等腰三角形、全等三角形及平面直角坐标系
初中几何48个模型及题型讲解

初中几何48个模型及题型讲解一、直线和角1. 平行线和垂直线的性质平行线的性质包括对应角相等、内错角相等、同旁内角相等,垂直线的性质包括互补角相等、邻补角相等等等。
2. 直线的夹角与邻角两条直线之间的夹角等于它的补角,夹角的补角叫相邻角。
3. 同位角与对顶角同位角相等、对顶角相等。
4. 角的大小关系锐角、直角、钝角的大小关系。
5. 角和角度角的性质包括平分角等。
6. 角的运算法则相等角相加还是相等角;补角与角补加为90°。
7. 顶角和底角的性质同位角相等、顶底角相等。
二、等腰三角形、等边三角形1. 等腰三角形的性质两底角相等,两底边相等等。
2. 等边三角形的性质三边相等、三角也相等等等三、全等三角形1. 全等三角形的基本判定条件AAA、SAS、SSS、ASA四种判定条件。
2. 全等三角形的性质全等三角形的对应边和对应角相等等等。
四、相似三角形1. 相似三角形的基本判定条件AA、SAS、SSS、AAS四种判定条件。
2. 相似三角形的性质相似三角形的对应边成比例,对应角相等等等。
五、直角三角形1. 直角三角形的性质勾股定理、边角关系、三边关系等。
2. 解直角三角形的基本方法利用三角函数解决实际问题等。
六、三角形的面积1. 三角形的面积计算公式面积公式S=1/2×底×高等。
2. 多边形的面积计算公式正多边形、梯形、平行四边形、菱形等多边形的面积公式。
七、四边形1. 平行四边形的性质对角线互相平分等。
2. 矩形的性质对角相等、对边相等等。
3. 菱形的性质对角相等、对边相等、对角平分等。
4. 正方形的性质矩形和菱形的结合。
五、圆1. 圆的基本概念圆心、圆周、半径、直径等。
2. 圆的周长和面积周长C=2πr,面积S=πr^2等。
3. 圆中角和弧的关系圆心角、圆周角、同弧对应角等。
4. 切线与切点切线与圆相切于一个点等。
六、坐标系1. 直角坐标系和平面直角坐标系横坐标和纵坐标等。
二次函数与几何综合专题 等腰直角三角形存在性问题

III、若 是等腰直角三角形,当DM为斜边时,则: ,
即: ,解得 ,
此时: ,
故不存在M坐使 是以DM为斜边的等腰直角三角形;
综上所述:点M坐标为(0,-1).
(3)解:∵ ,
∴ ,
以点P、C、Q为顶点的三角形是等腰直角三角形,有3种情况,
I.当 时,则 ,
∵四边形OHGQ是矩形,
∴ ,
∴ ,
设 ,其中 ,则P点坐标为(x,-x)
∵P在抛物线 上,即 ,解得: (不合题意舍去), ,
故此时P坐标为 ,
综上所述:点P在x轴上方的抛物线上,点Q在y轴正半轴上,当 是以AQ为斜边的等腰直角三角形时,符合条件的点P的坐标 或 .
易得: (AAS)
∴ , ,
∵四边形OHGQ是矩形,
∴ ,
∴ ,
设 ,则P点坐标为(x,x)
∵P在抛物线 上,即 ,解得: , (不合题意舍去),
此时点P坐标为
II、点P在y轴左侧的抛物线上时,如图:
以等腰 构造K字形,过P点作PH⊥x轴,垂足为H,过Q点作QG⊥PH,垂足为G,
易得: (AAS)
∴ , ,
(2)在y轴上是否存在点M,使得 是等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
(3)直线AC下方的抛物线上有一动点P,直线AC上有一动点Q,若以点P、C、Q为顶点的三角形是等腰直角三角形,求出点Q的坐标.
(4)点P在x轴上方的抛物线上,点Q在y轴正半轴上,当 是以AQ为斜边的等腰直角三角形时,求出符合条件的点P的坐标.
(2)解:如图,设M点坐标为(0,y)
∵点A坐标为(-3,0),点D坐标为(-1,-4),
中考数学专题复习教案:共顶点的等腰三角形与全等

共顶点的等腰三角形与全等(专题复习)一、内容和内容解析1.内容基于全等三角形和轴对称两部分内容基础上的共顶点等腰三角形与全等的综合理解与运用.2.内容解析本节课是在学生已经学习了第十一章三角形、第十二章全等三角形和第十三章轴对称这三章内容知识的基础上,进一步综合探究具有某种特殊位置关系的等腰三角形的相关内容——共顶点的等腰三角形与全等.全等三角形的几种判定方法及全等三角形对应边、对应角的相关性质是解决本节知识的一个关键突破点,预证两条线段和两条边相等,就需要将其置于两个全等的三角形中;复杂图形中的基本图形也为求角的度数提供了简洁的思路方法;特殊的等腰三角形即等边三角形的相关概念、性质和判定方法也为本节内容的解决提供了有利条件,借助于特殊角60度构造等边三角形,将不在同一直线上的线段转化到同一线段中,这也提供了多种添加辅助线的方法;同时,根据旋转前后的两个三角形是全等三角形,为本节知识的变式提供了思路,可以从多种不同形式中让学生去探究其中变与不变的因素;将等边三角形置于平面直角坐标系的背景下,借助于直角三角形中,含30度角所对的直角边等于斜边的一半解决相关变式问题.从等边三角形到等腰三角形的相关探索与运用体现了由特殊到一般的思想.二、目标和目标解析1.目标(1)能根据共顶点的等腰三角形找出全等三角形.(2)能利用等边三角形的性质和判定进行综合运用.(3)结合全等和等腰三角形的相关知识,在具体几何题目中,总结基本图形,归纳几何结题策略.2.目标解析达成目标(1)的标志是:学生能从共顶点的两个等腰三角的复杂图形中发现三角形全等的条件.达成目标(2)的标志是:学生能借助于全等三角形的对应边、对应角和两个三角形面积求线段的等量关系、角的度数和证明两个三角形面积相等,推出对应的高也相等,利用角的内部到角的两边距离相等的点在这个角的角平分线上,证得一条线段为一个角的角平分线,同时,学生还能熟练掌握预证两条线段相等,则需将两条线段置于两个全等的三角形中解决问题.达成目标(3)的标志是:学生能在求证一条线段为一个角的角平分线时,通过向角的两边作双垂线,利用双垂线所在的两个三角形全等使问题得到解决;学生还能在求线段和差关系时,借助于60度角,构造等边三角形,将不在同一直线上的线段转化到同一线段中解决相关问题,让学生学会添加不同的辅助线,真正体会了截长补短的意义.三、教学问题诊断分析学生由于添加辅助线的经验不足,对于任何需要添加的辅助线,如何添加,添加的理由是什么,如何描述辅助线仍然没有规律性了解.例如:在“求线段和差关系”的证明中,由于题中60度角比较多,学生如果以不同的角为出发点构造等边三角形,所得到的辅助线也不尽相同,这样,有学生就会很茫然,为什么我的辅助线会和其他同学不同这样的疑问,包括作完辅助线后,我到底将哪条线段进行了平移,接下来该证明哪两条线段相等这些问题.事实上,添加辅助线、描述辅助线本身就是一项探究性活动,是获得证明所采取的一种尝试,有可能成功,有可能失败;对于变式训练,旋转前后哪些量变了,哪些量保持不变,这些都是学生存在困惑的地方.基于以上分析,确定本节课的教学难点为:线段和差关系中辅助线的添加描述和对于旋转问题,能够明确变与不变的元素.四、教学过程设计引言我们前面系统学习了三角形的全等和轴对称的相关知识,相信大家对其都有所理解和掌握.今天,让我们继续探究这两部分内容的综合应用.1. 复习巩固问题1 判定两个三角形全等的方法有哪些?等边三角形有哪些性质?等边三角形有哪些判定? 师生活动:学生回顾旧知,充分掌握判定三角形全等的五种方法、等边三角形的性质和判定.设计意图:复习三角形全等的五种方法、等边三角形的性质和判定,为本节课的学习打下基础.问题2 你能分别找出以下列图形中的全等三角形吗?(1)若△ABD 和△AEC 均为等边三角形,请找出下列各图形中的全等三角形.(2)若△ABD 和△AEC 均为等腰三角形,其中AB=AD ,AC=AE ,∠BAD=∠CAE ,请找出下列各图形中的全等三角形.师生活动:学生尝试找出以上图形当中的全等三角形,教师给与适当评价设计意图:让学生直观了解共顶点的等边或等腰三角形几种常见的摆放位置,通过寻找这些图形中的全等三角形,为下面设置的探究学习提供了有利条件.2. 探究学习问题3 如图,已知A 是线段BC 上一点,分别以AB 、AC 为边在同侧作等边△ABD 和△AEC.(1)填空:BE= ,∠ABE= ,∠DFB= °.(2)求证: AF 平分∠BFC.(3)求证: AF +DF=BF.师生活动:学生独立思考,发现问题,相互交流,小组间相互补充,派学生代表讲解思路,同学间相互补充,教师再此过程中关注学生能否从不同角度解决问题.设计意图:从特例出发,让学生经历发现结论,说明论证过程,体会相关知识的运用.追问1:还有不同方法解决(2)吗?你的理由是什么?师生活动:教师提出问题,学生独立思考,小组讨论交流,学生代表汇报交流结果,教师点拨,师生共同总结(2)的不同解法.追问2:你们解决(3)的方法一致吗?还有不同见解吗?师生活动:教师提出问题,学生思考,交流讨论,学生代表发表意见,教师点拨.追问3:想要解决(3),你思考问题的出发点在哪?师生活动: 学生独立思考,对教师提出的问题发表自己的见解,教师给与充分的肯定与鼓励.追问4:若BE 、AD 交于点M ,CD 、AE 交于点N ,链接MN ,你还能在图形中找出其他的全等三角形吗?△AMN 是什么三角形?MN 与BC 有怎样的位置关系?师生活动:教师增加新条件,并提出问题,学生独立思考并一一作答,学生间相互评价补充,教师最后点评并适当总结,给与恰当评价.问题4 如图,若将上题中的等边△AEC 绕点A 都还成立?请说明理由.师生活动:教师提出问题,学生独立思考并相互补充,给出结论,说明原因,教师给与评价与鼓励.设计意图:通过旋转变换,让学生体会几何图形的多变,在其过程中体会变与不变元素,抓住本质特征,从而形成解决问题的能力. 问题5 如图,若将上题中的等边△ABD 和△AEC 改为等腰△ABD 和△AEC ,其中AD=AB ,AE=AC , ∠BAD=∠EAC=a. 上述结论是否都还成立?请说明理由.师生活动:教师提出问题,学生思考并作答,说明其原因.设计意图:拓展问题的研究范围,将问题一般化,让学生经历3. 微课展示4. 巩固应用1. 已知△ABC 和△AEF ,AB=AC ,AE=AF ,∠BAC=∠EAF ,BE 、CF 交于M ,连接MA.(1)如图1,若∠BAC=60°,则△BAE ≌ ;∠CMB= .图1B图2图3BC (2)如图2,若∠BAC=90°,则∠CMB= .(3)如图3,若∠BAC=a, 直接写出∠AME 的度数(用含a 的式子表示).师生活动:学生独立完成,教师巡视,指导,师生共同评价.设计意图:巩固加深对探究学习中(1)-(3)问题的认识,再次体会由特殊到一般的探讨问题的过程.2. 如图,△AOB 是等边三角形,以直线OA 为x 轴建立平面直角坐标系,若B(a,b)且a 、b 满足(20b +-=,D 为y 轴上一动点,以AD 为边作等边△ADC ,CB 交y 轴于E.(1)如图1,求点A 的坐标.(2)如图2,D 为y 轴正半轴上一点,C 在第二象限,CE 的延长线交x 轴于M ,当D 点在y 轴正半轴上运动时,M 点坐标是否变化,若不变,求M 点的坐标,若变化,说明理(3)如图3,D 在y 轴负半轴上,以DA 为边向右构造等边△DAC ,CB 交y 轴于E 点,如果D 点在y 轴负半轴上运动时,仍保持△DAC 为等边三角形,连BE ,试求CE ,OD ,AE 三者的数量关系,并证明你的结论.师生活动:用平面直角坐标系中直角的特征,用 30设计意图:直角解决问题,(3)通过有梯度的练习,有利于提高学生综合运用条件推理的能力.5.小结教师与学生一起回顾本节课所学的内容,并请学生回答以下问题:(1)本节课解决共顶点的等腰三角形与全等问题关键是什么?(2)本节课解决一条线段为一个角的角平分线的方法有几种?(3)本节课解决线段之间的和差关系的方法是什么?(4)本节课的探究学习用到了什么思想方法?设计意图:让学生自由发表自己的看法,教师从知识内容、学习过程和思想方法三个方面进行引导. 归纳知识,小结方法,使学生建构自己的知识体系.培养学生合作交流的习惯。
八年级数学竞赛例题专题讲解17:等腰三角形的判定(含答案)

专题17 等腰三角形的判定阅读与思考在学习了等腰三角形性质与判定后,我们可以对等腰三角形的判定、证明线段相等的方法作出归纳总结.1.等腰三角形的判定:⑴从定义入手,证明一个三角形的两条边相等; ⑵从角入手,证明一个三角形的两个角相等. 2.证明线段相等的方法:⑴当所证的两条线段位于两个三角形,通过全等三角形证明; ⑵当所证的两条线段位于同一个三角形,通过等角对等边证明; ⑶寻找某条线段,证明所证的两条线段都与它相等.善于发现、构造等腰三角形,进而利用等腰三角形的性质为解题服务,是解几何题的一个常用技巧.常见的构造方法有:平分线+平行线、平分线+垂线、中线+垂线.如图所示:例题与求解【例1】如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点,AD 是∠BAC 的平分线,MF ∥AD ,则CF 的长为____________.(全国初中数学竞赛试题)解题思路:角平分线+平行线易构造等腰三角形,解题的关键是利用条件“中点M ”.【例2】如图,在△ABC 中,∠B =2∠C ,则AC 与2AB 之间的关系是( ) A .AC >2AB B .AC =2AB C .AC ≤2AB D .AC <2AB(山东省竞赛试题)解题思路:如何条件∠B =2∠C ,如何得到2AB ,这是解本题的关键.ABCABDM FC【例3】两个全等的含300,600角的三角板ADE 和三角板ABC ,如图所示放置,E 、A 、C 三点在一条直线上,连结BD ,取BD 中点M ,连结ME ,MC ,试判断△EMC 的形状,并说明理由.(山东省中考试题)解题思路:从△ADE ≌△BAC 出发,先确定△ADB 的形状,为判断△EMC 的形状奠定基础.【例4】如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE =AC ,延长BE 交AC 于F ,求证:AF =EF .(天津市竞赛试题)解题思路:只需证明∠F AE =∠AEF ,利用中线倍长,构造全等三角形、等腰三角形.【例5】如图,在等腰△ABC 中,AB =AC ,∠A =200,在边AB 上取点D ,使AD =BC ,求∠BDC 度数.(“祖冲之杯”竞赛试题)解题思路:由条件知底角为300,这些角并不是特殊角,但它们的差却为600,600使我们联想到等边三角形,由此找到切入口.如图1,以BC 为边在△ABC 内作等边△BCO ;如图②,以AC 为边作等边△ACE .BCA D图2B CA D图1O ABCMD EEA BDCFBCAD能力训练A 级1.已知△ABC 为等腰三角形,由顶点A 所引BC 边的高线恰等于BC 边长的一半,则 ∠BAC =__________.2.如图,在Rt △ABC 中,∠C =900,∠ABC =660,△ABC 以点C 为中点旋转到△A ′B ′C 的位置,顶点B 在斜边A ′B ′上,A ′C 与AB 相交于D ,则∠BDC =_________.3.如图,△ABC 是边长为6的等边三角形,DE ⊥BC 于E ,EF ⊥AC 于F ,FD ⊥AB 于D ,则AD =_______.(天津市竞赛试题)4.如图,一个六边形的六个内角都是1200,其连续四边的长依次是1cm ,9cm ,9cm ,5cm ,那么这个六边形的周长是____________cm .(“祖冲之杯”邀请赛试题)5.如图,△ABC 中,AB =AC ,∠B =360,D 、E 是BC 上两点,使∠ADE =∠AED =2∠BAD ,则图中等腰三角形共有( )A .3个B .4个C .5个D .6个6.若△ABC 的三边长是a ,b ,c ,且满足44422a b c b c =+-,44422b ac a c =+-,44422c a b a b =+-,则△ABC ()A .钝角三角形B .直角三角形C .等腰直角三角形D .等边三角形(“希望杯”邀请赛试题)7.等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( ) A .300 B .300或1500 C .1200或1500 D .300或1200或1500(“希望杯”邀请赛试题)8.如图,已知Rt △ABC 中,∠C =900,∠A =300,在直线BC 或AC 上取一点P ,使得△P AB 是等腰三角形,则符合条件的P 点有( )A .2个B .4个C .6个D .8个(江苏省竞赛试题)第5题图 第8题图 第9题图ACDBB ′A ′(第2题)AB CDEF (第3题)(第4题)9915BACBCABCADFG E9.如图在等腰Rt △ABC 中,∠ACB =900,D 为BC 中点,DE ⊥AB ,垂足为E ,过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF 交AD 于G .⑴ 求证:AD ⊥CF ;⑵ 连结AF ,度判断△ACF 的形状,并说明理由.10.如图,△ABC 中,AD ⊥BC 于D ,∠B =2∠C ,求证:AB +BD =CD .(天津市竞赛试题)11.如图,已知△ABC 是等边三角形,E 是AC 延长线上一点,选择一点D ,使得△CDE 是等边三角形,如果M 是线段AD 的中点,N 是线段BE 的中点,求证:△CMN 是等边三角形.(江苏省竞赛试题)12.如图1,Rt △ABC 中,∠ACB =900,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F .⑴ 求证:CE =CF ;⑵ 将图1中的△ADE 沿AB 向右平移到△A ′D ′E 的位置,使点E ′落在BC 边上,其他条件不变,如图2所示,试猜想:BE ′与CF 有怎样的数量关系?请证明你的结论.(山西省中考试题)B ACDA BDFE C图1A B D FE C图2A ′E ′D ′C ENMBDB 级1.如图,△ABC 中,AD 平分∠BAC ,AB +BD =AC ,则∠B :∠C 的值=__________.2.如图,△ABC 的两边AB 、AC 的垂直平分线分别交BC 于D 、E ,若∠BAC +∠DAE =1500,则∠BAC 的度数是____________.3.在等边△ABC 所在平面内求一点P ,使△P AB 、△PBC 、△P AC 都是等腰三角形,具有这样性质的点P 有_________个.4.如图,在△ABC 中,∠ABC =600,∠ACB =450,AD 、CF 都是高,相交于P ,角平分线BE 分别交AD 、CF 于Q 、S ,则图中的等腰三角形的个数是( )A .2B .3C .4D .55.如图,在五边形ABCDE 中,∠A =∠B =1200,EA =AB =BC =12DC =12DE ,则∠D =( ) A .300B .450C .600D .67.50(“希望杯”竞赛试题)6.如图,∠MAN =160,A 1点在AM 上,在AN 上取一点A 2,使A 2A 1=AA 1,再在AM 上取一点A 3,使A 3A 2=A 2A 1,如此一直作下去,到不能再作为止,那么作出的最后一点是( )A .A 5B .A 6C .A 7D .A 8 7.若P 为△ABC 所在平面内一点,且∠APB =∠BPC =∠CP A =1200,则点P 叫作△ABC 的费尔马点,如图1.⑴若点P 为锐角△ABC 的费尔马点,且∠ABC =600,P A =3,PC =4,则PB 的值为_____.⑵如图2,在锐角△ABC 外侧作等边△ACB ′,连结BB ′.求证:BB ′过△ABC 的费尔马点P ,且BB ′=P A +PB +PC .(湖州市中考试题)ABC(第1题)(第2题)ABD E CA BPACBB ′图1图2A BD CEF PQS (第4题)A B CED第5题AA 1NMA 2A 3(第6题)8.如图,△ABC 中,∠BAC =600,∠ACB =400,P 、Q 分别在BC 、AC 上,并且AP 、BQ 分别是∠BAC 、∠ABC 的角平分线,求证:BQ +AQ =AB +BP .(全国初中数学联赛试题)9.如图,在△ABC 中,AD 是∠BAC 的平分线,M 是BC 的中点,过M 作ME ∥AD 交BA 延长线于E ,交AC 于F ,求证:BE =CF =12(AB +AC ). (重庆市竞赛试题)10.在等边△ABC 的边BC 上任取一点D ,作∠DAE =600,DE 交∠C 的外角平分线于E ,那么△ADE 是什么三角形?证明你的结论.(《学习报》公开赛试题)ABQCABD CFE11.如图,在平面直角坐标系中,O为坐标原点,直线l:12y x m=-+与x轴、y轴的正半轴分别相交于点A、B,过点C(-4,-4)作平行于y轴的直线交AB于点D,CD=10.⑴求直线l的解析式;⑵求证:△ABC是等腰直角三角形;⑶将直线l沿y轴负方向平移,当平移恰当的距离时,直线与x,y轴分别相交于点A′、B′,在直线CD上存在点P,使得△A′B′P是等腰直角三角形,请直接写出所有符合条件的点P的坐标.(宁波市江东区模拟题)12.如图1,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4).⑴求B点坐标;⑵如图2,若C为x轴正半轴上一动点,以AC为直角边作等腰直角△ACD,∠ACD=900,连接OD,求∠AOD度数;⑶如图3,过点A作y轴于E,F为x轴负半轴上一点,G在EF的延长线上,以EG为直角边作等腰Rt△EGH,过A作x轴垂线交EH于点M,连接FM,等式AM FMOF-=1是否成立?若成立,请证明;若不成立,说明理由.图1 图2 图3。
初中数学 等腰三角形有哪些全等性质

初中数学等腰三角形有哪些全等性质等腰三角形是指具有两条边长度相等的三角形。
在等腰三角形中,两条边被称为腰,而第三条边被称为底边。
等腰三角形的顶角和底角也是相等的。
等腰三角形的全等性质是指两个等腰三角形在边长和角度上完全相等,即它们的对应边长和对应角度都相等。
下面我们将详细解释等腰三角形的全等性质:1. 全等边性质:如果两个等腰三角形的两条腰的边长相等,那么这两个等腰三角形是全等的。
即如果在两个等腰三角形中,AB = A'B' 且AC = A'C',那么三角形ABC和三角形A'B'C'是全等的。
2. 全等角性质:如果两个等腰三角形的顶角和底角相等,那么这两个等腰三角形是全等的。
即如果在两个等腰三角形中,∠B = ∠B' 且∠C = ∠C',那么三角形ABC和三角形A'B'C'是全等的。
3. 全等边角边性质:如果两个等腰三角形的一对腰的边长和对应的顶角相等,且底边长度也相等,那么这两个等腰三角形是全等的。
即如果在两个等腰三角形中,AB = A'B',∠B = ∠B',AC = A'C',那么三角形ABC和三角形A'B'C'是全等的。
4. 全等边边边性质:如果两个等腰三角形的三条边的边长都相等,那么这两个等腰三角形是全等的。
即如果在两个等腰三角形中,AB = A'B',BC = B'C',AC = A'C',那么三角形ABC 和三角形A'B'C'是全等的。
通过这些全等性质,我们可以判断两个等腰三角形是否全等,以及在已知一些边长和角度的情况下,计算出其他未知的边长和角度。
这些全等性质也为解决与等腰三角形相关的几何问题提供了依据。
在应用中,我们可以利用等腰三角形的全等性质来证明几何定理、解决几何问题,或者进行构造等腰三角形的操作。
1期末复习(平面直角坐标系、等腰三角形、全等三角形)

期末专题复习(直角坐标系)一、概念复习1、直角坐标系:横轴(x 轴)、纵轴(y 轴)、原点。
直角坐标系的平面叫直角坐标平面。
2、点的坐标:点P 对应的有序数对叫点的坐标,P (a,b )a 叫横坐标,b 叫纵坐标。
3、平面直角坐标系把平面分成四个象限:x 轴、y 轴不属于任何象限。
第一象限(+,+)、第二象限(-,+)、第三象限(-,-)、第四象限(+,-) 4、经过点P (a ,b )且垂直于x 轴(或平行于y 轴)的直线表示为:直线x = a 经过点P (a ,b )且垂直于y 轴(或平行于x 轴)的直线表示为:直线y = b 5、平行于坐标轴的直线上的两点间的距离:平行于x 轴的直线上的两点A (x 1,y )、B (x 2,y )的距离是 21x x AB -= 平行于x 轴的直线上的两点C (x ,y 1)、D (x ,y 2)的距离是 21y y CD -= 6、点P (a ,b )沿着坐标轴(沿与x 轴或y 轴)平行的某一方向平移m (m>0)个单位 则;向右平移所对应的点的坐标为(a+ m ,b ); 向左平移所对应的点的坐标为(a- m ,b ) 向上平移所对应的点的坐标为(a ,b+ m );向下平移所对应的点的坐标为(a ,b- m ) 7、对称点的坐标特征 直角坐标平面内有点M (a ,b ) 与点M (a ,b )关于x 轴对称的点的坐标是(a ,- b ) 与点M (a ,b )关于 y 轴对称的点的坐标是(- a ,b ) 与点M (a ,b )关于原点对称的点的坐标是(- a ,- b )二、典型例题1、点A (-3,2)向左平移4个单位到B ,则B 点的坐标是___________2、点N (3,-4)沿x 轴翻折与M 重合,那么点M 的坐标是___________3、将点Q (10,2)绕原点O 旋转180°后落到P 处,则P 点的坐标是___________4、直角坐标平面内,点A (-2,3)向____平移______个单位后就和点B (2,3)重合5、点P 在第三象限,且点P 到x 轴和到y 轴的距离都是3,则点P 坐标是_______________6、如果点M (3a-1,5+b )与点(b -2,a )关于原点对称,则a=_______,b=__________7、在x 轴上有A 、B 两点,AB =10,若点A 的坐标是(2,0),那么点B 的坐标是___________ 8、在直角坐标平面内,设点P (x,y ),若xy>0,则点P 在_________象限。
初中数学难点之八:等腰三角形、等边三角形、直角三角形

初中数学难点之八:等腰三角形、等边三角形、直角三角形等腰三角形、等边三角形、直角三角形是初中数学重点考察内容,也是学习的难点。
一、等腰三角形的概念1. 定义有两条边相等的三角形叫做等腰三角形。
两条相等的边叫做腰,所夹的角叫做顶角,另一边叫做底边,底边与腰形成的两个角叫做底角。
2. 性质(1)等腰三角形是轴对称图形,底边中线是对称轴(底边的高、顶角的角的角平分线都是对称轴)(2)等腰三角形两个底角相等,简称等边对等角。
(3)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。
3. 判定(1)两内角相等的三角形叫做等腰三角形(2)两个边相等的三角形叫做等腰三角形二、等边三角形1. 定义三条边都相等的三角形叫做等边三角形。
2. 性质(1)等边三角形有三条对称轴,中线是对称轴(2)等边三角形三个角相等,每个角都为60º(3)等边三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。
3. 判定(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形叫做等边三角形(3)有一个内角是60º的等腰三角形是等边三角形。
三、直角三角形1. 定义有一个角是直角的三角形叫做直角三角形2. 性质(1)直角三角形两个锐角互余(2)直角三角形斜边上的中线等于斜边的一半(3)直角三角形中,30º角所对的直角边等于斜边的一半(4)勾股定理:a2+b2=c2(a、b为直角边,c为斜边)3. 判定(1)有一个角是直角的三角形,或者两个锐角和为90º的三角形为直角三角形。
(2)一边的中线等于这条边的一半,这个三角形是直角三角形。
(3)勾股定理逆定理:如果有a2+b2=c2(a、b、c为三角形的三个边),则三角行为直角三角形四、基础题型1. 例题1如图,边长为4的等边ΔABC中,D、E分别为AB、BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为?解:连接DE,因为:EF⊥AC,∠C=60º所以∠FEC=30º,因为:ΔABC为等边三角形,DE为中位线所以有:2. 考察知识点(1)等边三角形及内角为60º(2)三角形中位线(3)直角三角形30度内角所对直角边等于斜边的一半(4)直角三角形勾股定理3. 解题思路和技巧DG是非常孤立的,既不是中位线,也不平行某一边,即不是三角形的某一边,也不是规则四边形的边,很难下手,因此必须画辅助线把DG融入某个三角形内,因为D、E分别是所在边的中点,连接起来是三角形的中位线,因此连接DE,尝试解题。
尺规作图等腰三角形全等三角形及直角坐标

尺规作图、等腰三角形、全等三角形及直角坐标教学课题尺规作图、等腰三角形、全等三角形及直角坐标教学目标1、 掌握尺规作图的方法,学会用几何语言描述作图过程2、 巩固全等三角形和等腰(等边)三角形的判定证明,加强用几何语言描述的能力3、 掌握平面直角坐标系及相关概念,类比(由数轴到平面直角坐标系)的方法、数形结合的思想. 教学重、难点灵活运用四种全等三角形判定定理;构建平面直角坐标系,掌握平面内点与坐标的对应.◆ 诊查检测:1、 选择题(1)一个正方形在平面直角坐标系中三个点的坐标为(-2,-3),(-2,-1),(2,1),则第四个顶点的坐标为( )A .(2,2) B.(3,2) C.(2,-3) D.(2,3)(2)右图中是在方格纸上画出的小旗图案,若用(0,0)表示A 点,(0,4)表示B 点,那么C 点的位置可以表示为( )A.(0,3)B.(2,3)C.(3,2)D.(3,0)(3)已知点A (a ,b )在第四象限,那么点B (b ,a )在( )A .第一象限B .第二象限C .第三象限 D. 第四象限(4) 过两点A (3,4),B (-2,4)作直线AB ,则直线AB( )A.经过原点B.平行于y 轴C.平行于x 轴D.以上说法都不对(5)在平面直角坐标系中,以点P(-1,2)为圆心,1为半径的圆与x 轴有( )个公共点A .0B .1C .2D .3(6) 如图,把图①中△ABC 经过一定的变换得到图②中的△A 'B 'C ',如果图①的△ABC 上点P 的坐标是),(b a ,那么这个点在图②中的对应点P '的坐标是A .)3,2(--b aB .)3,2(--b aC .)2,3(++b aD .)3,2(++b a2、填空题(1) 在平面直角坐标系中,点P)1,1(2+-m 一定在第 象限. (2)一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为 . (3)点A (2,0),B (-3,0),C (0,2),则△ABC 的面积为 .(4)将点P(-3,y)向下平移3个单位,并向左平移2个单位后得到点Q(x,-1),则xy=_________.A B C3、在所给的图中按所给的语句画图:①连结线段BD; A②过A、C画直线AC;③延长线段AB;④反向延长线段AD. C DE4、如图,使用圆规和直尺分别画出∠AOB和∠BOC的角平分线OM和ON,并说明作图过程.如果∠MON=68º,那么∠AOC应为多少度?5、如图为风筝的图案.(1)若原点用字母O表示,写出图中点A,B,C的坐标.(2)试求(1)中风筝所覆盖的平面的面积.6、如图,在△ABC中三个顶点的坐标分别为A(-5,0),B(4,0),C(2,5),将△ABC沿x轴正方向平移2个单位长度,再沿y轴沿负方向平移1个单位长度得到△EFG。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形、全等三角形及直角坐标教学课题等腰三角形、全等三角形及直角坐标教学目标1、 能证明全等三角形2、 掌握等腰(等边)三角形的性质,会判定等腰(等边)三角形3、 掌握平面直角坐标系及相关概念, 类比(由数轴到平面直角坐标系)的方法、数形结合的思想. 教学重、难点灵活运用四种全等三角形判定定理;构建平面直角坐标系,掌握平面内点与坐标的对应.◆ 诊查检测:1、 如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②去2、 一个正方形在平面直角坐标系中三个点的坐标为(-2,-3)、(-2,-1)、(2,1),则第四个顶点的坐标为( )A .(2,2) B.(3,2) C.(2,-3) D.(2,3) 3、判断题:① 两边和一角对应相等的两个三角形全等.( )② 两角和一边对应相等的两个三角形全等.( ) ③ 两条直角边对应相等的两个三角形全等. ( ) ④ 腰长相等,顶角相等的两个等腰三角形全等. ( ) ⑤ 三角形中的一条中线把三角形分成的两个小三角形全等.( ) ⑥ 两个等边三角形全等( ). ⑦ 一腰和底边对应相等的两个等腰三角形全等. ( ) ⑧ 腰长相等,且都有一个40°角的两个等腰三角形全等.( ) ⑨ 腰长相等,且都有一个100°角的两个等腰三角形全等.( ) ⑩ 有两边和第三边上的中线对应相等的两个三角形全等. ( )4、(1)等腰三角形的一个角是110°,它的另外两个角的度数是(2)等腰三角形的一个角是80°,它的另外两个角的度数是5、点A (2,0),B (-3,0),C (0,2),则△ABC 的面积为 .6、已知:如图,AD ∥BC ,BD 平分∠ABC . 求证:AB=AD .DCAB7、如图,等边三角形ABC 中,AD 是BC 上的高,∠BDE=∠CDF=60°,•图中有哪些与BD 相等的线段?8、已知:如图,AD =AE ,AB =AC ,∠DAE =∠BAC . 求证:BD =CE .9、如图,在△ABC 中三个顶点的坐标分别为A(-5,0),B(4,0),C(2,5),将△ABC 沿x 轴正方向平移2个单位长度,再沿y 轴沿负方向平移1个单位长度得到△EFG 。
求△EFG 的三个顶点坐标。
◆ 知识梳理: 一、全等三角形及其判定1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等,对应角的平分线相等. (3)全等三角形的面积和周长分别相等.3、全等三角形判定方法: (1) “边角边”或“SAS ”文字:在两个三角形中,如果__________________________,那么_______________ 图形: 符号:在ABC ∆与'''A B C ∆中,E DCA BFC'B'A'C BACB A51oxy(2) “角边角”或“ASA ”文字:在两个三角形中,如果__________________________,那么_______________ 图形: 符号:在ABC ∆与'''A B C ∆中,(3) “边边边”或“SSS ”文字:在两个三角形中,如果__________________________,那么_______________ 图形: 符号:在ABC ∆与'''A B C ∆中,(4) “角角边”或“AAS ”文字:在两个三角形中,如果__________________________,那么_______________ 图形: 符号:在ABC ∆与'''A B C ∆中,4、证明两个三角形全等的思路:(1)已知两边分别相等⎧⎨⎩找第三边( )找夹角( )(2)已知一边一角分别相等⎧⎧⎪⎪⎨⎪⎨⎪⎩⎪⎪⎩找这边的另一邻角( ) 已知一边与邻角找这边的对角( )找这个角的另一边( )已知一边与对角:找另一角( )(3)已知两角分别相等⎧⎨⎩找夹边( )找夹边外任意一边( )(注意:公共边、公共角、对顶角是对应角)二、等腰三角形的性质1、等腰三角形性质1:等腰三角形的____________________(简称:______________)2、等腰三角形性质2:等腰三角形的_______________、________________、____________互相重合 (简称:_____________________________)图形: 符号:在ABC ∆中,AB =AC ,若___________,则____________,______________; 若___________,则____________,______________; 若___________,则____________,______________;3、等腰三角形的判定(1) 等腰三角形的判定方法1:(定义法)_______________________________(2)等腰三角形的判定方法2:_________________________________(简称:___________)C'B'A'CBA C'B'A'CB AC'B'A'CB A 21D C B A4、等边三角形的性质(1) 等边三角形性质1:_________________________________________ (2) 等边三角形性质2:________________________________________ (3) 等边三角形性质3:_________________________________________ 5、等边三角形的判定(1)等边三角形的判定方法1:(定义法:从边看)__________________________________ (2) 等边三角形的判定方法2:(从角看)________________________________________ (3) 等边三角形的判定方法3:(从边、角看)_____________________________________三、平面直角坐标系1、 平面直角坐标系(1)在同一个平面上互相_____且有公共_____的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于____位置与_____位置,取向右与向上的方向分别为两条数轴的______。
水平的数轴叫做_____或____,竖直的数轴叫做_____或_____,X 轴或Y 轴统称为________,它们的公共原点O 称为直角坐标系的_____。
(2)在平面直角坐标系中,点P 所对应的有序实数对(a, b )叫做点P 的坐标,记作_________, 其中a 叫做________, b 叫做___________。
原点的坐标是________。
(3)两条坐标轴把平面分成四个区域,依次是___________、__________、_________、_________。
x 轴、y 轴___________任何象限。
各点的横坐标和纵坐标的符号特征:如右图。
x 轴上的点的纵坐标为_____, y 轴上的点的横坐标为______。
(4)经过点A (a, b )且垂直于x 轴的直线可以表示为__________; 经过点A (a, b )且垂直于y 轴的直线可以表示为__________。
2、直角坐标平面内点的运动 (1)在直角坐标平面内,平行于x 轴的直线上的两点1(,)A x y 、2(,)B x y 的距离AB =___________;平行于y 轴的直线上的两点1(,)C x y 、2(,)D x y 的距离CD =___________。
(2)如果点M (x, y )沿着与x 轴或y 轴平行的方向平移m (m>0)个单位,那么 向右平移所对应的点的坐标为_____________; 向左平移所对应的点的坐标为_____________; 向上平移所对应的点的坐标为_____________; 向下平移所对应的点的坐标为_____________。
(3) 在直角坐标平面内,与点M (x, y )关于x 轴对称的点的坐标为__________;与点M (x, y )关于y 轴对称的点的坐标为__________; 与点M (x, y )关于原点对称的点的坐标为__________。
1、已知:四边形ABCD是正方形,M为BC上任意一点,MN⊥AM,且MN交∠ECD的平分线于N.求证:AM=MN.2、已知:如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE.3、已知:如图,△ABC中,∠ACB=90°,CD是高,∠A=30°.求证:BD=14AB.4、写出如图4中“小鱼”上所标各点的坐标且回答:观察点B与点E,点C与点D的位置,看它们的坐标有什么特点?DCA BABCDEO xy图4AB CDMNEE DBAC1、如图,等腰直角三角形ABC 中,∠ACB =90°,AD 为腰CB 上的中线,CE ⊥AD 交AB 于E .求证∠CDA =∠EDB .2、知△ABC 中,∠BAC=90°,AB =AD =AC ,∠CAD=30°, 求∠BCD 和∠DBC 的度数。
3、如图,面积为12cm2的△ABC 向x 轴正方向平移至△DEF 的位置,相应的坐标如图所示(a ,b 为常数), (1)、求点D 、E 的坐标 (2)、求四边形ACED 的面积。
教学效果/ 课后反思学生自评针对本堂收获和自我表现(对应指数上打√)① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩学生/家长签名12ABCDE。