:如图2,延长EP至点Q,使PQ=PE,连接FQ,在△PDE与△PQF中,,∴△PEP≌△QFP,∴FQ=DE=3,在△EFQ中,EF﹣FQ<QE<EF+FQ,即5﹣3<2x<5+3,∴x的取值范围是1<x<4;故答案为:1<x<4;(3)证明:如图3,延长AD到M,使MD=AD,连接BM,∴AM=2AD,∵AD是△ABC的中线,∴BD=CD,在△BMD与△CAD中,,∴△BMD≌△CAD,∴BM=CA,∠M=∠CAD,∴∠BAC=∠BAM+∠CAD=∠BAM+∠M,∵∠ACB=∠Q+∠CAQ,AB=BC,∵∠ACQ=180°﹣(∠Q+∠CAQ),∠MBA=180°﹣(∠BAM+∠M),∴∠ACQ=∠MBA,∵QC=BC,∴QC=AB,在△ACQ与△MBA中,,∴△ACQ≌△MBA,∴AQ=AM=2AD.5.(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE与△ECD中,,∴△ABE≌△ECD;(2)EF⊥AD,理由:∵△ABE≌△ECD,∴AE=DE,∵EF平分∠AED,∴EF⊥AD;(3)△AED是等边三角形,∵AE=DE,∵EF平分∠AED,∴DF=AD,∵DF=AE,∴AD=AE=DE,∴△AED是等边三角形.6.解:(1)∵a2﹣4a+20=8b﹣b2,∴(a﹣2)2+(b﹣4)2=0,∴a=2,b=4,∴A(0,2),B(4,0);(2)∵AD=OA+OD=8,BC=2OB=8,∴AD=BC,在△CAB与△AMD中,,∴△CAB≌△AMD,∴AC=AM,∠ACO=∠MAD,∵∠ACO+∠CAO=90°,∴∠MAD+∠CAO=∠MAC=90°,∴AC=AM,AC⊥AM;(3)过P作PG⊥y轴于G,在△PGA与△DHN中,,∴△PGA≌△DHN,∴PG=HN,AG=HD,∴AD=GH=8,在△PQG与△NHQ中,,∴△PQG≌△NHQ,∴QG=QH=GH=4,∴S△MQH=×4×2=4.7.(1)证明:∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠DBA=∠ABC=30°,∴∠A=∠DBA,∴AD=BD,∵DE⊥AB,∴AE=BE,∴CE=AB=BE,∴△BCE是等边三角形;(2)证明:∵△BCE与△MNB都是等边三角形,∴BC=BE,BM=BN,∠EBC=∠MBN=60°,∴∠CBM=∠EBN,在△CBM和△EBN中,,∴△CBM≌△EBN(SAS),∴∠BEN=∠BCM=60°,∴∠BEN=∠EBC,∴EN∥BC;(3)解:DQ=AD+DP;理由如下:延长BD至F,使DF=PD,连接PF,如图所示:∵∠PDF=∠BDC=∠A+∠DBA=30°+30°=60°,∴△PDF为等边三角形,∴PF=PD=DF,∠F=60°,∵∠PDQ=90°﹣∠A=60°,∴∠F=∠PDQ=60°,∴∠BDQ=180°﹣∠BDC﹣∠PDQ=60°,∴∠BPQ=∠BDQ=60°,∴∠Q=∠PBF,在△PFB和△PDQ中,,∴△PFB≌△PDQ,∴DQ=BF=BD+DF=BD+DP,∵∠A=∠ABD,∴AD=BD,∴DQ=AD+DP.8.(1)证明:∵∠ADB=∠AEC=∠BAC,∴∠ADB+∠ABD+∠BAD=∠BAD+∠BAC+∠EAC=180°,∴∠ABD=∠EAC,在△ABD与△ACE中,,∴△ABD≌△AEC,∴BD=AE,∵DE=AD+AE,∴DE=DB+EC.(2)结论:△DEF为等边三角形理由:连接BF,CF.∵AF平分∠BAC,∠BAC=120°,∴∠FAB=∠FAC=60°,∵FA=AB=AC,∴△ABF和△ACF均为等边三角形∴BF=AF=AB=AC=CF,∠BAF=∠CAF=∠ABF=60°,∴∠BDA=∠AEC=∠BAC=120°,∴∠DBA+∠DAB=∠CAE+∠DAB=60°,∴∠DBA=∠CAE.在△BAD和△ACE中,,∴△ADB≌△CEA(AAS),∴BD=AE,∠DBA=∠CAE.∵∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE.在△BDF和△AEF中,,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.9.(1)解:PE=PF;故答案为:=;(2)解:①PE=PF;理由如下:把三角尺绕点P顺时针旋转,使三角尺的两条直角边分别与OA,OB垂直于M、N,如图所示:则∠PME=∠PNF=90°,四边形OMPN是矩形∵OP平分∠AOB,∴PM=PN,∴四边形OMPN是正方形,∵∠AOB=∠PME=∠PNF=90°,∴∠MPN=90°,∵∠EPF=90°,∴∠MPE=∠FPN,在△PEM和△PFN中∴△PEM≌△PFN(ASA),∴PE=PF.②由①得:四边形OMPN是正方形,△PEM≌△PFN,∴OM=ON=OP=1,四边形OEPF的面积=正方形OMPN的面积=OM2=1;故答案为:1.10.解:(1)如图1所示,在AB上截取AE=AC,连接DE,∵AD平分∠BAC,∴∠1=∠2.在△ACD和△AED中,,∴△ACD≌△AED(SAS).∴∠AED=∠C=90,CD=ED,又∵∠ACB=2∠B,∠C=90°,∴∠B=45°.∴∠EDB=∠B=45°.∴DE=BE,∴CD=BE.∵AB=AE+BE,∴AB=AC+CD.(2)证明:在AB取一点E使AC=AE,在△ACD和△AED中,,∴△ACD≌△AED,∴∠C=∠AED,CD=DE,又∵∠C=2∠B,∴∠AED=2∠B,∵∠AED是△EDC的外角,∴∠EDB=∠B,∴ED=EB,∴CD=EB,∴AB=AC+CD;(3)AB=CD﹣AC证明:在BA的延长线AF上取一点E,使得AE=AC,连接DE,在△ACD和△AED中,,∴△ACD≌△AED(SAS),∴∠ACD=∠AED,CD=DE,∴∠ACB=∠FED,又∵∠ACB=2∠B,∴∠FED=2∠B,又∵∠FED=∠B+∠EDB,∴∠EDB=∠B,∴DE=BE,∴BE=CD,∴AB=CD﹣AC.。

证明全等三角形的判定方法

证明全等三角形的判定方法

证明全等三角形的判定方法一、SSS 判定法(边边边法)SSS 判定法是判定全等三角形最直接的方法之一。

它指的是如果两个三角形的三条边分别相等,则这两个三角形全等。

例如,对于三角形 ABC 和三角形 DEF,如果 AB = DE,AC = DF,BC = EF,则可以断定三角形 ABC 全等于三角形 DEF。

二、SAS 判定法(边角边法)SAS 判定法是另一种常见的全等三角形判定方法。

它指的是如果两个三角形的两条边和夹角分别相等,则这两个三角形全等。

举例来说,如果在三角形 ABC 和三角形 DEF 中,已知 AB = DE,AC = DF,且角 A = 角 D,则可以得出三角形 ABC 全等于三角形 DEF。

三、ASA 判定法(角边角法)ASA 判定法也是证明三角形全等的有效方法。

它指的是如果两个三角形的两个角和夹在它们之间的边分别相等,则这两个三角形全等。

比如,若在三角形 ABC 和三角形 DEF 中,已知角 A = 角 D,角B = 角 E,且边 AB = 边 DE,则可以推断三角形 ABC 全等于三角形DEF。

四、AAS 判定法(角角边法)AAS 判定法与ASA 判定法类似,也是基于角和边的对应关系来判定全等三角形。

它指的是如果两个三角形的两个角和它们之间的一条非夹边分别相等,则这两个三角形全等。

例如,在三角形 ABC 和三角形 DEF 中,已知角 A = 角 D,角 B = 角 E,且边 AC = 边 DF,则可以得出三角形 ABC 全等于三角形DEF。

五、HL 判定法(斜边直角边法)HL 判定法适用于两个直角三角形的判定。

它指的是如果两个直角三角形的斜边和一个直角边相等,则这两个三角形全等。

举例来说,若在直角三角形 ABC(其中角C = 90°)和直角三角形 DEF(其中角F = 90°)中,已知斜边 AB = 斜边 DE,且直角边AC = 直角边 DF,则可以推断三角形 ABC 全等于三角形 DEF。

三角形全等模型详细专题 初中数学

三角形全等模型详细专题  初中数学

全等三角形中辅助线的添加主要内容:复习三角形全等的判定定理,通过三角形全等证明图形中线段和角度的关系。

(位置关系和数量关系)学习目标:通过学习三角形全等的判定,探索三角形全等的条件,能够培养比较完整、清晰的思维逻辑能力并进行基础的推理论证能力。

学习重点:灵活应用三角形中线段的性质与三角形的判定定理证明综合性的题目。

学习难点:能够从结论出发,联系已知,找出解决问题的关键点,同时能够挖掘出图中的隐含条件而且能够将未知转化为已知来解决问题(基本的全等模型与常见辅助线)。

一、知识精讲1.三边分别相等的两个三角形全等,简写为“边边边”或者“SSS”。

(三角形具有稳定性)2.两角及其夹边分别相等的两个三角形全等,简写为“角边角”或“ASA”。

3.两角分别相等且其中一组等角的对边相等的两个三角形全等,简写为“角角边”或“AAS”。

4.两边及其夹角分别相等的两个三角形全等,简写为“边角边”或“SAS”。

5.在直角三角形中,一条斜边和一条直角边对应相等的两个直角三角形全等,简写为“HL”。

6.易错点:两边分别相等且其中一组等边的对角相等的两个三角形全等这个结论是不正确的。

EDFCBADCB A二、典型例题: 考点一倍长中线法:当遇到中线时,通常延长中线一倍,采用补短的方法,构造三角形全等条件:△ABC 中AD 是BC 边中线方法一: 延长AD 到E ,使DE=AD ,连接BE 方式 方法二:间接倍长,作CF ⊥AD 于F ,作BE ⊥AD 的延长线于E 连接BE方法三: 延长MD 到N ,使DN=MD ,连接CN【例题1】 已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________.【例题2】如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.【变式训练】1、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.【练习题】1、已知:如图,在正方形ABCD中,E是BC的中点,点F在CD上,∠FAE=∠BAE.求证:AF=BC+FC.2、如图所示,在△ABC中,AD是∠BAC的角平分线,且AE=AF。

二次函数压轴题之全等三角形的存在性(讲义及答案)

二次函数压轴题之全等三角形的存在性(讲义及答案)

二次函数压轴题之全等三角形的存在性(讲义) 课前预习1.如图,在平面直角坐标系中,点A坐标为(2,1),点B坐标为(3,0),点D为平面直角坐标系中任一点(与点O,A,B不重合).(1)△AOB和△DOB的公共边为_________.(2)若△DOB与△OAB全等,则点D的坐标为_________.(3)在下图中画出可能的△DOB,并考虑与△AOB之间的联系.知识点睛全等三角形存在性的处理思路1.分析特征:分析背景图形中的定点、定线及不变特征,结合图形形成因素(判定等)考虑分类.注:全等三角形存在性问题主要结合对应关系及不变特征考虑分类.2.画图求解:往往先从对应关系入手,再结合背景中的不变特征分析,综合考虑边、角的对应相等和不变特征后列方程求解.3.结果验证:回归点的运动范围,画图或推理,验证结果. 精讲精练1.如图,抛物线C1经过A,B,C三点,顶点为D,且与x轴的另一个交点为E.(1)求抛物线C1的解析式.(2)设抛物线C1的对称轴与x轴交于点F,另一条抛物线C2经过点E(抛物线C2与抛物线C1不重合),且顶点为M(a,b),对称轴与x轴交于点G,且以M,G,E为顶点的三角形与以D,E,F为顶点的三角形全等,求a,b的值.(只需写出结果,不必写出解答过程)2.如图,抛物线213442y x x =-++与x 轴的一个交点为A (-2,0),与y 轴交于点C ,对称轴与x 轴交于点B .若点D 在x 轴上,点P 在抛物线上,使得△PBD ≌△PBC ,则点P 的坐标为_____________________________________.3.如图,抛物线21382y x x =--与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过原点O ,与抛物线的一个交点为D (6,-8),与抛物线的对称轴交于点E ,连接CE .若点F 在抛物线上,使△FOE ≌△FCE ,则点F 的坐标为____________.4.如图,抛物线21(2)62y x =--+与y 轴交于点C ,对称轴与x 轴交于点D ,顶点为M .设点Q 是y 轴右侧该抛物线上的一动点,若经过点Q 的直线QE 与y 轴交于点E ,使得以O ,Q ,E 为顶点的三角形与△OQD 全等,则直线QE 的解析式为_______________.5.如图,在平面直角坐标系中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与l2相交于点P.点E为直线l2上一点,反比例函数ky(k>0)的图象x过点E且与直线l1相交于点F.(1)若点E与点P重合,求k的值.(2)连接EF.是否存在点E及y轴上的点M,使得以M,E,F为顶点的三角形与△PEF全等?若存在,求出点E的坐标;若不存在,请说明理由.【参考答案】课前预习1.(1)OB(2)(2,-1),(1,1),(1,-1)(3)略精讲精练1.(1)y =-x 2+2x +3;(2)a =7,b =2或a =7,b =-2或a =-1,b =2或a =-1,b =-2或a =1,b =-4或a =5,b =-4或a =5,b =4.2.(1418241)-+-+,,(1418241)----,,126(426)2-+-,,126(426)2--+,3.(3174)+-,或(3174)--, 4.122y x =+或71724y x -+=-或y =65.(1)2;(2)3(2)8,或8(2)3,.。

2023年中考数学重难点训练——全等三角形的应用

2023年中考数学重难点训练——全等三角形的应用

2023年中考数学重难点训练——全等三角形的应用一、综合题1.如图①,C 、F 分别为线段AD 上的两个动点,BC ⊥AD ,垂足为C ,EF ⊥AD ,垂足为F ,且AB==DE ,AF=CD ,点G 是AD 与BE 的交点.(1)求证∶ BG=EG;(2)当C 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立,请给予证明;若不成立,请说明理由.2.在平面直角坐标系中,已知点()03A ,、()60B ,,点A 关于x 轴对称点为F ,连接BF ,作DAK BAO ∠=∠,连接DO 交BF 延长线于点C .(1)①直接写出点F 的坐标 ▲ ;②证明:AOD ≌FOC ;(2)动点P 从F 出发,以每秒1个单位长度的速度沿F O B --运动,到B 点停止运动;动点Q 从B 出发,以每秒3个单位长度的速度沿B O F --,到F 停止运动.二者同时开始运动,都要到达相应的终点才能停止运动.过点P 作PG CD ⊥于点G ,过点Q 作QH CD ⊥于点H ,问:当P 点运动多少时间时,POG 与QOH 全等?3.(1)操作思考:如图1,在平面直角坐标系中,等腰直角 ACB ∆ 的直角顶点 C 在原点,将其绕着点 O 旋转,若顶点 A 恰好落在点 ()1,2 处.则①OA 的长为 ;②点 B 的坐标为 (直接写结果)(2)感悟应用:如图2,在平面直角坐标系中,将等腰直角 如图放置,直角顶点 ()1,0C - ,点 ()0,4A ,试求直线 AB 的函数表达式.(3)拓展研究:如图3,在直角坐标系中,点 ()4,3B ,过点 作 BA y ⊥ 轴,垂足为点 ,作 BC x ⊥ 轴,垂足为点 ,C P 是线段 BC 上的一个动点,点 Q 是直线 26y x =- 上一动点.问是否存在以点 P 为直角顶点的等腰直角 APQ ∆ ,若存在,请直接写出此时 点的坐标,若不存在,请说明理由.4.如图,在△ABC 中,∠B=∠C ,AB=16cm ,BC=12cm ,D 为AB 的中点.若点P 在线段BC 上以4cm/s 的速度由B 向C 运动,同时,点Q 在线段CA 上以a(cm/s)的速度由C 向A 运动,设运动的时间为t(s)(0≤t≤3)(1)用关于t 的代数式表示PC 的长度。

12.2全等三角形的判定

12.2全等三角形的判定

12.1全等三角形12.2全等三角形的判定学习目标1.理解全等三角形和全等三角形的概念,掌握全等三角形对应边、对应角的概念。

2.会确定全等三角形的对应边和对应角,会用全等三角形的性质解决问题。

3.会用全等三角形的判定定理判定两个三角形全等。

4.能灵活运用所学的判定方法,判定两个三角形全等,进而解决线段和角的相等问题。

考点关注1.利用全等三角形的性质,求线段的长或角的度数。

2.利用全等三角形全等的判定方法判定三角形全等。

3.利用三角形全等和全等三角形的性质,证明线段或角相等。

知识点1 全等三角形的有关概念(1)全等三角形对应角所对的边是对应边,两组对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两组对应边所夹的角是对应角;(3)两个全等三角形中的一对最长边(最大角)是对应边(对应角),—对最短边(最小角)是对应边(对应角);(4)两个全等三角形有公共边时,公共边是对应边;(5)两个全等三角形有公共角时,公共角是对应角;(6)两个全等三角形有对顶角时,对顶角是对应角.知识点2 全等三角形的性质【特别提醒】1.由全等三角形的性质可得到全等三角形的面积和周长相等,但周长和面积相等的三角形不一定全等.2.全等三角形的性质是证明线段或角相等的重要方法,在运用这个性质时,关键是结合图形或根据全等三角形的记法灵活地找到对应边或对应角,要牢牢抓住“对应”二字.练习1:如图12-1所示,已知△ACF≌△DBE,且点A,B,C,D在同一条直线∠A=50°,∠F=40°.(1)求△DBE各内角的度数;(2)若AD=16,BC=10,求AB的长图12 - 11.判定两个三角形全等常用的思路方法如下表。

2.全等三角形的图形有以下几种模型。

(1)平移全等型。

(2)对称全等型。

(3)旋转全等型。

3.在寻找证明两个三角形全等的条件时,应注意图形中的隐含条件:①公共边或公共角相等;②对顶角相等.练习2:如图12 - 5所示,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F = 90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE = CF;③△ACN≌△ABM;④CD = DN.其中正确的结论有()A.4个B.3个C.2个D.1个图12-5题型1 利用全等三角形证明角或线段相等例1:如图12 - 6所示,已知AC=AE,AD=AB,∠ACB =∠DAB=90°,AE⫽CB,AC,DE交于点F.(1)求证∠DAC=∠B;(2)猜想线段AF,BC的关系.图12-6题型2 证明线段的和差关系例2:如图12 - 7所示,已知AC⫽BD,AE,BE分别平分∠CAB和∠DBA,CD过点E,求证:AB+AC+B D.图12 - 7题型3 动态几何问题例3:在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⏊MN于点D,BE ⏊MN于点E.(1)当直线MN绕点C旋转到如图12 - 9(1)所示的位置时,求证DE=AD+BE(2)当直线MN绕点C旋转到如图12 - 9(2)所示的位置时,求证DE=AD-BE(3)当直线MN绕点C旋转到如图12 - 9(3)所示的位置时,线段DE,AD,BE之间又有什么样的数量关系?请你直接写出这个数量关系,不要证明。

初二数学平面直角坐标系解题思路

初二数学平面直角坐标系解题思路摘要:1.平面直角坐标系基本概念回顾2.解题思路:一、建立坐标系3.解题思路:二、利用坐标系性质4.解题思路:三、解析几何问题5.解题思路:四、应用勾股定理6.解题思路:五、解决实际问题7.解题思路:六、全等三角形的应用8.解题思路:七、解析三角形面积正文:初二数学平面直角坐标系解题思路一、平面直角坐标系基本概念回顾平面直角坐标系是由两条互相垂直的数轴组成的,通常将横轴称为x轴,纵轴称为y轴。

在平面直角坐标系中,每个点都可以用一个有序数对(x,y)表示。

二、解题思路:一、建立坐标系建立坐标系是解决平面直角坐标系问题的关键。

首先确定坐标系的原点,可以选择点A、B等已知点作为原点。

然后确定x轴和y轴,通常选择与题目中给定的直线或线段垂直的轴作为x轴,另一轴作为y轴。

三、解题思路:二、利用坐标系性质利用坐标系的性质,可以轻松地解决关于坐标轴上点的坐标问题。

例如,如果知道一个点在x轴上的坐标,那么它的y坐标就为0;如果知道一个点在y轴上的坐标,那么它的x坐标就为0。

四、解题思路:三、解析几何问题在平面直角坐标系中,解析几何问题主要包括直线、线段、圆等图形的性质和相互关系。

解决这些问题时,可以利用坐标系的性质,将几何问题转化为代数问题,然后运用代数知识求解。

五、解题思路:四、应用勾股定理在平面直角坐标系中,勾股定理的应用非常广泛。

如果已知一个直角三角形的两个直角边的长度,可以利用勾股定理求解第三个边的长度。

同时,还可以利用勾股定理判断一个三角形是否为直角三角形。

六、解题思路:五、解决实际问题平面直角坐标系在实际生活中的应用非常广泛,如导航、建筑、物理等领域。

解决实际问题时,通常需要将实际问题抽象为数学问题,然后在平面直角坐标系中进行求解。

七、解题思路:六、全等三角形的应用在平面直角坐标系中,全等三角形也是一个重要的知识点。

利用全等三角形的性质,可以解决一些复杂的几何问题,如求解线段的长度、角度的大小等。

尺规作图等腰三角形全等三角形及直角坐标

尺规作图、等腰三角形、全等三角形及直角坐标教学课题尺规作图、等腰三角形、全等三角形及直角坐标教学目标1、 掌握尺规作图的方法,学会用几何语言描述作图过程2、 巩固全等三角形和等腰(等边)三角形的判定证明,加强用几何语言描述的能力3、 掌握平面直角坐标系及相关概念,类比(由数轴到平面直角坐标系)的方法、数形结合的思想. 教学重、难点灵活运用四种全等三角形判定定理;构建平面直角坐标系,掌握平面内点与坐标的对应.◆ 诊查检测:1、 选择题(1)一个正方形在平面直角坐标系中三个点的坐标为(-2,-3),(-2,-1),(2,1),则第四个顶点的坐标为( )A .(2,2) B.(3,2) C.(2,-3) D.(2,3)(2)右图中是在方格纸上画出的小旗图案,若用(0,0)表示A 点,(0,4)表示B 点,那么C 点的位置可以表示为( )A.(0,3)B.(2,3)C.(3,2)D.(3,0)(3)已知点A (a ,b )在第四象限,那么点B (b ,a )在( )A .第一象限B .第二象限C .第三象限 D. 第四象限(4) 过两点A (3,4),B (-2,4)作直线AB ,则直线AB( )A.经过原点B.平行于y 轴C.平行于x 轴D.以上说法都不对(5)在平面直角坐标系中,以点P(-1,2)为圆心,1为半径的圆与x 轴有( )个公共点A .0B .1C .2D .3(6) 如图,把图①中△ABC 经过一定的变换得到图②中的△A 'B 'C ',如果图①的△ABC 上点P 的坐标是),(b a ,那么这个点在图②中的对应点P '的坐标是A .)3,2(--b aB .)3,2(--b aC .)2,3(++b aD .)3,2(++b a2、填空题(1) 在平面直角坐标系中,点P)1,1(2+-m 一定在第 象限. (2)一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为 . (3)点A (2,0),B (-3,0),C (0,2),则△ABC 的面积为 .(4)将点P(-3,y)向下平移3个单位,并向左平移2个单位后得到点Q(x,-1),则xy=_________.A B C3、在所给的图中按所给的语句画图:①连结线段BD; A②过A、C画直线AC;③延长线段AB;④反向延长线段AD. C DE4、如图,使用圆规和直尺分别画出∠AOB和∠BOC的角平分线OM和ON,并说明作图过程.如果∠MON=68º,那么∠AOC应为多少度?5、如图为风筝的图案.(1)若原点用字母O表示,写出图中点A,B,C的坐标.(2)试求(1)中风筝所覆盖的平面的面积.6、如图,在△ABC中三个顶点的坐标分别为A(-5,0),B(4,0),C(2,5),将△ABC沿x轴正方向平移2个单位长度,再沿y轴沿负方向平移1个单位长度得到△EFG。

1专题一 全等三角形的基本模型

第一节 全等三角形的基本模型全等三角形是初中数学中非常重要的几何部分,它在几何证明、平面直角坐标系中的计算和函数动点探究题中都是常客。

既然全等三角形在初中几何中有如此重要的地位,那么我们就必须熟悉全等三角形的常见模型,掌握一些构造全等三角形的辅助线方法。

这一专题,我们将抓住全等三角形的几何证明部分,逐步认识“一线三等角”模型、“手拉手”模型、对角互补模型和半角模型,熟能生巧 .【例1】已知:如图,点A 、B 、C 、D 在一条直线上,//EA FB ,EA FB =,AB CD =.(1)求证:E F ∠=∠;(2)若40A ∠=︒,80D ∠=︒,求E ∠的度数.【例2】如图,AB AD =,25BAC DAC ∠=∠=︒,80D ∠=︒.求BCA ∠的度数.【例3】如图,在ABC ∆中,点D 是边BC 的中点,连结AD 并延长到点E ,使DE AD =,连结CE .(1)求证:ABD ECD ∆≅∆;(2)若ABD ∆的面积为5,求ACE ∆的面积.【例4】如图,ABC∆,使∆中,D为BC边上的一点,AD AC=,以线段AD为边作ADE得AE AB=,BAE CAD=.∠=∠.求证:DE CB【例5】如图,AB AE=,//∠=︒.∠=︒,40EAB DE,70DAB(1)求DAE∠的度数;(2)若30=.B∠=︒,求证:AD BC【同步训练】1.如图,点O是线段AB的中点,//OD BC且OD BC=.(1)求证:AOD OBC∆≅∆;(2)若35∠的度数.∠=︒,求DOCADO2.如图,AC平分BAD∠,AB AD=.求证:BC DC=.3.如图,已知AD BC =,BD AC =.求证:ADB BCA ∠=∠.4.如图,AB AC =,AB AC ⊥,AD AE ⊥,且ABD ACE ∠=∠.求证:BD CE =.5.如图,点C 、E 、F 、B 在同一直线上,点A 、D 在BC 异侧,//AB CD ,AE DF =,A D ∠=∠.(1)求证:AB CD =;(2)若AB CF =,40B ∠=︒,求D ∠的度数.6.如图,已知//AB CD ,AB CD =,BE CF =.求证:(1)ABF DCE ∆≅∆;(2)//AF DE .7.如图,在ABC ∆中,点D 是BC 中点,DE AB ⊥,DF AC ⊥,且DE DF =.求证:ABC ∆是等腰三角形.8.已知,如图:AC 与BD 相交于点O ,OBC OCB ∠=∠,A D ∠=∠,求证:AO DO =.9.如图,点A 、B 、C 、D 在一条直线上,AB CD =,A FBD ∠=∠,//CE DF ,求证:CE DF =.10.如图,AC 是BAE ∠的平分线,点D 是线段AC 上的一点,C E ∠=∠,AB AD =.求证:BC DE =.第二节一线三等角构造全等三角形上一讲我们介绍了全等三角形的几个常见模型,但是我们在平常的练习和模拟中遇到的题有的并非如此简单,那么我们就需要去总结其中的题型和对应的解题策略,找出一套做辅助线的法则去解题。

专题13 全等三角形重难点模型(五大模型)(原卷版)

专题13全等三角形重难点模型(五大模型)模型一:一线三等角型模型二:手拉手模型模型三:半角模型模型四:对角互补模型模型五:平行+线段中点构造全等模型【典例分析】【模型一:一线三等角型】如图一,∠D=∠BCA=∠E=90°,BC=AC。

结论:Rt△BDC≌Rt△CEA模型二一线三等角全等模型如图二,∠D=∠BCA=∠E,BC=AC。

结论:△BEC≌△CDA图一图二应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。

【典例1】如图,平面直角坐标系中有点A(﹣1,0)和y轴上一动点B(0,a),其中a>0,以B点为直角顶点在第二象限内作等腰直角△ABC,设点C的坐标为(c,d).(1)当a=2时,则C点的坐标为;(2)动点B在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由.【变式1】点A的坐标为(4,0),点B为y轴负半轴上的一个动点,分别以OB、AB为直角边在第三象限和第四象限作等腰Rt△OBC和等腰Rt△ABD.(1)如图一,若点B坐标为(0,﹣3),连接AC、OD.①求证:AC=OD;②求D点坐标.(2)如图二,连接CD,与y轴交于点E,试求BE长度.【典例2】(1)猜想:如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试猜想DE、BD、CE有怎样的数量关系,请直接写出;(2)探究:如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α(其中α为任意锐角或钝角)如果成立,请你给出证明;若不成立,请说明理由;(3)解决问题:如图3,F是角平分线上的一点,且△ABF和△ACF均为等边三角形,D、E分别是直线m上A点左右两侧的动点,D、E、A互不重合,在运动过程中线段DE的长度始终为n,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.【变式2】已知,在△ABC中,AB=AC,D,A,E三点都在直线m上,且DE =9cm,∠BDA=∠AEC=∠BAC(1)如图①,若AB⊥AC,则BD与AE的数量关系为,CE与AD 的数量关系为;(2)如图②,判断并说明线段BD,CE与DE的数量关系;(3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们运动的时间为t(s).是否存在x,使得△ABD与△EAC全等?若存在,求出相应的t的值;若不存在,请说明理由.【模型二:手拉手模型】应用:①利用手拉手模型证明三角形全等,便于解决对应的几何问题;②作辅助线构造手拉手模型,难度比较大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系中的全等三角形
一、典例精析
例1如图,在平面直角坐标系中,O是坐标原点,A(3,0)B(2,2),
以O,A,C为顶点的三角形与△OAB全等(C,B不重合),则满足
条件的C的坐标可以是。

例2在平面直角坐标系中,已知点A(4,0),B(0,3),若有一个直角三角形与Rt△ABO全等,且它们有一条公共边,请写出这个三角形未知顶点的坐标(要有过程)
二、课堂练习
1.如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0). (1)求证:h 1=h 3;
(2)设正方形ABCD 的面积为S ,求证:S =(
h 1+h 2)2+h 12

(3)若 3
2
h 1+h 2=1,当h 1变化时,说明正方形ABCD 的面积为S 随h 1的变化情况.
2.定义:对于抛物线y=ax2+bx+c (a 、b 、c 是常数,a ≠0),若b2=ac ,则称该抛物线为黄金抛物线.例如:y=2x2-2x+2是黄金抛物线.
(1)请再写出一个与上例不同的黄金抛物线的解析式;
(2)若抛物线y=ax2+bx+c (a 、b 、c 是常数,
a ≠0)是黄金抛物线,请探究该黄金抛物线与x 轴的公共点个数的情况(要求说明理由);
(3)将(2)中的黄金抛物线沿对称轴向下平移3个单位 ①直接写出平移后的新抛物线的解析式;
②设①中的新抛物线与y
轴交于点A ,对称轴与x 轴交于点B ,动点Q 在对称轴上,问新抛物线上是否存在点P ,使以点P 、Q 、B 为顶点的三角形与△AOB 全等?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由图中画出新抛物线的示意图计
l l l l
三、课外作业
1、如图,平面直角坐标系中,OB 在x 轴上, ∠ABO =90°点A 的坐标为(1,2).
将△AOB 绕点A 逆时针旋转90°,点O 的对应点 C 恰好落在双曲线y = k
x
(x >0)上,则k =( )
A .2
B .3
C .4
D .6
2.在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,且点A (0,2),点C (-1,0),如图所示:抛物线y=ax2+ax-2经过点B . (1)求点B 的坐标; (2)求抛物线的解析式;
(3)在抛物线上是否还存在点P (点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.
3. 在平面直角坐标系XOY 中,直线1l 过点()0,1A 且与y 轴平行,直线2l 过点()2,0B 且与x 轴平行,直线1l 与直线2l 相交于点P 。

点E 为直线2l 上一点,反比例函数x
k
y =(k >0)的图像过点E 与直线1l 相交于点F 。

⑴若点E 与点P 重合,求k 的值;
⑵连接OE 、OF 、EF 。

若k >2,且△OEF 的面积为△PEF 的面积的2倍,求E 点的坐标; ⑶是否存在点E 及y 轴上的点M ,使得以点M 、E 、F 为顶点的三角形与△PEF 全等?若存在,求E 点坐标;若不存在,请说明理由。

相关文档
最新文档