第5讲 坐标系中的全等(一)—尖子班

合集下载

第5讲四边形最值问题-尖子班

第5讲四边形最值问题-尖子班

【例1】(1)如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为()A .6B .32C .3D .62(2)如图所示,在Rt △ABC 中,已知∠B=90°,AB=6,BC=8,D ,E ,F 分别是三边AB ,BC ,CA 上的点,则DE+EF+FD 的最小值为.(3)如图,在五边形ABCDE 中,∠BAE =120°,∠B =∠E =90°,AB =BC ,AE =DE ,在直线BC ,DE 上分别找一点M ,N ,使得△AMN 的周长最小时,则∠AMN +∠ANM 的度数为.四边形最值问题模块一两点之间,线段最短【例1】(1)如图,菱形ABCD 中,AB =4,∠A =120°,点M 、N 、P 分别为线段AB 、AD 、BD 上的任意一点,则PM +PN 的最小值为________.(2)以边长为2的正方形的中心O 为端点,引用两条垂直的射线,分别与正方形的边交于A ,B 两点,则线段AB 的最小值为.(3)如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 最小的值是().A.2B.3C.4D.5(4)如图在∆ABC 中,AB=3,AC=4,BC=5,P 是BC 边上的一动点,PE 垂直于AB 于E 点,PF 垂直于AC 于点F,M 是EF 的中点,则AM 的最小值为.模块二点到直线的距离,垂线段最短【例1】(1)如图,正方形ABCD 中,AB=8,O 为AB 的中点,P 为正方形ABCD 外一点,且AP ⊥CP,则线段的OP 最大值为.(2)如图,已知菱形ABCD 中,BC=10,∠BCD=60°两顶点B 、D 分别在平面直角坐标系的y 轴、x 轴的正半轴上滑动,连接OA ,则OA 的长的最小值是.【巩固】如图,正方形ABCD 中,E 、F 是AD 上两个动点,且AE DF ,连接CF 交BD 于点G ,连接BE 交AG 于点H ,若正方形的边长为2,求DH的最小值.模块三三角形三边关系,两边之和>第三边>两边之差最值问题:OA 与OB 共用顶点O ,固定OA 将OB 绕点O 旋转过程中的,会出现AB 的最大值与最小值,如图.【例1】(1)如图所示,ABD ∆是等边三角形,在ABC ∆中,BC a =,CA b =,问:当ACB∠为何值时,C 、D 两点的距离最大?最大值是多少?DCBA (2)已知:2PA =,4PB =,以AB 为一边作正方形ABCD ,使P 、D 两点落在直线AB的两侧.①如图,当45APB ∠=︒时,求AB 及PD 的长;②当APB ∠变化,且其它条件不变时,求PD 的最大值及相应APB ∠的大小.【例2】如图1,已知ABC ∆是等腰直角三角形,︒=∠90BAC ,点D 是BC 的中点.作正方形DEFG ,使点A 、C 分别在DG 和DE 上,连接AE ,BG .(1)试猜想线段BG 和AE 的数量关系是________________;(2)将正方形DEFG 绕点D 逆时针方向旋转)3600(︒≤<︒αα,①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;②若4==DE BC ,当AE 取最大值时,求AF 的值.费马点与旋转☞考点说明:到三个定点的三条线段之和最小,夹角都为120°.旋转与最短路程问题主要是利用旋转的性质转化为两点之间线段最短的问题,同时与旋转有关路程最短的问题,比较重要的就是费马点问题结论:(1)平面内一点P 到△ABC 三顶点的之和为PA PB PC ++,当点P 为费马点时,距离之和最小.特殊三角形中:(2).三内角皆小于120°的三角形,分别以AB ,BC ,CA 为边,向三角形外侧做正三角形1ABC 1ACB ,1BCA ,然后连接1AA ,1BB ,1CC ,则三线交于一点P ,则点P 就是所求的费马点.(3).若三角形有一内角大于或等于120度,则此钝角的顶点就是所求的费马点.(4)当ABC ∆为等边三角形时,此时内心与费马点重合下面简单说明如何找点P 使它到ABC ∆三个顶点的距离之和PA PB PC ++最小?这就是所谓的费尔马问题.解析:如图1,把APC ∆绕A 点逆时针旋转60°得到△AP ′C ′,连接PP ′.则△APP ′为等边三角形,AP =PP ′,P ′C ′=PC ,所以PA PB PC ++=PP ′+PB +P ′C ′.点C ′可看成是线段AC 绕A 点逆时针旋转60°而得的定点,BC ′为定长,所以当B 、P 、P ′、C ′四点在同一直线上时,PA PB PC ++最小.这时∠BPA =180°-∠APP ′=180°-60°=120°,∠APC =∠A P ′C ′=180°-∠AP ′P =180°-60°=120°,∠BPC =360°-∠BPA -∠APC =360°-120°-120°=120°因此,当ABC ∆的每一个内角都小于120°时,所求的点P 对三角形每边的张角都是120°,可在AB 、BC 边上分别作120°的弓形弧,两弧在三角形内的交点就是P 点;当有一内角大于或等于120°时,所求的P 点就是钝角的顶点.费尔马问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换.【例1】阅读下列材料对于任意的ABC ∆,若三角形内或三角形上有一点P ,若PA PB PC ++有最小值,则取到最小值时,点P 为该三角形的费马点.①若三角形内有一个内角大于或等于120︒,这个内角的顶点就是费马点②若三角形内角均小于120︒,则满足条件120APB BPC APC ∠=∠=∠=︒时,点P 既为费马点.解决问题:(1)如图,ABC∆、ACE∆,∆中,三个内角均小于120︒,分别以AB、AC为边向外作等边ABD连接CD、BE交于点P,证明:点P为ABC++=∠=∠=∠=︒)且PA PB PC CD ∆的费马点.(即证明120APB BPC APC++>++(2)如图,点Q为三角形内部异于点P的一点,证明:QA QC QB PA PB PC(3)若30BC=,直接写出PA PB PC++的最小值AB=,4ABC∠=︒,3【例2】小华遇到这样一个问题,如图1,△ABC中,∠ACB=30º,BC=6,AC=5,在△ABC 内部有一点P,连接PA、PB、PC,求PA+PB+PC的最小值.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC绕点C顺时针旋转60º,得到△EDC,连接PD、BE,则BE的长即为所求.(1)请你写出图2中,PA+PB+PC的最小值为________;(2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD中,∠ABC=60º,在菱形ABCD内部有一点P,请在图3中画出并指明长度等于PA+PB+PC最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD 的边长为4,请直接写出当PA+PB+PC值最小时PB的长.图1图2图3【例3】如图,四边形ABCD 是正方形,ABE ∆是等边三角形,M 为对角线BD 上任意一点,将BM 绕点B 逆时针旋转60︒得到BN ,连接AM 、CM 、EN .⑴求证:AMB ENB∆∆≌⑵①当M 点在何处时,AM CM +的值最小;②当M 点在何处时,AM BM CM ++的值最小,并说明理由;⑶当AM BM CM ++的最小值为31+时,求正方形的边长.【巩固】A 、B 、C 、D 四个城市恰好为一个正方形的四个顶点,现在要设立P 、Q 两个交通枢纽,并建设公路连接AP 、BP 、PQ 、QC 、QD ,使个城市之间都有公路相通,并使整个公路系统的总长为最小,则这个公路系统应当如何修建?【例4】(1)已知:ABC ∆中,120A ∠︒≥,P 是不与A 重合的定点,求证PA PB PC AB AC ++>+.P CBA(2)如图所示,在四边形ABCD中,AB BC∠=︒,P为四边形ABCD内部一点,ABC=,60++≥.∠=︒,证明:PA PD PC BD120APDAP DBC【题1】如图,∠MON=90°,正方形ABCD的顶点A、B分别在OM、ON上运动,当正方.形的边长为2时,OD的最大值为CE=,点M、N在对角线AC 上运动,且2周长的最小值.MN=,连接BM、EN.求四边形BMNE【题4】如图,已知菱形ABCD的边长为2,∠DAB=60︒,E、F分别是AD、CD上的两个动点,且满足AE+CF=2,连接BD,当∆BEF的面积取得最小值时,试判断此时EF与BD的位置关系。

学而思寒假七年级尖子班讲义第讲平面直角坐标系

学而思寒假七年级尖子班讲义第讲平面直角坐标系

领先中考培优课程M A T H E M A T I C S3 平面坐标系知识目标目标一理解有序数对、有序数对、点的坐标的概念目标二掌握象限、坐标轴、坐标轴夹角平分线的点的坐标特征目标三灵活运用点和线的平移变换。

点的对称变换求坐标模块一 平面直角坐标系的相关概念 知识导航1有序数对有顺序的两个数a 与b 组成的数对,叫做有序数对,记作(a,b),利用有序数对可以可以很准确的表示出一个位置。

2平面直角坐标系3、点的坐标平面内的点可以用一个有序数对表示,这个有序数对就叫做点的坐标。

对于平面内任意一点,过该点分别向横轴、纵轴作垂线,垂足在横轴、纵轴上对应的数分别叫做该点横坐标、纵坐标。

在平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系、水平的数轴称为x 轴或横轴,习惯上取向右为正方向:竖直的数轴称为y 轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面坐标系的原点。

如左图,建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成了Ⅰ,Ⅱ,Ⅲ,Ⅳ四个部分,每个部分称为象限,分别叫做第一象限、第二象限、第三象限、第四象限。

坐标轴上的点不属于任何象限。

Ⅰ 第一象限 Ⅳ第四象限Ⅲ第三象限 Ⅱ 第二象限 原点如图,点p 为坐标平面内一点,过点p 作x 轴的垂线,垂足M 在x 轴上对应点的数是-2,则-2就是p 的横坐标;过点p 作y 轴的垂线,垂足N 在y 轴上对应的数为3,则3为点p 的纵坐标,点p 就可以用有序数对(-2,-3)来表示,记作p (-2,3)。

由坐标确定点的方法:要确定由坐标(a,b)所表示的点p 的位置,先在x 轴上找到表示a 的点,过这点作x 轴的垂线;再在y 轴上找到表示b 的点,过这点作y 轴的垂线,两条垂线的交点p 即为所求的位置。

由点求坐标的方法:先由已知点p 分别向x 轴和y 轴作垂线,设垂足分别为A 和B ,再求出A 在x 轴上的坐标a 和B 在轴上的坐标b ,则点p 的坐标为(a,b)巩固练习 点的坐标(1)在图1的平面直角坐标系中描出下列个点:A(3,4),B(-2,3),C(-5,-2),D(4,-1),E(1,0),F(0,3),G(-2,0),H(0,-4). (2)写出图2中点A 、B 、C 、D 、E 、F 、G 、H 的坐标。

坐标规律知识点总结

坐标规律知识点总结

坐标规律知识点总结一、直角坐标系直角坐标系是平面几何中最常用的坐标系,它是由两条互相垂直的坐标轴组成的。

一般来说,我们约定横轴为 x 轴,竖轴为 y 轴,它们的交点作为原点 O,两者的单位长度分别为1。

我们以原点为中心,向右为 x 轴正方向,向上为 y 轴正方向,建立直角坐标系。

在直角坐标系中,任意一点 P 的坐标可用有序偶数 (x, y) 表示。

其中,x 为横坐标,y 为纵坐标。

对于直角坐标系,有以下一些重要知识点:1. 点的对称性:关于 x 轴、y 轴和原点的对称性,可以用来求解坐标对称点的坐标。

2. 距离公式:在直角坐标系中,两点之间的距离公式为d = √((x₂-x₁)² + (y₂-y₁)²)。

3. 中点坐标:在直角坐标系中,可以根据两点的坐标求出其中点坐标,即((x₁+x₂)/2,(y₁+y₂)/2)。

4. 直线方程:在直角坐标系中,通过两点的坐标,可以确定一条直线的方程,通常以 y = kx + b 或 Ax + By + C = 0 的形式表示。

二、极坐标系极坐标系是另一种常用的坐标系,它是由极轴和极角组成的。

极轴通常是 x 轴,极角通常用θ 表示,它是与极轴的顺时针夹角。

在极坐标系中,任意一点 P 的坐标由有序偶数(r, θ) 表示。

其中,r 为极径,表示点 P 到极点 O 的距离,θ 为极角,表示点 P 在极坐标系中的方向。

对于极坐标系,也有一些重要的知识点:1. 坐标变换:极坐标系和直角坐标系是可以相互转换的,需要用到的公式为x = r*cos(θ) 和y = r*sin(θ)。

2. 极坐标系中的直线方程:在极坐标系中,直线的方程通常以r = f(θ) 的形式表示,其中f(θ) 为一个函数。

3. 极坐标系中的距离公式:两点间的距离公式为d = √(r₁² + r₂² - 2*r₁*r₂*cos(θ₂-θ₁))。

三、空间直角坐标系空间直角坐标系是直角坐标系的延伸,它是由三条相互垂直的坐标轴组成的。

七年级坐标系知识点

七年级坐标系知识点

七年级坐标系知识点七年级数学课程中,坐标系是一个非常重要的知识点。

它是引导学生建立空间概念,掌握几何、代数、函数等领域的重要基础。

坐标系是一种描述方位和位置关系的系统,通过它可以非常精确地表示出点的位置。

下面我们来介绍一下七年级坐标系的知识点。

一、笛卡尔坐标系笛卡尔坐标系,又称直角坐标系,是由法国数学家笛卡尔在17世纪创立的,它由两个互相垂直的数轴组成,称为x轴和y轴。

坐标系的原点是两个数轴的交点,可以用一个有序数对(x,y)来表示平面上的点P,这个有序数对就叫作点P的坐标。

二、平面直角坐标系平面直角坐标系简称平面坐标系,它是笛卡尔坐标系在平面上的具体实现。

在平面坐标系中,过原点的两条互相垂直的数轴分别称作x轴和y轴,坐标系的每一个点P都可以用一对有序数(x,y)来表示。

其中,x轴的正方向一般向右,y轴的正方向一般向上。

三、直角坐标系的象限由于平面坐标系可以取任意位置,因此有时需要给出数轴的正负方向和数轴交点位置关系的规定。

平面坐标系按照反时针方向分成四个象限,如图所示:+y|2| 1|--3| 4|---0----------+x其中,第一象限中的数对满足x>0,y>0;第二象限中的数对满足x<0,y>0;第三象限中的数对满足x<0,y<0;第四象限中的数对满足x>0,y<0。

象限的正负号依据标准规定而定,也有一些特殊的坐标系象限规定。

四、图形在坐标系中的表示方法平面坐标系直接地表现出二位空间,因此可以用坐标系表示各种平面图形,这需要结合各种表示运算方法。

基本的图形有点、线、圆、椭圆、双曲线和抛物线等,每种图形的表示方法略有不同。

五、坐标系上的代数问题坐标系还可以用来解决代数问题。

比如给定两个点A(x1, y1)和B(x2, y2),求这两个点之间的距离AB,可以应用勾股定理得出。

对于函数问题,可以利用坐标系中的函数图像进行分析和解决。

比如给定一条线段,可以根据坐标系中这条线段的两个端点得出它的方程和斜率,从而进行数学分析。

第6讲 坐标系中的全等(二)—尖子班

第6讲 坐标系中的全等(二)—尖子班

【例1】如图①,A (O ,-1),A 、C 关于x 轴对称,AB=2,EF ∥BC ,交AB 的延长线于E 点,交y 轴于F 点. (1)求∠AEF ;(2)如图②,将△AEF 绕A 点顺时针旋转交BC 延长线于D 点,当D(m ,2)时,问AM+DH大小是否变化并证明.图① 图②【巩固】如图,已知在平面直角坐标系中,OA=OB=OC=2,点P 从C 点出发沿y 轴正方向以1个单位/秒的速度向上运动,连接PA 、PB ,D 为AC 的中点.(1)设点P 运动的时间为t 秒,问:当t 为何值时,DP 与DB 垂直且相等; (2)若PA=AB ,在第一象限内有一动点Q ,连QA 、QB 、QP ,且∠PQA=60°,问:当Q 在第一象限内运动时,∠APQ+∠ABQ 的度数和是否会发生改变?若不改变,请说明理由并求这个不变的值.图① 图②坐标系中的全等综合【变式】如图,已知B (-1,O ),D(O ,2),经过点C(3,0)的直线EC 交直线BD 于A ,交y 轴于E ,使AD=AE . (1)求证:AB=AC ;(2)△ABC 沿x 轴方向平行移动时,AB 交y 轴于D ,直线DF 交AC 延长线于F ,交x轴于G 且BD=CF ,求证:OG 长度不变.图① 图②【例2】如图1,已知点A (a ,0),点B (0,b ),且a 、b 满足44=-+-b a (1)求A 、B 两点的坐标; (2)若点C 是第一象限内一点,且∠OCB=45°,过点A 作AD ⊥OC 于点F ,求证:FA=FC ; (3)如图2,若点D 的坐标为(0,1),过点A 作AE ⊥AD ,且AE=AD ,连接BE 交x 轴于点G ,求G 点的坐标.【巩固】如图,直角坐标系中,A(O,4),B(4,O),点M、N分别在y轴和x轴上,N点在B点右侧,且AM=BN.(1)求S△AOB;(2)如图①,若点M在AO上,求证:CM=CN;(3)如图②,若点M在y轴负半轴上,(2)中的结论是否成立,请说明理由.图①图②【变式】在平面直角坐标系xoy 中,Rt △AOB 如图所示,A(a ,b),OB=c ,满足222216640a b c ab c ++--+=(1)求A ,B 两点坐标;(2)C 为x 轴正半轴上一动点,以AC 为直角边作等腰Rt △ACD,如图所示,连接OD,求∠AOD 的度数。

六年级 寒假班第5讲 经济问题

六年级 寒假班第5讲 经济问题

六年级尖子班第5 讲经济问题1、某商品的进价是1509 元,按商品的标价9 折出售时,利润率是20%,求商品的标价是多少元?【解析】2012 元设商品的标价为x元。

0.9x1509120% ,解得x20122、(2012 某高新一中5.26)某种家用电器的进价为800 元,出售的价格为1200 元,后来由于该电器积压,为了促销,商店准备打折销售,但要保证利润不低于5%,则至多可以打几折?【解析】78005% 800 840(元)840 1200 70%3、某商品按20%利润定价,然后8.8 折卖出,共获得利润84 元。

这种商品的成本是多少元?【解析】150080 (1.20.881) 1500(元)4、一家商店将某种服装成本价提高40%后标价;又以8折(标价的80%)优惠卖出,结果每件获利45 元,这种服装每件成本多少元?【解析】375 元设这种服装成本价为x元,则标价为x140% 1.4x,解得x375。

5、一件商品,按定价的80%出售能赚180 元,按定价的70%售就得赔120 元。

这件商品进价为多少元?【解析】2220 元180 120÷80% 70%3000(元)300080% 180 2220(元)6、(2014 年某高新一中5•31)一辆小汽车,分期付款要比定价多付10%,若现金一次性付款能打九五折,张叔叔算了一下,两种付款方式有18000 元的差价。

你帮张叔叔计算这辆小汽车的定价是多少元?【解析】12000018000 10% 5% 120000元7、甲乙两种商品的单价和为100 元,因季节变化,甲商品降价10%,乙商品提价5%,调价后,甲乙两种商品的单价之和比原单价之和提高了2%,求甲乙两种商品原来的单价分别是多少?【解析】20 元和80 元设甲种商品原来的单价分别为x元,乙种商品原来单价为100 x元,根据题意有:0.9x 1.05100 x102,x20,100 20 80(元)。

几何知识 全等

几何知识  全等

全等
如果一个图形可以用以旋转、轴反射和/或平移的方式来变成另一个图形,这两个图形便是全等的:
旋转转!
轴反射翻转!
平移滑动!
经过以上的变换(旋转、轴反射或平移)后,
图形的大小、面积、角和或线长都保持不变。

例子:
全等(旋转和平移)
全等
(轴反射和平移)
全等
(轴反射、旋转和平移)
全等还是近似?
两个全等图形的大小是要相等的。

如果一个图形需要改变大小才能和另一个图形一模一样,这两个图形便是近似的。

如果我们……图形便是……
……只需要旋转、轴反射和/或平移全等
……也需要改变大小近似
全等?为什么不干脆叫 "相等" 就算了?可能图形只是重叠时才真正是 "相等" 的。

全等英语是"Congruent"。

字源自拉丁语 congruere,就是 "同意" 的意思。

就是说,图形互相 "同意"。

学而思寒假八年级尖子班讲义第5讲函数基本概念

学而思寒假八年级尖子班讲义第5讲函数基本概念

数学故事抛硬币的概率硬币除了可以买东西,也可以用来解决各种争端.据说,遇到不可调解的分歧的时候,为了作出决定,人们的首选是猜拳,其次是抛硬币.足球场上开球方的决定,习惯上也用硬币决定的.然而,硬币正反不一样!如果硬币两面是完全一样的,显然掷出正面或者反面的可能性是均等的.我们常说,正反面出现的概率都是0.5.那么,这里的“概率”是什么意思呢?如果我们不停地投掷硬币,并记录下每次的结果,我们会发现正面出现的数量大约是全部的一半.投掷的次数越多,“出现正面”所占的比例就越接近0.5.这就是概率的含义:如果在许多次独立的试验中,某个特定的事件发生的比例会逐渐趋近一个特定的数值,那么这个数值就被称为这个特定事件的概率.我们可能觉得掷硬币时,正反面出现的概率是一样的,其实不然.由于设计的原因,硬币正反面的花纹是不一样的,从而也导致了重心与中心的微小偏差.以人民币一元硬币来说,正面是代表面额的1字,反面是菊花,重心稍微偏向反面;欧元就更麻烦了,不同的铸币厂会铸出不同的背面花纹,重心偏向也因这些花纹而异.由于重心有偏向,所以掷硬币时,正反面出现的概率也会有些偏差.幸好花纹导致的概率偏差非常非常小,在日常生活中往往可以忽略不计.尽管可以忽略不计,但有没有办法修正这个偏差昵?换句话说,能不能找到一个方法,让有偏差的硬币产生无偏差的结果呢?假设某枚硬币掷出正面的概率是p,我们用以下的方法产生抛硬币的结果:掷两次硬币,如果两次的结果相反的话,取后掷出的为结果;否则重新掷两次.更具体地说,如果结果是“反正”的话,那就当作掷出了正面,如果是“正反”的话,那就当作反面,如果是“正正”或者“反反”的话,那就重新再来.这样的话,在一次尝试中,结果为正面和反面的概率都是p(1-p),结果是完全公平的.正反抵消不容易掷100次硬币,正面和反面相差多少次昵?1000次昵?10000次呢?现实中的硬币,掷出正反面的概率略有偏差,但差别之小可以看作相同.你可能会觉得,掷出正面和反面的数目有很大概率是相等的.但事实如何?虽然根据概率论中的大数定律,正反面出现次数的比应该很接近1,但这不代表正反面数目刚好抵消的概率很大.打个不太恰当的比方,地铁相对来说是很准时的,但是要它一天提前或者延误的时间刚好抵消的话,还是相当困难的.尽管得到正面和反面的概率相同,但是要它们恰好相互抵消,这也需要一点运气.稍稍用点数学知识可以知道,掷2n交硬币,恰好有n次正面n次反面的概率大概是l/nπ.当n越来越大,这个概率越来越趋近0.也就是说,虽然正反面出现的概率相同,但是它们恰好相等的概率会随着硬币的总次数变低,最后越来越接近0.所以说,在表达数学问题时,一定要用精确的语言.意思上一点点微小的变动,也会产生截然不同的结果.我们说投掷硬时出现正面的概率是0.5,说的是在许许多多次投掷后,结果中正面所占的比例会非常接近0.5,投掷次数越多,比例越接近0.5.但这并不是说比例会非常凑巧地稳稳停在0.5.实际上,在很多情况下,这个比例会不停地在0.5周围浮动,但浮动的幅度会越来越小,也会越来越靠近0.5.某几次投掷之后正面恰好一半,这种情况发生的机会反而很小.领先中考培优课程5函数基本概念知识目标模块一函数的基本概念题型一函数的概念知识导航“万物皆变”——行星在宇宙中的位置随时间而变化,气温随海拔而变化,树高随树龄而变化……生活中,这种一个量随另一个量的变化而变化的现象大量存在.思考下面几个具体的例子:⑴电影票的售价为10元/张,第一场售出150张票,第二场售出205张票,第三场售出310张票,三场电影的票房收入各是多少元?设一场电影售出x张票,票房收入为y元,y 的值随x的变化而变化吗?⑵某地的手机通话费为0.2元/min,小明在手机话费卡中存入30元,记此后他的手机通话时间为tmin,话费卡中的余额为w元.w的值随t的变化而变化吗?⑶水中涟漪(圆形水波)不断扩大,记它的半径为r,圆面积为S,圆周率为π.S的值r 的变化而变化吗?我们引入下列概念:概念一:变量与常量变量:在一个变化过程中,数值发生变化的量为变量常量:在一个变化过程中,数值始终不变的量为常量在⑴中,可以发现:x和y是两个变量,每当x取定一个值时,y就有唯一确定的值与其对应.例如,若x=150,则y=1500;若x=205,则y=2050;若x=310,则y=3100.在⑵中,可以发现:w和t是两个变量,每当t取定一个值时,w就有唯一确定的值与其对应.它们的关系式为w=30-0.2t.据此可以算出t分别为50,100,120时,w分别为20,10,6.在⑶中,可以发现:r和S是两个变量,每当r取定一个值时,S就有唯一确定的值与之对应.它们的关系为S=πr2.据此可以算出r分别为10cm,20cm,30cm时,S分别为100πcm2,400πcm2,900πcm2.我们引入下列概念:概念二:函数一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数,如果当x=a时y =b,那么b叫做当自变量的值为a时的函数值.特别的,自变量的取值范围是考试的重点,不仅仅要考虑函数关系式有意义,而且还要注意问题的实际意义.概念三:解析式像w=30-0.2t,S=πr2这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法,这种式子叫做函数的解析式.例11.下列变量之间,不是函数关系的是( )A .长方形的长一定,其面积与宽B .正方形的面积与周长C .等腰三角形的面枳与底边的长D .圆的面积与直径的长 2.下列关系中,能表示y 是x 的函数的有①y =2x ; ②y =x 2; ③y 2=x ; ④y =|x |; ⑤|y |=x ;⑥y =1x .3.(2013年武汉二中八下期末)若函数y =x +8在实数范围内有意义,则x 的取值范围是__________. 4.(2013年武昌区八上期末)某养鸡专业户计划用一段长为35米的竹篱笆围成一个一边靠墙的矩形养鸡场地,如图所示,墙长为20米,BC 边有一个宽为1米的木门(木门用其它材料做不占用竹篱笆),设养鸡场AB 边的长为x 米,BC 边的长为y 米,BC 的长度不小于10米且不超过墙长,求y 关于x 的函数解析式及x 的取值范围练1.下列关系中,y 不是x 的函数的是( ).A .y =x +1B .y =2xC .y =xD .|y |=x 2.函数y =x -3x+1的自变量x 的取值范围是_________. 3.已知一个长方形的周长为20cm ,设长方形的一条边长为x ,面积为y ,则y 与x 的函数关系为___________(写出x 的取值范围).题型二 函数的图象有些问题中的函数关系很难列式子表示,但是可以用图象来直观反映,例如用心电图表示心脏部位的生物电流与时间的关系.即使对于能列式表示的函数关系,如果也能画图表示,那么会使函数关系更直观.函数图像:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.问题探究:画出函数y =x +1的图象.第一步:列表,在表格中给出一些自变量的值及其对应的函数值.第二步:描点,在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描墙AB CD出表格中数值对应的各点.第三步:连线,按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来.练习:⑴画出函数y=x2的图象.⑵画出函数y=|x-1|的图象.例2⑴(2013年研口区八下期末)下列各曲线中,不表示y是x的函数关系的是( )⑵如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面图像中,能大致表示水的最大深度h 与时间t 之间的关系的是( )例3甲、乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示.⑴A ,B 两城相距多远?⑵哪辆车先出发?哪辆车先到B 城? ⑶甲、乙两车的平均速度分别为多少?练(2012年江岸区八下期末)如图,李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()例4(2015年武汉中考)如图所示,购买一种苹果,所付款金额y (元)与购买量x (千克)之间的函数图象由线段OA 和射线AB 组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省________元.)))))A练(2011年武汉中考)一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示,关停进水管后,经过_________分钟,容器中的水恰好放完.拓(2012年武汉中考)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息,已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论;①a =8;②b =92;③c =123.其中正确的是__________.函数的三种表示方法:⑴列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律.⑵解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示.⑶图象法:形象直观,但只能近似地表达两个变量之间的函数关系.模块二 一次函数))秒) A题型一 正比例函数 知识导航 一、定义;一般地,形如y =kx (k 为常数,k ≠0)的函数叫做正比例函数,其中k 叫做比例系数. 二、图像和性质 问题探究:在同一坐标系中画出下列正比例函数的图象. ⑴y =2x ;⑵y =13x ;⑶y =-1.5x ;⑷y =-4x .由图象可以发现下列规律:⑴四个函数都是经过______的直线.⑵y =2x 和y =13x 的图象经过第____________象限,从左到右______.(“上升”或“下降”);y =-1.5x 和y =-4x 的图象经过第____________象限,从左到右______.(“上升”或“下降”). 归纳总结:⑴正比例函数的图像是一条经过原点的直线,我们称它为直线y =kx (k ≠0)⑵当k >0时,直线y =kx 经过第三、第一象限,从左向右上升,即随着x 的增大y 也增大; 当k <0时,直线y =kx 经过第二、第四象限,从左向右下降,即随着x 的增大y 却减小. ⑶由于两点确定一条直线,所以可用两点法画正比例函数y =kx (k ≠0)的图象,一般地,过原点和点(1,k )(k 为常数,k ≠0)的直线,即正比例函数y =kx (k ≠0)的图像. 例5用你认为最简单的方法画出下列函数的图象. ⑴y =32x ;⑵y =-3x ;⑶y =|x |.A练⑴下列函数中,一定是正比例函数的是( )A .y =3x 2B .y =-4xC .3x +y =1D .y =1x⑵下面给出的几个函数关系中,成正比例函数关系的是( )A .正方体的体积与棱长B .正方形的周长与边长C .长方形的面积一定,它的长和宽D .圆的面积和它的半径 ⑶关于函数y =x +5m -3是正比例函数,则m =_________.⑷正比例函数y =(3-m )x (脚为常数),若y 随着x 的增大而增大,则m 的取值范围是____.题型二 一次函数 知识导航 一、定义一般地,形如y =kx +b (k ≠0,k ,b 为常数)的函数,叫做一次函数. 注意:⑴k ≠0;⑵当b =0时,y =kx ,y 叫x 的正比例函数,故正比例函数是一种特殊的一次函数. 二、图像和性质问题探究一:一次函数y =kx +b (k ≠0)和正比例函数y =kx (k ≠0)之间的关系. 在同一坐标系中画出函数y =-6x 和y =-6x +5的图象由图象可以发现下列规律:⑴这两个函数的图象形状都是_______,并且倾斜程度_____________.⑵函数y =-6x 象经过原点,函数y =-6x +5的图象与y 轴交于点_________.即它可以看作由直线y =-6x 向______平移________个单位长度而得到. 归纳总结:一次函数y =kx +b (k ≠0)的图象可以由直线y =kx 平移|b |个单位长度得到(当b >0时,向上平移;当b <0时,向下平移)一次函数y =kx +b (k ≠0)的图象也是一条直线,称之为直线y =kx +b问题探究二:一次函数y =kx +b (k ≠0)的性质 在同一坐标系中画出下列函数的图象.⑴y =x +1;⑵y =-x +1;⑶y =2x +1;⑷y =-2x +1归纳总结:⑴当k >0时,直线y =kx+b 从左向右上升,y 随x 的增大而增大 ⑵当k <0时,直线y =kx +b 从左向右下降,y 随x 的增大而减小我们先通过观察发现图象(形)的规律,再根据这些规律得出关于数值大小的性质,这种数形结合的研究方法在数学学习中很重要. 三、图像和性质的深入探究⑴k 表示直线的倾斜程度,也即直线的斜率,如果两条直线(不重合)斜率相等,那么这两条直线平行.⑵b 表示直线与y 轴交点的纵坐标,也即直线在y 轴上的截距. ⑶k 、b 对一次函数y =kx +b 图像的控制例6⑴当m 为何值时,函数y =-(m -2)x m 2-3+(m -4)是关于x 的一次函数? ⑵(2016年武昌区八下期末)若一次函数y =(m -3)x +5的函数值y 随x 的增大而增大,则m 的取值范围是_______. ⑶(2015年武汉二中八下期末)已知一次函数y =(m +4)x +2m -1的图象与y 轴交点在x 轴下方且y 随x 的增大而增大,则m 的取值范围是________. 练⑴当m 为何值时,函数y =(m +2)x |m |-1+m -2是一次函数? ⑵(2015年江汉区八下期末)点(3,y 1),(1,y 2)在直线y =2x +1上,则y 1与y 2的大小关系为________. 例7⑴(2015年武昌区八下期末)一次函数y =kx -k (k <0)的图像大致是( )⑵(2014年江汉区八下期末)已知正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y =-x -k 的图象大致是( )练⑴若实数a ,b ,c 满足a +b +c =0,且a <b <c ,则函数y =cx +a 的图像可能是( )⑵直线y =mx +n 如图所示,化简:|m -n |-m 2.拓(2015年青山区八下期末)已知一次函数y =kx +b 的图象经过一、二、四象限,则直线y =bx -k 的图象可能是( )例8⑴已知一次函数y =(m -3)x +2m -1的图象经过一、二、四象限,求m 的取值范围. ⑵已知一次函数y =kx +b 的图象不经过第三象限,求k 、b 的取值范围练(2014年武汉二中八下期末)已知一次函数y =(m -4)x +2m +1的图象不过第三象限,求m 的取值范围.[课后作业]第5讲函数基本概念1.【2014二中期末】下列函数中,( )是一次函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学
成长手册
【例1】(1)已知OA=OB ,AD ⊥BC ,求证:∠ADO 为定值
.
(2)已知OA=OB=OC ,AE ⊥CE ,求证:∠AEB 的值为定值
.
【巩固】已知OA=OB=OC ,AP=BQ.求证:∠PMO 为定值
.
坐标系中的全等三角形(一)
(2)已知OA=OB=OC ,D 为BC 中点,BE ⊥AD.求证:∠ADB=∠CDE.
【变式】已知OA=OB ,OD ⊥BD ,AE ⊥BC ,OD ⊥OF.求证:∠BDF 为定值.
【例2】(1)已知OA=OB ,AD 平分∠OAB ,AE ⊥BE.求证:BE=
1
2
AD.
(2)已知OA=OB=5,PB⊥PC,PB=PC,连接CA交y轴与点M.求证:OM的长为定值.
【巩固】(1)已知OA=OB=5,PA=PC,CD⊥OB.求证:PD的长为定值.
(2)已知OA=OB=OC,AE=BF,FG⊥AB,AB=5,求证:PG的长为定值.
【变式】已知AB=BC ,AB ⊥BC ,OB=DB ,OB ⊥BD ,OA=5.求证:PB 的长为定值.
【例3】已知OA=OB=OC ,AD=CE ,DG ⊥OA ,求证:
GF
AC
为定值.
【巩固】已知OA=OB,AC=BC,CD ⊥CE.求证:
OD OE
OC
为定值.
【例4】已知点B (-4,0)和点B 关于原点对称的点C ,点A 是第四象限的一个动点,△ABC 的角平分AD 交y 轴与D,过点D 作DG ⊥AB 与点A ,DH ⊥与AC 交AC 延长线与点H. (1)求点C 的坐标;
(2)点A 在第四象限运动时,线段BG 、CH 是否有某种确定关系,判断并证明; (3)点A 在第四象限时,下列结论:①AB AC BG +的值不变;②AB AC
BG
-的值不变,其
中只有一个是正确的,请选择并求其值.
【巩固】如图所示,将等腰直角三角形放入直角坐标系中,∠AOB=90°,A (0,4).
(1)点M 、N 分别从O 、B 出发以每秒1个单位的速度向终点B 、O 运动,过N 作NP ⊥OB 交AB 与P ,连线MP ,已知动点运动了x 秒,求点P 的坐标;
(2)在(1)的条件下,是否存在一时刻使△PBM 为等腰三角形?若存在,请求出P 、M 的坐标,若不存在,请说明理由; (3)P 在AB 上运动,做PM ⊥AB 与P ,Q 为OM 中点,过O 点作OC ⊥x 轴交AB 与点C ,现给出下列两个结论:①PC
AB
为定值;②PC CQ 为定值,期中有且只有一个结论是正确的,
请判断并证明求值.
【例5】如图所示,等腰Rt△ABC中,∠ABC=90°,点A、B分别在坐标轴上,
(1)若C点的横坐标为5时,求B点的坐标;
(2)当等腰Rt△ABC在运动过程中,位置如图所示,BC交x轴与M,AC交y轴与N,若x轴恰好平分BC,连结MN,求证:∠AMB=∠NMC;
(3)点C恰好在x轴上时,若AB=4,E为x轴正半轴上一个动点,F为y轴正半轴上一动点,当AE=BF时,连接EF交AB延长线与P,过F作FG⊥AB于G,问当E在x轴正半轴上运动时,下列两个结论:①BP的长为定值;②PG的长为定值;其中只有一个结论还是正确的,请选择正确的结论,并求其值.
【2016-2017武昌区C 组联盟期中】在平面直角坐标系中,OA=OB ,P A ⊥PB. (1)如图1,当P 在第一象限时,求证:OP 平分∠BPA. (2)如图2,当P 在第四象限时,直接写出∠OP A 的度数.
x
y O
P
B
A
x
y Q
O
P
B
A
图1
图2
【题1】已知OA=OB ,BD ⊥OD ,PD=BD.求证:∠APO 为定值.
【题2】已知OA=OB=5,PD ⊥AB ,M 为OD 的中点,MN ∥AC.求证:PN 的长为定值.
【题3】已知OA=OB ,AP ⊥BP.求证:
PA PB
PO
为定值.
【题4】已知OA=OB=OC ,AD 平分∠BAC ,MN ∥AC.求证:BD=CN.
【题5】如图,在平面直角坐标系中,△AOB 为等腰直角三角形,A (4,4)
(1)若C 为x 轴正半轴上一动点,以AC 为直角边作等腰直角△ACD ,∠ACD=90°连OD ,求∠AOD 的度数;
A
O
D
y
x
B
C
(2)过点A 作y 轴的垂线交y 轴于E ,F 为x 轴负半轴上一点,G 在EF 的延长线上,以EG 为直角边作等腰Rt △EGH ,过A 作x 轴垂线交EH 于点M ,连FM ,等式OF
FM
AM =1是否成立?若成立,请证明:
若不成立,说明理由.
A
O
G
y
x
F
M H E
【题6】已知: 在平面直角坐标系中,放入一块等腰直角三角板ABC ,∠BAC =90°,AB =AC ,A 点的坐标为(0,2),B 点的坐标为(4,0). ⑴求C 点的坐标;
⑵D 为△ABC 内一点(AD >2),连AD ,并以AD 为边作等腰直角三角形ADE ,∠DAE =90°,AD =AE ,连CD 、BE .试判断线段CD 、BE 的位置及数量关系,并给出你的证明. ⑶旋转△ADE ,使D 点刚好落在x 轴的负半轴,连CE 交y 轴于M . 求证:①EM =CM ;②BD =2AM .
O y
A
B C
x
O
y
A
B C
D
E
x
O y
A
B
C
D E
M x。

相关文档
最新文档