火电厂大型设备故障诊断的数据挖掘方法_英文_
电力设备的故障诊断与维修方法

电力设备的故障诊断与维修方法引言:电力设备是现代社会运转的基石,它们的正常运行对于保障工业、农业和生活的各项活动至关重要。
然而,由于长时间的使用和环境因素的影响,电力设备不可避免地会出现故障。
故障的及时诊断和维修对于保障电力设备的正常运行和延长其寿命非常重要。
本文将探讨电力设备的故障诊断与维修方法,希望能为相关从业人员提供有益的指导。
一、故障诊断1. 观察法故障设备的观察法是最基本的诊断方法之一。
通过观察设备外部的异常现象,例如设备发出的声音、异味、烟雾等,可以初步判断故障类型。
然而,观察法只能提供一些表面的信息,对于深层次的故障无法给出明确的答案。
2. 测试仪器法测试仪器法是一种非常常见的故障诊断方法。
通过使用各种专业测试仪器,例如万用表、电流表、电压表等,可以对电力设备的电流、电压、电阻等参数进行测量,从而得到准确的故障信息。
测试仪器法的优点是精确、快速,但要求操作人员具备一定的专业知识和技能。
3. 数据分析法随着信息技术的发展,数据分析法逐渐成为电力设备故障诊断的重要手段。
通过收集设备传感器的监测数据,运用数据挖掘算法和统计分析方法,可以对设备的运行状态和故障进行预测和诊断。
数据分析法具有高效、自动化的特点,可以及时发现潜在的故障隐患,为设备维修提供科学依据。
二、故障维修1. 常见故障处理电力设备常见的故障包括短路、断路、过载等。
对于这些故障,应采取相应的措施进行处理。
例如,对于短路故障,首先需要切断电源,然后使用绝缘手套或工具进行绝缘处理;对于断路故障,可以通过检查设备连接螺母、线路是否松动等方式进行维修;对于过载故障,需对设备进行负荷均衡或增加设备容量等操作。
2. 预防性维修为了降低设备故障的发生率,预防性维修非常重要。
预防性维修包括定期检查设备的运行状况,清洁设备,更换老化或损坏的零部件等。
这样可以及时发现潜在的问题并加以解决,避免设备在关键时刻出现故障。
3. 专业维修技术对于部分更为复杂的故障,可能需要借助专业维修技术。
故障诊断的词汇

故障诊断的词汇(1) 状态监测(condition monitoring)-对机械设备的工作状态(静的和动的)进行监视和测量(实时的或非实时的),以了解其正常与不正常。
(2) 故障诊断(fault diagnosis)又称为技术诊断(technical diagnosis)-采用一定的诊断方法和手段,确定机械设备功能失常的原因、部位、性质、程度和类别,明确故障的存在和发展。
(3) 简易诊断(simple diagnosis)-使用简易仪器和方法进行诊断。
(4) 精密诊断(meticulous diagnosis)-使用精密仪器进行的诊断(优于精确诊断或精度诊断术语)。
(5) 故障征兆(symptom of fault)(或称故障症状)-能反映机械设备功能失常,存在故障的各种状态量。
(6) 征兆参数(symptom of parameter)-能有效识别机械设备故障源故障的各种特征量,包括:原始量和处理量。
(7) 状态识别(condition recognition/identification)-为判断机械设备工作状态的正常与不正常和通过故障状态量的区别,诊断其故障的方法。
(8) 特征提取(feature extraction)-为了正确识别和诊断机械设备故障的存在与否,对征兆参数进行特别的处理。
(9) 故障类别(fault classification)-反映机械设备功能失常、结构受损、工作实效的专用分类、名称。
(10) 故障性质(nature of fault)-描述故障发生速度、危险程度、发生规律、发生原因等问题。
(11) 突发故障(sudden fault)-突然发生的故障。
在故障发生瞬间,必须采用实时监控、保安装置、紧急停机等措施。
(12) 渐发故障(slow fault)-故障的形成和发展比较缓慢,能够提供监测与诊断的条件。
(13) 破坏性故障(damaging fault)或称灾难性故障(catastrophic fault)-故障的发生影响机械设备功能的全部失去,并造成局部或整体的毁坏,难以修复重新使用。
浅谈火电厂锅炉常见故障的数据挖掘诊断技巧

浅谈火电厂锅炉常见故障的数据挖掘诊断技巧【摘要】火电厂中重要的设备之一锅炉是电厂正常运行的有力保障,但是锅炉在运行中也会经常出现一些故障,影响正常的运转。
如今针对锅炉常见的故障人们采用了一种全新的诊断技术,即数据挖掘方法。
此技术是通过建立一个智能化的数据挖掘工具,由于火电厂的SCADA系统中可以在运转中随时记录大量的数据,所以该项技术可以有效地直接从大量的实时数据中获取锅炉出现故障的信息,从而准确做出诊断判断。
数据挖掘工具技术的原理是采用粗糙集的约简方式。
这样技术的优点在于决策表以数据库中的变量形式进行表达,就会有利于现场的工作人员正确理解故障信息和实施诊断。
不仅降低了试验对锅炉设备所造成的现在危险。
而且还减少了维修的费用。
经过实践的证明,数据挖掘诊断技术的工作精度足以满足锅炉故障维修的需求,提高火电厂的经济效益。
【关键词】火电厂;锅炉常见故障;数据挖掘诊断技术一、引言近年火电厂的生产规模在随着电力的需求不断扩大,但是受到技术的限制,火电厂在生产设备方面的设计、安装、运行管理、维修经验等都受到一定的影响,导致火电厂运行的大型设备会经常出现故障,而且出现故障的情况有增加的趋势。
大型设备是火电厂正常运行的重要基础,一系列的故障事件会给火电厂的经济效益带来很大的损失,造成严重的后果。
因此为了有效解决故障事件,人们采用了智能化的数据挖掘故障诊断技术,也就是数据采集与监控(SCADA)系统。
经过实践的多次证明,该项诊断技术在处理火电厂的设备故障事件时,效果明显,还能够监控设备的运行状况,防患于未然,从而保障设备的正常运行。
因此数据采集与监控系统在火电厂中越来越受到重视,发挥越来越重要的作用。
二、采用数据挖掘诊断技术的必要性火电厂主要的任务就是为社会提供源源不断的电力能源,因此火电厂主要的两大核心设备就是汽机和锅炉,这两大设备都是属于火电厂的热力系统。
这两大设备运行中出现的故障比较复杂,而且都是经常会出现的。
电力系统故障诊断中的数据挖掘技术研究

电力系统故障诊断中的数据挖掘技术研究引言电力系统是现代社会不可或缺的基础设施之一,然而,由于各种内外因素的影响,电力系统故障时有发生。
这些故障对电力系统的稳定运行和可靠供电造成了威胁。
因此,如何在故障发生时快速准确地进行诊断和排除故障成为了电力系统领域的重点研究之一。
近年来,随着数据挖掘技术的不断发展,其在电力系统故障诊断中的应用也引起了人们的广泛关注。
一、数据挖掘技术在电力系统故障诊断中的应用数据挖掘技术是通过对大量的数据进行分析和挖掘来寻找其中的模式和关联的一种技术。
在电力系统故障诊断中,数据挖掘技术能够利用大量的历史数据和实时数据,提取有用的信息,为故障诊断提供支持和指导。
1. 数据预处理在电力系统中,采集到的数据往往存在着许多噪声和缺失值。
因此,在应用数据挖掘技术之前,首先需要对数据进行预处理。
预处理包括数据清洗、数据集成、数据变换和数据规范化等步骤。
通过数据预处理,可以排除无用信息,减少数据中的噪声,并使得数据更加适合于后续的数据挖掘工作。
2. 特征选择电力系统故障诊断中,选择合适的特征对于准确的诊断结果至关重要。
数据挖掘技术能够从海量的数据中自动地选择出与故障诊断相关的特征。
通过特征选择,能够降低数据维度,减少计算量,提高故障诊断的效率和准确性。
3. 故障诊断模型构建故障诊断模型的构建是电力系统故障诊断的核心步骤。
数据挖掘技术可以基于历史的故障数据和实时的监测数据,构建出各种故障诊断模型。
常用的模型包括决策树、神经网络、支持向量机等。
这些模型可以根据电力系统的运行状态和监测数据,对潜在的故障进行预测和诊断。
二、数据挖掘技术在电力系统故障诊断中的具体应用案例在电力系统故障诊断中,数据挖掘技术已经得到了广泛的应用。
下面以一个具体的案例来说明数据挖掘技术在电力系统故障诊断中的应用效果。
某电力系统的变压器经常出现温升过高的故障,导致系统运行不稳定。
为了解决这一问题,研究人员采集了大量变压器的历史数据和实时监测数据,并应用数据挖掘技术进行故障诊断。
基于大数据分析的火力发电厂设备故障诊断与预测

基于大数据分析的火力发电厂设备故障诊断与预测摘要:火力发电厂设备故障诊断与预测是保障发电厂安全稳定运行的重要任务。
本文基于大数据分析技术,探讨了火力发电厂设备故障诊断与预测的方法与应用。
传统方法包括基于规则、专家系统和模型的方法,而大数据分析方法包括数据预处理、特征提取与选择以及故障诊断与预测模型。
通过收集整合设备运行数据、维护数据和环境参数数据,利用机器学习和深度学习模型进行故障诊断与预测。
最后,本文提出了一个故障诊断与预测系统架构。
关键词:大数据分析;火力发电厂;设备故障诊断;设备故障预测引言火力发电厂设备故障会导致停机维修和损失,因此准确的故障诊断与预测对于保障发电厂的安全稳定运行至关重要。
传统的故障诊断方法存在着一定的局限性,而大数据分析技术的应用为火力发电厂设备故障诊断与预测提供了新的思路和方法。
本文将探讨基于大数据分析的火力发电厂设备故障诊断与预测方法和技术应用。
一、火力发电厂设备故障诊断与预测的重要性火力发电厂设备的故障诊断与预测对于保障发电厂的安全稳定运行具有重要意义。
设备故障不仅会导致停机维修和损失,还可能造成环境污染和能源浪费。
因此,及时准确地诊断和预测设备故障,可以避免发生严重事故和降低维修成本,提高发电厂的运行效率和安全性。
同时,设备故障的预测也有助于制定合理的维护计划,延长设备的使用寿命。
二、火力发电厂设备故障诊断与预测方法2.1.1 基于规则的方法基于规则的故障诊断方法是通过建立一系列的规则和规则库,根据设备故障的特征和规律进行诊断。
这种方法的优点是简单直观,易于理解和实施。
通过设定一些规则,可以根据设备的工作状态和参数变化判断是否存在故障。
然而,基于规则的方法往往需要专家的经验和知识,且规则库的构建和维护较为繁琐。
同时,该方法对于复杂的故障和异常情况的诊断效果有限,难以满足实际应用的需求。
2.1.2 基于专家系统的方法基于专家系统的故障诊断方法是利用专家知识和经验构建一个模拟人类专家决策的系统。
英文文献翻译(基于Petri网的大型发电站故障诊断)

Petri Nets for Fault Diagnosis of Large PowerGeneration StationAbstract –In this paper, a simplified fault diagnosis method based on Petri nets is proposed to estimate the faulty item/section(s) of a large power generation station. The Petri nets are used as a modeling tool to build fault diagnosis models of item/section(s) of power station which aim to diagnose accurately the faults when a large amount information of SCADA system are detected in the control room. It can diagnose and estimate the faulty item/section(s) correctly for multiple faults as well as simple faults. In order to testify the validity and feasibility of that method, a computer simulation of High Dam power generation station is used. It is shown from three study cases that Petri nets fault diagnosis method has many merits such as: accurate fault diagnosis results, easy and flexible correctness of Petri net fault diagnosis models for each item/section(s).Keyword –Petri nets, fault diagnosis, power station.1. INTRODUCTIONFault diagnosis of a large power generation station can be a process of discriminating faulted power station item/section(s) by tripping of their protective relays and circuit breakers. Therefore, it requires information from SCADA system. When the information arrives at the control room, the operators analyze the data and diagnose the faulted item/section(s). The accuracy and speed of the diagnosis process depend entirely on the experience of the operators. However, as the complexity of power station increases, especially in the case of multiple faults, a lot of alarm information are transmitted to the power station control room. Under such situations, the operator should diagnose the faulty section rapidly and accurately. For this reason, the fault diagnosis systems have to be developed in the control rooms to assist, support and help the operators to carry out their tasks in diagnosis processes.Resent researches have been made toward developing fault diagnosis system. Most of these efforts are based on Expert Systems (ES) [1–4]. Artificial intelligence approaches, such as, artificial neural networks [5–7], genetic algorithm (GA) [8], family eugenics based evolution theory [9], immune algorithm [10] are developed. Two corresponding fault diagnosis researches for power generation station based on fuzzy relations and Bayesian networks respectively are given in reference [11, 12]. Petri nets have characteristic of the parallel information processing, concurrent operating function and considered as a very suitable and useful modeling tool. Some methodologies of modeling and analysis for the fault diagnosis of power system with Petri nets are proposed [13 – 16].The fault diagnosis systems are used widely in power systems and substations. In this paper, a simplified fault diagnosis method based on Petri nets for a large power generation station is proposed. This power generation station includes: generation units, step up power transformers, station service transformers, station buses and autotransformers. The proposed fault diagnosis method utilizes the information of the protective relays and circuit breakers to build Petri net model for each faulty item/section(s) of a large power generation station. The faulty item/section(s) can be diagnosed and estimated from the final state of the fired Petrinet. Moreover, a comparison of effectiveness and performance of the proposed Petri nets, fuzzy relations and Bayesian networks is presented.The proposed method is tested on 15.75/500 kV High Dam power generation station which affiliates to Hydro Plants Generation Company (HPGC) in Egypt. The testing results demonstrated that proposed method is easy reasoning, strong practicability of fault diagnosis models and finally, it assists and supports the operator in control room of the power station to make the right decision.2. MODELING METHOD OF PETRI NETS2.1 Petri Net DefinitionA Petri net is a one of several mathematical and graphical representations of discrete distributed systems [17, 18]. As a modeling language, it graphically depicts the structure of a distributed system as a directed bipartite graph decision.2.2 Petri Net Modeling PowerThe typical characteristics exhibited by the activates in a dynamic event-driven system, such as concurrency, decision making, synchronization and priorities, can be modeled effectively by Petri nets [20]:Sequential Execution; In Fig. 2 (a), transition 2 t can fire only after the firing of 1 t . this imposes the procedure constrain “ 2 t after 1 t ”. Such procedure constrains are typical of the execution of the parts in a dynamic system. Also, this Petri construct models the casual relationship among activates.Conflict; Transitions 1 t and 2 t are in conflict in Fig. 2 (b). Both are enabled but the firing of any transition leads to the disabling of the other transition. Such a situation will arise, for example when a machine has to choose among part types or a part has to choose among several machines. The resulting conflict may be resolved in purely non-deterministic way or in a probabilistic way, by assigning appropriate probabilities to the conflicting transitions together.Concurrency; In Fig. 2 (c), the transitions 1 t and 2 t are concurrent. Concurrency is an important attribute of system interactions. This is a necessary condition for a transition to be concurrent is the existence of a forking transition that deposits a token in two or more output places.Synchronization; It is quite in a dynamic system that an event requires multiple resources which related to circuit breakers and protective relays in this paper. The resulting synchronization of resources can be captured by transitions of the type shown in Fig. 2 (d). Here, 1 t is enabled only when each of 1 p and 2 p receives a token. The arrival of a token into each of the two places could be the result a possibly complex sequence of operations elsewhere in the rest of the Petri net model. Essentially, transition 1 t models the joining operation.Mutual Exclusive; Two processes are mutually exclusive if they cannot be performed at the same time due to constraints on the usage of shared resources. Figure 2 (e) shows this structure. For example, a robot may be shared by two machines for loading and unloading. Two such structures are parallel mutual exclusion and sequential mutual exclusion. Priorities; Such a modeling power can be achieved by introducing an inhibitor arc. The inhibitor arc connects an input place to transition, and is pictorially represented by an arc terminated with a small circle. The presence of an inhibitor arc connecting an input place to atransition changes the transition enabling conditions. In the presence of the inhibitor arc, a transition is regarded as enabled if each input place connected to the transition by a normal arc (an arc terminated with an arrow). Contains at least the number of tokens equal to the weight of the arc, and no tokens are present on each input place connected to the transition by the inhibitor arc. The transition firing rule is the same for normally connected places. The firing, however, does not change the marking in the inhibitor arc connected places. A Petri net with an inhibitor arc is shown in Fig. 2 (f). 1 t is enabled if 1 p contains a token, while 2 t is enabled if 2 p contains a token and 1 p has no token. This gives priority to 1 t over 2 t .Fig. 2 Petri net primitives to represent system features.本文节选自《基于Petri网大型发电站故障诊断》(《艾因夏姆斯工程学报》)中的部分章节专业及生僻词汇:Fault Diagnosis 故障诊断;Generatoin Station 发电站;Petri nets Petri网,一种建模方法;SCADA 在线监控系统;multiple faults 多重故障;discriminate 区别,辨别;relay 继电器;circuit breakers 继电器;omplexit 复杂性;Expert Systems 专家系统;Artificial intelligence 人工智能;genetic algorithm遗传算法;artificial neural networks人工神经网络;Bayesian贝叶斯定理的;genetic algorithm家族优生学;fuzzy 模糊的;genetic algorithm 免疫算法;affiliates 附属公司;practicability实用性;discrete 离散的;distributed 分布的、分散的;bipartite 双边的、双向的;concurrency 同时发生的;synchronization 同步;Sequential 连续的;non-deterministic 不确定性的;Mutual 共同的;constraint 约束、局促;inhibitor arc 抑制弧;inhibitor 抑制剂;High Dam高坝;基于Petri网的大型发电站故障诊断摘要:本文提出了一种基于Petri网的简化故障诊断方法用来判断大型发电站的故障元件或区域。
设备故障诊断中的数据挖掘技术研究
设备故障诊断中的数据挖掘技术研究近年来,随着科技的发展和智能化水平的提升,各行各业都逐渐开始运用数据挖掘技术来进行故障诊断和维修工作。
在设备故障诊断方面,也有越来越多的企业开始尝试使用数据挖掘技术,以提高设备运行效率和降低故障率。
一、数据挖掘技术在设备故障诊断中的应用1. 物联网技术在设备故障诊断中的应用随着物联网技术的迅速发展,设备故障诊断也有了更为高效、精准的方法。
物联网系统可以通过传感器对设备的运行状态、温度、湿度、振动等参数进行实时监控,并将数据实时上传至云平台。
在接收到设备异常信号后,系统可以通过数据分析和联网通信自主地启动应急响应机制。
2. 传感器技术在设备故障诊断中的应用传感器技术是设备故障诊断的重要手段之一。
通过安装传感器,可以实时地监测设备的状态信息,例如振动频率、温度、压力、电压等参数。
一旦出现异常,系统就会通过数据挖掘技术快速地进行故障诊断。
3. 智能分析技术在设备故障诊断中的应用智能分析技术,也称为机器学习技术,是一种基于数据挖掘的人工智能技术,通过对大量数据和算法的分析,提高故障诊断的准确性和效率。
例如,在电力系统中,通过对历史数据的分析和学习,系统可以自动判断哪些电缆、电流互感器和变压器可能会出现故障,并提前进行预测。
二、数据挖掘技术在设备故障诊断中的优点和挑战1. 数据挖掘技术在设备故障诊断中的优点(1)提高设备的运行效率。
通过数据挖掘技术对设备运行情况进行实时监控和数据分析,可以及时发现问题并快速解决,提高设备的生产效率。
(2)提高故障诊断的准确性。
通过对大量数据的分析和比对,可深入了解设备的工作状态,准确地分析和判断设备是否出现异常。
(3)降低运行成本。
数据挖掘技术能通过预测故障,提前进行维护和更换可能出现问题的部件,从而避免了将设备停机修理的情况,减少了不必要的成本支出。
2. 数据挖掘技术在设备故障诊断中的挑战(1)数据采集的难度。
要保证数据的准确性,就需要有合适的传感器和监测设备来采集数据。
大数据挖掘技术在电力设备故障预测中的应用方法与优化
大数据挖掘技术在电力设备故障预测中的应用方法与优化随着科技的发展和电力行业的快速增长,电力设备故障的预测变得越发重要。
传统的预测方法通常基于统计分析和经验规则,但这些方法往往在准确性和效率上存在一定的局限性。
然而,大数据挖掘技术,尤其是人工智能和机器学习的发展,为电力设备故障预测提供了全新的解决方案。
大数据挖掘技术是指通过对大规模数据集进行自动或半自动的模式识别、关联分析和数据挖掘,从中发掘出有价值的信息和知识。
在电力设备故障预测中,大数据挖掘技术可以发现隐蔽的规律和关联,提供准确的预测结果,从而帮助电力行业及时采取预防和维修措施,提高设备的可靠性和运行效率。
首先,大数据挖掘技术可以利用电力设备的历史数据进行训练和建模。
通过收集和整理设备的运行数据,如温度、电压、电流等,将这些数据输入到机器学习算法中进行训练,从而得到一个预测模型。
这个模型可以分析和推测设备在未来的运行中可能出现的故障,并给出相应的预警。
其次,大数据挖掘技术可以识别影响设备故障的关键因素。
借助机器学习和数据分析的方法,可以确定各种变量之间的关系,了解不同因素对设备故障概率的影响程度。
通过此过程,可以对设备进行系统性的分析,找出最重要的特征并进行优化。
这有助于电力行业优化设备运行状态、改进设备维护计划以及降低故障风险。
同时,大数据挖掘技术可以进行故障类型的分类和预测。
通过收集和分析大量的故障数据,利用机器学习算法可以建立故障类型的模型。
这样一来,当新的数据进入系统时,系统可以自动判断故障类型,并根据之前的经验进行预测。
这种精准预测可以帮助电力行业合理配置维修资源,降低人力和物力的浪费。
在大数据挖掘技术的应用中,还需要注意一些优化方法。
首先,数据质量是保证模型预测准确性的关键。
因此,要对数据进行清洗和处理,排除错误或异常数据的干扰,确保输入数据的准确性和完整性。
其次,应选择合适的机器学习算法和模型,根据具体问题的特点和数据集的特征进行选择和调整。
解析火电厂锅炉常见故障的数据挖掘诊断方法
解析火电厂锅炉常见故障的数据挖掘诊断方法摘要通过对火电厂大型的主要设备锅炉最长出现的故障进行总结,提出了诊断其故障的数据挖掘方法,数据挖掘方法主要通过建立智能化数据的挖掘工具,进而能够直接从火电厂的scada的系统自身历史数据库里面所存储的大量实时数据获得锅炉的故障诊断知识,进而对锅炉的故障进行诊断。
数据挖掘这一工具的核心主要表现在该诊断方法采用了粗糙集这一种简约的方式,把数据库里面所抽取出来的故障诊断规则进行简化,将其简化成为基于最小变量集的一个决策表。
因为决策表是直接性采用了数据库里面变量来进行表达的,所以,决策表十分利于现场的操作人员应用和理解。
本文中笔者就对火电厂锅炉常见故障的数据诊断方法进行解析。
关键词火电厂;锅炉;故障诊断;粗糙集;决策表中图分类号tk22 文献标识码a 文章编号1674-6708(2012)80-0164-02近些年来,科技不断发展,人们生活水平也有了很大提升,因此,人们对于电力需求得到了高速增长。
如果现代社会想要得到很好的发展,就要求电力必须要首先得到发展,电力工业已经逐渐成为了各个行业发展最为根本的基础,同样成为了现代的人类能够赖以生存必要的条件之一。
尤其是科技的不断进步,使得火电厂自身发电机组朝着集中化以及大型化这两个方向不断发展,但是,因为发电机组运行经验缺乏、管理、安装、制造以及设计等方面存在着缺陷,在这样的环境下,数据采集与监控系统在火电厂的日常运行和管理过程中就变得极其重要,并且成为了监控火电厂锅炉主要的对象,但是,锅炉同样会存在一定的故障,下面就解析火电厂锅炉常见故障的数据挖掘诊断方法。
1 关于火电厂的数据采集与监控系统火电厂的数据采集与监控系统也成为scada系统,该系统最为主要的功能就是定期对锅炉以及火电厂汽机等等设备状态的数据进行采集,在参数越限的时候就会将报警系统启动,将故障数据记录以及收集工作完成。
数据采集与监控系统历史数据库通常会包括脉冲输入量、计算量以及数字输入量、模拟输入量等等,其中,每一类型的数据都包括很多数据点,比如模拟输入量也成ai量,模拟输入量主要包括火电厂锅炉的主蒸汽温度以及主给水流量等等数据点;而数字输入量也称di量,数字输入量有火电厂锅炉上水电动门的开关以及送风机出口风门开等等数据点。
基于数据挖掘技术的火电厂设备状态监测系统
基于数据挖掘技术的火电厂设备状态监测系统随着我国经济水平的不断提高,电力行业发展极为迅猛。
迅速增加的用电量使得用电网络日益庞大,采用的电气设备越来越多,同时电力系统运行压力也在不断增加。
电力系统中出现任何重大的故障都会带来一系列的连锁反应,从而造成严重的经济损失[2七]。
火电厂传统的“故障检修”模式和•定期计划检修”模式不再满足现代化电厂的发展需求,不利于设备的健康管理。
本文立足于火电厂设备运行现状, 提出以电厂内现有的分布式控制系统(Distributed Control System, DCS)为基础,结合业界常用的PI数据库中的历史数据和实时监测数据,利用决策树算法与域名生成算法(DGA),对火电厂设备进行运行状态的监测和故障诊断,保证电厂设备运行安全[4, 5]。
1火电厂现有设备监测系统现状分析随着计算机技术、现代传感技术和数据处理技术的发展,火电厂内的设备管理正在逐渐摆脱传统的•故障检修”模式和•定期计划检修” 模式,一种新型的檢修模式——•状态检修”浮岀水面。
该模式基于火电厂内设备的历史检测数据和实时数据提出检修方案。
区别于以往模式,“状态检修”能够利用各种监测数据和设备状态判定方法,对设备的实时状态进行评估,并且不影响设备的正常运行。
DCS能够采用各种传感器采集火电厂内各种设备的运行状态信息。
DCS监测点布置在火电厂内部多数设备上,将采集的各种参数信息传输于此,为火电厂设备的监控管理提供技术手段。
管理人员可以根据信息对设备的运行状态进行简单分析,故此方式过度依赖于管理人员的设备管理经验,并且一些早期的隐性故障不容易被发现,对大数据的分析能力不强。
因此,一些专家提出了故障诊断系统,即依赖现代计算机技术,结合数学算法,利用计算机代替人脑,在大量的监测信息中筛选有用信息,对设备的状态做出正确的评估[7, 8]。
故障诊断系统能够及时了解火电厂内设备的运行状况,获取隐性故障的状态量,采用智能诊断技术及时判别隐性故障,提出解决方案,保证火电厂内设备的运行安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fa ult diagnosis f or la rge-scale e q uip me nts i nt he r mal p owe r pla nt by dat a mi ni ngY AN G Ping 1,LIU Sui-sheng 1,ZHAN G Hao2(1.E lectric Power College ,South China University of Technology ,Guangzhou Guangdong 510640,China ;2.Automation Engineering Research and Manufacturing Center ,Guangdong Academy of Science ,Guangzhou Guangdong 510070,China ) A bst ract :This paper proposes a new approach to diagnose frequent faults for large-scale equipments in thermal powerplants.Based on the acquired data in SCADA (Supervisory control and data acquisition )systems ,a hybrid-intelligence data-mining framework is developed to extract hidden diagnosis information.The hard core of the hybrid-intelligence data-mining framework is an algorithm in finding minimum size reduction which is based on rough set approach ,which makes it possible to eliminate addi 2tional test or experiments for fault diagnosis which are usually expensive and involve some risks to the equipment.This approach is also tested by all the data in a SCADA system ’s database of a thermal power plant for boilers fault diagnosis.The decision rules ’ac 2curacy varied from 92percent to 95percent in different months.Key wor ds :fault diagnosis ;data mining ;rough set ;attribute reduction ;decision tree CL C n um be r :TM 621 Docume nt code :A火电厂大型设备故障诊断的数据挖掘方法杨 苹1,刘穗生1,张 昊2(1.华南理工大学电力学院,广东广州510640,2.广东省科学院自动化工程研制中心,广东广州510070) 摘要:针对火电厂大型设备的常见故障,提出一种新的诊断方法———数据挖掘方法.该方法通过建立一个智能化的数据挖掘工具,直接从火电厂SCADA 系统历史数据库的大量实时数据中获取故障诊断知识进行故障诊断.数据挖掘工具的核心是,采用粗糙集的约简方式,将数据库中抽取的故障诊断规则简化为基于最小变量集的决策表.该方法避免了为诊断故障而附加的专门测试或试验,降低了费用,同时减少了试验对设备造成的潜在危险.将这一方法应用于火电厂锅炉的一个复杂故障事例,结果表明其诊断的精度在92%以上,可以满足现场应用的要求.关键词:故障诊断;数据挖掘;粗糙集;属性约简;决策树1 I nt rod uction With the development of modern science andtechnology ,the equipments of thermal power plants are getting larger and more complex.The wide application of large-scale equipments produce huge economic benefit ;but ,at the same time ,it causes a series of problems.The investment and maintenance of large-scale equipments are unbearable and the accidents caused by these equipments are serious.So fault diagnosis of large-scale equipments has gained increased attention during the last few years.However ,due to the complex interaction among the fault symptoms ,the mechanisms of faults and their characteristics are very complex ,it is very difficult to get high accuracy for large-scale equipments ’fault diagnosis. In practical application ,engineers in power plants handle day-to-day maintenance ,additional test and expert advice are often required from the technology supportingthe center of manufacturing companies for more complex fault diagnosis and maintenance ,although these additional tests are often expensive and involve some risks to equipments ,and the domain experts ’knowledge is very important at that time. In recent years ,fault diagnosis methods for large-scalesystemshavebeenwidelydeveloped.Model-basedmethods ,fault tree approaches ,fuzzy comprehensive evaluation systems ,pattern recognition techniques and neural networks (NN )are in common use for such tasks.However ,due to the complexity of large scale equipments in thermal power plants ,methods based on process data ,not on model or expert knowledge ,would be more adequate.Neural networks are based on data only ,but the accuracy of trained NN is not satisfied to large-scale equipments ’fault diagnosis because data from practical industry always contain conflicted the data.Therefore ,it is Received date :2004-02-05;Revised date :2004-08-03.Foundation item :Supported by 973Project (G 1998020308);Natural Science Foundation of Guandong Province (003049);The Fifteenth-Plan of Science andTechnology of Guangdong Province (A 1050202).第21卷第6期2004年12月控制理论与应用Control Theory &ApplicationsVol.21No.6Dec.2004Article ID :1000-8152(2004)06-0927-05necessary to develop another technique which is based on process data and supposed to have high accuracy.In order to develop a new method based on process data for fault diagnosis ,this paper proposes an intelligent data-mining framework to extract hidden information directly from data in SCADA systems ’database ,no additional tests or experiments are needed.2 Ove rview of dat a mi ni ng i n p owe r e ngi 2ne e ri ng Data mining is a process of discovering new ,meaning fuland interesting information directly from large amounts of data[1].In recent years ,data mining applications have been successfullyappliedinmanyareas ,suchasastronomy ,molecular biology ,medicine ,and geology etc.Recently ,some researchers are trying to apply this new method to power engineering applications.In [2],data mining techniques are applied to fault diagnosis in power transformers.Reference [3]mines association rules from historical data of a thermal power plant to derive accurate models of the behavior of plant component.In [4],data mining tools areused toextractrules fromthepower-generation database in the Mexican system.[5]extracts hidden information in power company database ,which is related to customer billing.[6]studies the work on load profiling through data mining.Up to now ,due to the complexity of large-scale equipments in thermal power plants ,data mining techniques have not been used in these equipments ’fault diagnosis. Based on the properties of data mining ,it is possible toget useful information related to frequent faults directly from SCADA systems ’database.3 Dat a mi ni ng f or f a ult dia gnosis Data in SCADA systems ’database provide usefulinformation on equipment states.A data mining technique based on fuzzy rough set theory for large-scale equip 2ments ’fault diagnosis has been proposed in this section.3.1 Process dat a i n S CADA s yst e ms ’dat a bas e Large numbers of process variables ’value are stored in SCADA systems ’database ,including analog input points ,digital input points ,calculated value points ,enter value points ,pulse input points ,and sequence of events (S.O.E.)input points ,etc.Generally ,the process variables ’value is stored in SCADA systems ’historic database once a minute ,totally 1440real numbers which represent the readings of one variable from 0hour 0minutes to 23hour 59minutes. According to the features of thermal power plants ’equipments ,some mathematical relationships exist among equipments ’states.The abnormal states of equipments can be represented by the change of some variables ’values.3.2 Dat a mi ni ng p rocess f or la rge scale e q uip 2me nt ’s f a ult dia gnosis In order to find the relationships among equipment ’sfaults and related variables states ,the process of data mining should be translated into practical steps.Figure 1represents the data mining process in fivesteps.Fig.1 Data mining process for fault diagnosis Generally ,the first step of data mining is to organize theraw data and the last step is to visualize the results.In theentire process ,the first three steps reduce the amount of data by up to two orders of magnitude ,still presenting the originalcharacteristicsoftherawdata.Butthepre-processed data contains too many variables to industrial application.The core of the data mining program is an attribute reduction module based on rough set theory.This step reduces data to a manageable set of variables.3.2.1 Proble m descrip tion a n d dat a s election This step involves the description of fault type ,faultprocess ,fault diagnosis process ,the understanding ofhistoric database in thermal power plant ’s SCADA system ,and the basic knowledge of thermal power plant.Then ,the data mining expert analyzes the problem according to fault process and recognizes the data which are related to the faults possibly. Based on the analysis of fault process and features ofrelated equipment ,the data mining experts and domain experts can recognize all the possible data related to the faults.829Control Theory &Applications Vol.21 3.2.2 Dat a p re-p rocessi ng The selected data contain many variables that are not related to the faults.In order to reduce the calculation, data pre-processing should be done first.In particular,the data pre-processing include three steps: St ep1 correlation analysis.The correlation coefficients of all analog input variables and calculated value variables related to the fault are calculated first.Based on the calculation results,all the variables whose correlation coefficients related to the fault are less than a certain value are deleted,then a related variable set is ob2 tained. St ep2 principal component analysis.All variables are mapped to another linear space to get principal components,then a principal component set of variables is obtained. St ep3 domain expert experience.We can get an experiential set of variables from domain experts. Finally we can get the preparation set of variables for data mining from the union of related set,principal component set and experiential set.3.2.3 Dat a mi ni ng The preparation set of variables still contains many variables that are not tightly related to faults.An attribute reduction technique based on rough set theory is used to mine the minimal set of variables in the preparation set. A)Background. One of the theories specially developed for data mining is the rough set theory[7].It has been used to discover structural relationships from imprecise or noisy data. Rough set theory is based on the establishment of equivalence classes within the given training data.A rough set definition for a given class C is approximated by two sets:a lower approximation of C and an upper approximation of C.Based on rough set theory, knowledge is expressed by a decision table which is defined in terms of LR-systems as follows.Let L=(U, A)be a knowledge representation system and let C,D< A be two subsets of attributes,called condition attributes and decision attributes respectively.KR-system with distinguished condition and decision attributes is called a decision table and is denoted T=(U,A,C,D)or in short CD-decision table.In decision tables,some condition attributes are redundancy,so they are removed and decision tables are simplified.The reduction can be loosely defined as a minimal subset of attributes uniquely identifying all objects,it expresses an alternative and simplified way to represent a set of objects. In the reduced decision table,the same decision is made based on a smaller number of condition attributes.This kind of reduction eliminates the need for checking unnecessary condition attributes to arrive at a conclusion. The approach of attribute reduction in a decision table generally consists of the following steps: 1)Based on rough set theory,compute reductions of condition attributes which is equivalent to elimination of some columns from the decision table; 2)When two rows have the same values in the decision table,eliminate the duplicate rows; 3)Elimination of superfluous values of attributes. B)Attribute reduction algorithm. In order to mine decision rules for fault diagnosis,the variables in preparation set are regarded as condition attribute and the fault status is regarded as decision attribute.The attribute reduction algorithm can generate a minimal variable set(minimal reduction)directly from preparation variable set,representing the fault classification at the highest accuracy.The variables in minimal variable set can be used to obtain decision tree for fault diagnosis. The attribute reduction algorithm based on rough set theory is applied to discrete-valued attributes, continuous-valued attributes must therefore be discretized prior to its use.The steps of attribute reduction algorithm are as follows. St ep1 E stablish a2-dimension table by one month’s data from data sample sets,all the real numbers of a variable in preparation set line up as a condition column,the fault status as a decision column,then the table has n+1columns and1440×d rows,n=the number of variables in preparation set,d=the number of days in the assigned month. St ep2 Discretize the variable values to five parts according to equal frequency principle,discretize the fault status values to three parts according to expert’s experience.These form the decision table. St ep3 According to rough set theory,calculate all reductions of condition attributes by global search and then find the minimal reduction. St ep4 Summarize the number of duplicate rows to get the reliability of this row,then eliminate the duplicate rows. St ep5 If all the condition attributes are the same while the corresponding decision attribute is different, eliminate the rows whose summation is less than30 percent of this condition attributes’summation. St ep6 Eliminate the superfluous values of attributes,the minimal variable set representing the fault929 No.6Y ANG Ping et al:Fault diagnosis for large-scale equipments in thermal power plant by data miningclassification at the highest accuracy in this month is ob2 tained. St ep7 Based on another month’s data,repeat Step1 to Step6again until all data samples in historic database have been considered. St ep8 Calculate the intersection of all the minimal variable sets of all month,the final minimal variable set is obtained. In practical application,conflicted data always exist in historic database of SCADA system,Step5is necessary to avoid the adverse influence by the fluctuation data.3.2.4 Ext racti ng r ules f or f a ult dia gnosis The variables in the final minimal set are regarded as condition attributes and the fault state is regarded as decision attribute,then decision rules for fault diagnosis are generated for each class(one row expresses one class)in the final minimal variable set.In this paper,the condition attributes’value is discretized to five parts and the decision attribute’s value is discretized to three parts,the scale of decision tree is very large if the number of condition attributes is more than5,then it is very difficult for engineers to apply.So we do further attribute reduction as follows: St ep1 Arrange the condition variables,let A i express the i th variable of the condition attributes.Let i=1. The decision table contains N condition variables. St ep2 Eliminate the i th attributes,then calculate the accuracy of the decision tree based on the left attributes.If the descent of accuracy is not more than0.7percent,the elimination is confirmed,otherwise cancel the elimina2 tion. St ep3 If the number of the left condition variables is less than3or i=N,then go to Step5,otherwise,go to Step4. St ep4 Let i=i+1,go to Step2. St ep5 Stop. Finally,we can get the sub-optimal variables set for fault diagnosis,the accuracy of this final decision table is high (not highest)enough for actual application and the scale of decision tree is not too large.3.2.5 Eval uati ng t he dat a mi ni ng res ults Evaluation has been carried out to confirm the data mining results by using the test data sets. The evaluation algorithm is as follows: St ep1 E stablish a two dimension table by one month’s data from test data sets,as the data mining algorithm,to form a table with n+1columns and1440×d rows,n=the number of variables in preparation set,d =the number of days in the assigned month. St ep2 Discretize the variables value to five parts according to equal frequency principle,discretize the fault state value to three parts based on expert’s experience. Then the decision table is formed. St ep3 Calculate the accuracy of the final decision tree according to this month’s data. St ep4 Based on another month’s data,repeat Step1~3until all data in test data sets have been checked up. If the data mining is performed on enough data samples and the final decision tree satisfy the test data sets,it can be applied to industrial application.4 Cas e st u dy The proposed approach is tested by three years’data in a SCADA system’s database of a thermal power plant. One case that occurred more than100times in three years has been studied.The research result is discussed in this section.4.1 Cas e descrip tion In the thermal power plant,the temperature on A(T A) and B side(T B)of boilers’4th Superheater outlet should be balanced.Imbalance is considered to be abnormal.Let D=T A-T B.According to domain experts’experi2 ence,if D is not larger than10℃,it is good.If D is larger than10℃but not larger than20℃,it is not good but acceptable.If D is larger than20℃,it is a fault. For the purpose of the case study,we collect three years’data from a thermal power plant.We select data samples from the historic database of SCADA system every other month as a mining data set,the left data is regarded as a testing data set.4.2 Prep a ration of dat a The collected data include analog input points,digital input points,calculated value points,enter value points, pulse input points,and S.O.E.input points,totally6082 points.According to the behavior of boiler,the related data are analog input points and calculated value points, totally2834.Based on these2834variables,we get the preparation set by data pre-processing in Section3.2.2,it has497variables.4.3 Dat a mi ni ng f or t e mp e rat ure diff e re ncedia gnosis The preparation variables is regarded as condition attributes and the temperature difference is regarded as decision attribute.Applying the proposed attribute reduction algorithm in3.2.3,a minimal variable set for one certain month is obtained.Then the intersection of minimal variable sets of all months in mining data set is039Control Theory&Applications Vol.21 calculated to obtain the final minimal variable set ,it contains 12condition attributes.Because of the large scale of this decision table ,it is difficult for engineers to utilize.Further reduction has been done by the algorithm in Section 3.2.4,then two condition variables are left ,the scale of this decision table is acceptable ,it is shown in Table 1,its accuracy is varied from 92%to 95%in various months.Table 1 Final decision tableV 7V 10D11112313,4221,2,3,4231,2,3134241,2,3,4,5151,2,3,4,511,2,3,4,551 V 7is the metal temperature of tertiary superheater on Aside ,V 10is the metal temperature of fourth superheater outlet on E side ,D is the temperature difference.The final decision table can be expressed by a decision tree simply as shown in Fig.2.Fig.2 Final decision tree The decision accuracy of the final decision tree forFebruary ,2000is 94.76%,a little less than the accuracy based on the decision table contained 12conditionattributes ,but it is much more compendious.4.4 Eval uation of t he dat a mi ni ng res ults The data mining result has been verified by the testing data set ,the classification accuracy is varied from 91%to 95%in different months.For example ,for the data of May 2000,the classification accuracy of the final decision table is 94.47%.By data mining results ,the temperaturedifference is due to the abnormal metal temperature oftertiary and fourth superheaters.5 Concl usion The research reported in this paper proposes a newapproach for fault diagnosis of large scale equipments in complex industry application with SCADA systems.Based on the acquired data in historic database ,this paperdevelops a hybrid-intelligence data-mining framework to extract hidden knowledge directly from the SCADA system.This new technique is based on process data only and eliminates additional tests or experiments that are often expensive and involve risks to equipments. On the other hand ,the variables themselves in historicdatabase are regarded as condition attributes in decision table ,the rules mining from historic database are expressed directly by the variables.Then it is acceptable for engineers to understand and apply to industry application.Ref e re nces :[1] HAN Jiawei ,K AMBER Micheline.Data Mining :Concepts and Tec 2hniques [M ].San Francisco :Morgan K aufmann Publishers ,2001.[2] ME JIA-LAVALLE M ,ROD RIGUEZ-O R TIZ G.Obtaining expertsystem rules using data mining tools from a power generation databases [J ].Expert Systems with Application ,1998,14(1/2):37-42.[3] O GILVIE T ,SWIDENBAN K E ,HO GG B e of data miningtechniques in the performance monitoring and optimization of a ther 2mal power plant [C ]∥IEE Colloquium on Knowledge Discovery and Data Mining.London ,U K:IEEE Press ,1998:7/1-7/4.[4] SWIDENBAN K E ,GARCIA J A ,F L YNN D ,et al.On-line optimiza 2tion of power plant performance through machine learning techniques [C ]∥UK ACC Int Conf on Control ’98.Swansea ,U K:IEE Press ,1998:257-262.[5] PITT B D ,K IRSCHEN D S.Application of data mining techniques toload profiling [C ]∥IEEE Conf Proceedings on Power Industry Computer Applications.Santa Clara ,CA :IEEE Press ,1999:131-136.[6] WEHEN KE L L ,MACK P.Artificial intelligence toolbox for planningandoperation of power systems [C ]∥IEEE Power Engineering Society Winter Meeting.Singapore :IEEE Press ,2000,2:1057-1062.[7] LE B REVE LEC C ,CHOLLEY P ,QUENET J F ,et al.A statisticalanalysis of the impact on security of a protection scheme on the French power system [C ]∥1998Int Conf on Power System Technology.Beijing ,China :IEEE Press ,1998,2:1102-1106.作者简介:杨 苹 (1967—),女,华南理工大学电力学院副教授,博士,主要研究领域:电力电子电路的建模与控制、人工智能系统及其应用,E -mail :eppyang @ ;刘穗生 (1979—),男,华南理工大学电力学院硕士研究生,主要研究领域:电力电子电路的建模与控制,人工智能系统及其应用;张 昊 (1969—),男,广东省科学院自动化工程研制中心副研究员,主要研究领域:人工智能系统及其应用.139 No.6Y ANG Ping et al :Fault diagnosis for large-scale equipments in thermal power plant by data mining。