人教版六年级数学上册各单元知识点汇总.doc

合集下载

人教版六年级上册数学知识点汇总

人教版六年级上册数学知识点汇总

人教版六年级上册数学知识点汇总汇总一第一单元分数乘法一、分数乘法〔一〕分数乘法的意义:1、分数乘整数与整数乘法的意义一样。

都是求几个一样加数的和的简便运算。

2、分数乘分数是求一个数的几分之几是多少。

〔二〕、分数乘法的计算法那么:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

注意〔1〕分数的化简:分子、分母同时除以它们的最大公因数。

〔2〕关于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分,提倡在计算过程中约分,这样简便。

〔3〕当带分数进展乘法计算时,要先把带分数化成假分数再进展计算。

〔三〕、规律:〔乘法中比拟大小时〕一个数〔0除外〕乘大于1的数,积大于这个数。

一个数〔0除外〕乘小于1的数〔0除外〕,积小于这个数。

一个数〔0除外〕乘1,积等于这个数。

〔四〕、分数混合运算的运算顺序和整数的运算顺序一样。

〔五〕、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a×b=b×d乘法结合律: a×b×c=a×(b×c)乘法分配律:a×(b+c)=ab+ac 或a×(b-c)=ab-ac二、分数乘法的解决问题〔单位“1”的量〔用乘法〕,求单位“1”的几分之几是多少〕1、找单位“1”:“占”、“是”、“比”的后面2、求一个数的几倍是多少;求一个数的几分之几是多少。

用乘法三、倒数1、倒数的意义:乘积是1的两个数互为倒数。

(互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

)2、求倒数的方法:〔1〕、求分数的倒数:交换分子分母的位置。

〔2〕、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

〔3〕、求带分数的倒数:把带分数化为假分数,再求倒数。

〔4〕、求小数的倒数:把小数化为分数,再求倒数。

3、1的倒数是1; 0没有倒数。

人教版小学六年级数学上册知识点归纳总结

人教版小学六年级数学上册知识点归纳总结

人教版小学六年级数学上册知识点归纳总结第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b<1时,c<a(b≠0)。

< p="">一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

人教版六年级数学上册知识点汇总

人教版六年级数学上册知识点汇总

人教版六年级数学上册知识点汇总第一单元分数乘法(一)分数乘法的意义1、分数乘整数:分数乘整数的意义与整数乘法的意义同样,就是求几个同样加数和得简易运算。

5 5比如:12× 6,表示: 6 个12相加是多少,还表示512的 6 倍是多少。

2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不同样,是表示这个数的几分之几是多少。

5比如: 6×12 ,表示:56 的12是多少。

252 57×12,表示:7的12是多少。

(二)分数乘法的计算法例1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,而后再乘,得数一定是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)分数大小的比较:1、一个数( 0 除外)乘以一个真分数,所得的积小于它自己。

一个数( 0 除外)乘以一个假分数,所得的积等于或大于它自己。

一个数( 0 除外)乘以一个带分数,所得的积大于它自己。

2、假如几个不为 0 的数与不一样分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

(四)解决实质问题。

1、分数应用题一般解题步行骤。

(1)找出含有分率的重点句。

(2)找出单位“ 1”的量(3)依据线段图写出等量关系式:单位“1”的量×对应分率 =对应量。

(4)依据已知条件和问题列式解答。

2、乘法应用题相关注意观点。

(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“ 1”的方法:从含有分数的重点句中找,注意“的”前“比”后的规则。

当句子中的单位“ 1”不显然时,把本来的量看做单位“ 1”。

(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少量占乙的几分之几。

(4)在应用题中如:小湖村昨年水稻的亩产量是750 千克,今年水稻的亩产量是800 千克,增产几分之几题目中的“增产”是多的意思,那么谁比谁多,应当是“多比少多”,“多”的是指 800 千克,“少”的是指 750 千克,即 800 千克比 750 千克多几分之几,联合应用题的表达方式,能够增补为“今年水稻的亩产量比昨年水稻的亩产量多几分之几”(5)“增添”、“提升”、“增产”等包含“多”的意思,“减少”、“降落”、“减员” 等包含“少”的意思,“相当于”、“占”、“是”、“等于”意思邻近。

(完整版)人教版六年级上册数学知识点汇总

(完整版)人教版六年级上册数学知识点汇总

第一单元位置1.找位置要先列后行,写位置先定第几列,再写第几行,格式为:(列,行)。

第二单元分数乘法1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

(为了计算简便,能约分的要先约分,然后再乘。

)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

(为了计算简便,可以先约分再乘。

)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

5.整数乘法的交换律、结合律和分配律,对分数乘法同样适用。

乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c a c + b c = ( a + b )×c6.乘积是1的两个数互为倒数。

7.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

1的倒数是1。

0没有倒数。

真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。

8.一个数(0除外)乘以一个真分数,所得的积小于它本身。

9.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

10.一个数(0除外)乘以一个带分数,所得的积大于它本身。

11.分数应用题一般解题步骤。

(1)找出含有分率的关键句。

(2)找出单位“1”的量(以后称为“标准量”)找单位“1”:在分率句中分率的前面;或“是”、“占”、“比”、“相当于”的后面(3)画出线段图,标准量与比较量是整体与部分的关系画一条线段即可,标准量与比较量不是整体与部分的关系画两条线段即可。

人教版小学六年级数学上册各单元知识点整理归纳总结

人教版小学六年级数学上册各单元知识点整理归纳总结

六年级上册数学知识点 第一单元 位置1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右为列数和行数,即“先列后行”。

作用:确定一个点的位置。

经度和纬度就是这个原理。

例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

注:(1)在平面直角坐标系中X 轴上的坐标表示列,y 轴上的坐标表示行。

如:数对(3,2)表示第三列,第二行。

(2)数对(X ,5)的行号不变,表示一条横线,(5,Y )的列号不变,表示一条竖线。

(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓竖排叫列 横排叫行 (从左往右看)(从下往上看) (从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。

3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。

第二单元 分数乘法(一)分数乘法意义:12 3 4 0行号1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。

例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。

注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)例如:53×61表示: 求53的61是多少?9 × 61表示: 求9的61是多少?A × 61表示: 求a 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

注:(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

人教版六年级数学上册知识点汇总

人教版六年级数学上册知识点汇总

人教版六年级数学上册知识点汇总第一单元分数乘法(一)分数乘法的意义求一个数的几分之几是多少用乘法。

例如:6×512,表示:6的512是多少。

27×512,表示:27的512是多少。

(二)分数乘法积大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数,所得的积大于它本身。

2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

(三)解决实际问题。

1、求一个数的几分之几是多少?(求一个数的几分之几用乘法计算)方法:单位“1”的数量×对应分率=对应数量。

2、分数的连乘。

找到每一个分率的单位“1”。

(1)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。

(2)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。

(3)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(4)分率与量要对应。

①多的对应量对多的分率;②少的对应量对少的分率;③增加的对应量对增加的分率;④减少的对应量对减少的分率;⑤提高的对应量对提高的分率;⑥降低的对应量对降低的分率;⑦工作总量的对应量对工作总量的分率;⑧工作效率的对应量对工作效率的分率;⑨部分的对应量对部分的分率;⑩总量的对应量对总量的分率;(四)倒数1、倒数:乘积是1的两个数互为倒数。

人教版六年级数学上册各单元知识点汇总

第一单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质易错探析分数乘整数及整数乘分数用分敛的分子和整数相乘的积作分子,分母不变。

易错点:单位“1”的选取容易出错。

举例探析:判断:甲数比乙数多[,则5乙敛匕甲教少1O(X)S探析:甲数比乙数多1,则S乙数;匕甲数少】°6分数乘分数分敛乘分敛,用分子相乘的积作分子、分母相乘的积作分母。

小数乘分数可以把小数化成分数,也可以把分数化成小数,再计算a分数乘法混合运算和简便计算1.分数乘法混合运算,没有括号的先算束法,后算加、减法;有括号的,先算括号里面的,再算括号外面的。

2.整数乘法的交换律、结合律和分配津,对于分数乘法也适用,解决问题1.连续求一个歇的儿分之几是多少,用连乘。

2.求比一个数多几分之几的数是多少,列式为ax(1+儿分之几)©3.求比一个数少几分之几的数是多少,列式为q x(1-几分之几)。

第二单元考点梳理总结归纳一览表单元考点基本概念与性质位置与方向1.描述物休的位丑与观浏点有关,说浏点不同,物休位置的描述洸不同,物体的位置关系具有相对性勺2.描述物体位丑的三要素:观测点、方向、距离口简单的路线图描述路线图时,要先按行走的路线确定每一个观测点,然后,以每一个观测点为参照,描述到下一个目标行走的方向和路程口-1-第三单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质倒数的认识1.乘积是1的两个数互为例数。

2.1的倒数是1,0没有倒敬。

分数除法除以一个数(0除外),等于乘这个数的倒数。

整数可以寿成分母是1的分数,分数四则混合运算分数混合运角和整数混合运算的运算顺序相同,,解决问题1.巳知一个数的几分之几是多少,求这个数。

1.方程法:(1)找出单位“1”,设未知堇为心(2)我出题中的等量关系式;(3)列方程.2.算术法:(1)我出单位“T;(2)找出题中的对应关系;(3)列出算式。

2.已知一个数以及这个数比另一个数多(少)几分之几,求另一个数,要找准单位“1”,若设另一个数为心列方程:(1±几分之几*=b或列算式:b-r(1土几分之几)〉3.求两分量:找一个未知量设心用两分量的关系列出等式即可。

人教版六年级上册数学知识点整理

书 香 浸 润, 励 志 成 长!第一单元 位置1、 用数对确定点的位置,如〔3,5〕表示:〔第三列,第五行〕 几 列 几 行竖排叫列 横排叫行〔从左往右看〕 〔从前往后看〕2、平移时用“上〞、“下〞、“前〞、“后〞、“左〞、“右〞来表述。

3、 图形左、右平移:行不变图形上、下平移:列不变 第二单元 分数乘法一、分数乘法〔一〕分数乘法的意义: 1、分数乘整数及整数乘法的意义一样。

都是求几个一样加数的和的简便运算。

例如: 98×5表示求5个98的和是多少?2、分数乘分数是求一个数的几分之几是多少。

例如: 98×43表示求98的43是多少? 〔二〕、分数乘法的计算法则:1、分数及整数相乘:分子及整数相乘的积做分子,分母不变。

〔整数和分母约分〕2、分数及分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进展乘法计算时,要先把带分数化成假分数再进展计算。

〔三〕、规律:〔乘法中比拟大小时〕一个数〔0除外〕乘大于1的数,积大于这个数。

一个数〔0除外〕乘小于1的数〔0除外〕,积小于这个数。

一个数〔0除外〕乘1,积等于这个数。

〔四〕、分数混合运算的运算顺序和整数的运算顺序一样。

〔五〕、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:〔a+b〕×c=ac+bc二、分数乘法的解决问题〔单位“1〞的量〔用乘法〕,求单位“1〞的几分之几是多少〕1、画线段图:〔1〕两个量的关系:画两条线段图;〔2〕局部和整体的关系:画一条线段图。

2、找单位“1”:在分率句中分率的前面;或“占〞、“是〞、“比〞的后面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几。

新人教版六年级数学上册各单元知识点归纳

人教版六上数学各单元知识点归纳第一单元分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如:65×5表示求5个65的和是多少? 31×5表示求5个31的和是多少?2、一个数乘分数的意义是求一个数的几分之几是多少。

例如:31×74表示求31的74是多少。

4×83表示求4的83是多少.(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3、为了计算简便,能约分的要先约分,再计算。

(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

(三)、 乘法中比较大小的规律一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(四)、分数混合运算的运算顺序和整数的运算顺序相同。

整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律: ( a + b )×c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少) 1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。

(2)部分和整体的关系:画一条线段图。

人教版小学六年级数学上册各单元知识点总结归纳整理(完整版)

人教版六年级上册知识点总结六年级上册数学知识点第一单元 位置1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右为列数和行数,即“先列后行”。

作用:确定一个点的位置。

经度和纬度就是这个原理。

例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

注:(1)在平面直角坐标系中X 轴上的坐标表示列,y 轴上的坐标表示行。

如:数对(3,2)表示第三列,第二行。

(2)数对(X ,5)的行号不变,表示一条横线,(5,Y )的列号不变,表示一条竖线。

(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓竖排叫列 横排叫行(从左往右看)(从下往上看) (从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。

3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。

12 3 4 0行号一、确定物体位置的方法: 1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺)二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。

三、位置关系的相对性:1、两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。

四、相对位置:东--西;南--北;南偏东--北偏西。

第二单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。

例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。

注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)例如:53×61表示: 求53的61是多少?9 ×61表示: 求9的61是多少? A × 61表示: 求a 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学上册各单元知识点汇总第一单元分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简易运算。

例如: 65×5表示求 5 个 65 的和是多少 ?×5表示求 5 个的和是多少 ?2、一个数乘分数的意义是求一个数的几分之几是多少。

例如:×表示求的是多少。

4×表示求 4 的是多少 .(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分 )2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3、为了计算简易,能约分的要先约分,再计算。

(尽量约分,不会约分的就不约,常考的质因数有 11×11=121;13×13=169; 14×14=196;15×15=225; 16×16=256;17× 17=289;18× 18=324;19× 19=361)4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。

(三)、乘法中比较大小的规律一个数 (0 除外 )乘大于 1 的数,积大于这个数。

一个数 (0 除外 )乘小于 1 的数 (0 除外 ),积小于这个数。

一个数 (0 除外 )乘 1,积等于这个数。

(四)、分数混合运算的运算顺序和整数的运算顺序相同。

整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a×b = b ×a乘法结合律: ( a ×b ) ×c = a ×( b ×c )乘法分配律: ( a + b )×c = a c + b c二、分数乘法的解决问题 (已知单位“1的”量 (用乘法 ),即求单位“1的”几分之几是多少 )1、画线段图: (1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。

(2)部分和整体的关系:画一条线段图。

2、找单位“ 1:”单位“ 1在”分率句中分率的前面;或在“占”、“是”、“比”“相当于”的后面。

3、写数量关系式的技巧:(1)的“”相当于“×”,“占”、“相当于”“是”、“比”是“ =”分(2)率前是“的”字:用单位“1的”量×分率 =部分量例如:甲数是20,甲数的是多少?列式是:20×4、有没有“比”字句的问题;(比少):单位“ 1的”量× (1分-率)=比较量;例如:甲数是50,乙数比甲数少,乙数是多少?列式是: 50×(1-)(比多):单位“1的”量×(1+分率 )=比较量例如:小红有30 元钱,小明比小红多,小红有多少钱?列式是: 50×(1+)3、求一个数的几倍是多少:用一个数×几倍;4、求一个数的几分之几是多少:用一个数×几分之几。

5、求几个几分之几是多少:用几分之几×个数6、求已知一个部分量是总量的几分之几,求另一个部分量的方法: (1)、单位“1的”量×(1分-率 )=另一个部分量(建议用)(2)、单位“ 1的”量 -已知占单位“ 1的”几分之几的部分量 =要求的部分量第二单元位置与方向(二)一、确定物体位置的方法: 1、先找观测点; 2、再定方向(看方向夹角的度数,大凡靠近哪个方向就以那个方向为主,如靠近北方就说北偏西或北偏东); 3、最后确定距离(看比例尺)二、我们用数对确定点的位置。

(数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右为列数和行数,即“先列后行”)如数对 (3,5)表示: (第三列,第五行 ),竖排叫列 (从左往右看 )横排叫行 (从前往后看),先数列再数行。

描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。

三、位置关系的相对性: 1、两地的位置具有相对性在叙述两地的位置关系时,观测点例外,叙述的方向凑巧相反,而角度和距离不变。

四、相对位置:东--西;南 --北;南偏东 30°距离 100 米--北偏西 30°距离 100米。

第三单元分数除法一、倒数1、倒数的意义:乘积是 1 的两个数互为倒数。

注意:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数 )。

2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。

(2)、求整数的倒数:把整数看做分母是 1 的分数,再交换分子分母的位置。

(3)、求带分数的倒数:把带分数化为假分数,再求倒数。

(4)、求小数的倒数:把小数化为分数,再求倒数。

3、1 的倒数是 1;因为 1× 1=1;0 没有倒数,因为 0 乘任何数都得 0,(分母不能为 0)4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

5、运用, a× =b求× a 和 b 是多少。

把 a× =b看×成等于 1,也就是求的倒数和求的倒数。

1、分数除法的意义:乘法:因数×因数 =积除法:积÷一个因数 =另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

例如:÷意义是:已知两个因数的积是与其中一个因数,求另一个因数的运算。

2、分数除法的计算法则:除以一个不为0 的数,等于乘这个数的倒数。

3、分数除法比较大小时的规律:(1)当除数大于 1,商小于被除数 ;(2)当除数小于 1(不等于 0),商大于被除数 ;(3)当除数等于 1,商等于被除数。

“ [ ]叫做”中括号。

一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。

二、分数除法解决问题1,解法: (1)方程:根据数量关系式设未知量为X,用方程解答。

解:设未知量为X(一定要解设) ,再列方程用 X×分率 =详尽量例如:公鸡有20 只,是母鸡只数的,母鸡有多少只。

(单位一是母鸡只数,单位一未知 .)解:设母鸡有X 只。

列方程为:X×=20(2)算术(用除法):求单位“1的”量(用除法):即已知单位“1的”几分之几是多少,求单位“1的”量。

对应量÷对应分率 =单位“1的”量例如:公鸡有 20 只,是母鸡只数的,母鸡有多少只。

(单位一是母鸡只数,单位一未知,)用除法,列式是: 20÷2、看分率前有没有比多或比少的问题;分率前是“多或少”的关系式:(比少):比较量÷(1分-率 )=单位“1的”量;例如 :桃树有 50 棵,比苹果树少,苹果树有多少棵。

列式是: 50÷(1-)(比多):比较量÷(1+分率 )=单位“1的”量例如 :一种商品现在是80 元,比原价增加了,原价多少?列式是:80÷(1+)3、求一个数是另一个数的几分之几是多少:用一个数除以另一个数,结果写为分数形式。

例如 :男生有 20 人,女生有 15 人,女生人数占男生人数的几分之几。

列式是: 15÷20==4、求一个数比另一个数多几分之几的方法:用两个数的相差量÷单位“1的”量 =分数即①求一个数比另一个数多几分之几:用(大数–小数)÷单位“1,”结果写为分数形式。

例如: 5 比 3 多几分之几?( 5-3)÷3=②求一个数比另一个数少几分之几:用(大数–小数)÷单位“ 1,”结果写为分数形式。

例如: 3 比 5 少几分之几?( 5-3)÷5=说明:多几分之几不等于少几分之几,因为单位一例外。

5、工程问题:把工作总量看作单位“ 1,”合做多长时间完成一项工程用 1÷效率和,即 1÷(1/ 时间 +1/时间),(工作效率 =1/时间)例如:一项工程甲单独做要 5 天完成,乙单独做要 10 天完成,甲单独做要 3 天完成,三人合做几天可以完成?列式: 1÷(++)第四单元比一、比的意义1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

例如 15:10 = 15 ÷10=(比值通常用分数表示,也可以用小数或整数表示) 15∶10=前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。

例:长是宽的几倍。

也可以表示两个例外量的比,得到一个新量。

例:路程÷速度 =时间。

4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、比和除法、分数的联系:比前项比号“:”后项比值除法被除数除号“÷”除数商分数分子分数线“—分”母分数值7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

9、体育比赛中出现两队的分是 2:0 等,这只是一种记分的形式,不表示两个数相除的关系。

10、求比值:用前项除以后项,结果最佳是写为分数(不会约分的就不约分)例如: 15∶10=15÷10=15/10=二、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0 除外 ),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时 (0 除外 ),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0 除外 ),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4.化简比:( 1)根据比的基本性质化简。

0.8:0.16=80:16=5:1(2)用求比值的方法。

注意:最后结果要写成比的形式。

例如: 15∶10 = 15 ÷10 =15/10= = 3∶2还可以 15∶10 = 15 ÷10 最=简整数比是 3∶25、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。

6.按比例分配:把一个数量按照一定的比来进行分配。

这种方法通常叫做按比例分配。

大凡有两种解题法(1),用分率解 :按比例分配通常把总量看作单位“1,”即转化成分率。

要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。

例如:有糖水25 克,糖和水的比为1:4,糖和水分别有几克?1+4=5 糖占用 25×得到糖的数量,水占用 25×得到水的数量。

相关文档
最新文档