分数除法知识点总结(8篇)

合集下载

第三单元分数除法应用拓展篇【八大考点】(解析版)人教版

第三单元分数除法应用拓展篇【八大考点】(解析版)人教版

篇首寄语我们每位老师都希望把最好的教学资料留给学生,但面对琳琅满目的资料时,总是费时费力才能找到自己心仪的那份,编者也常常为此苦恼。

于是,编者就常想,如果是自己来创作一份资料又该怎样?在结合自身教学经验和学生实际情况后,最终创作出了一个既适宜课堂教学讲解,又适宜课后作业练习,还适宜阶段复习的大综合系列。

《2023-2024学年六年级数学上册典型例题系列》是基于教材知识点和常年考点真题总结与编辑而成的,该系列主要分为典型例题篇、专项练习篇、单元复习篇、分层试卷篇等四个部分。

1.典型例题篇,按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。

2.专项练习篇,从高频考题和期末真题中选取专项练习,其优点在于选题经典,题型多样,题量适中。

3.单元复习篇,汇集系列精华,高效助力单元复习,其优点在于综合全面,精炼高效,实用性强。

4.分层试卷篇,根据试题难度和不同水平,主要分为基础卷、提高卷、拓展卷三大部分,其优点在于考点广泛,分层明显,适应性广。

黄金无足色,白璧有微瑕,如果您在使用资料的过程中有任何宝贵意见,请留言于我改进,欢迎您的使用,谢谢!101数学工作室2023年9月1日2023-2024学年六年级数学上册典型例题系列第三单元分数除法·应用拓展篇【八大考点】(解析版)专题解读本专题是第三单元分数除法·应用拓展篇。

本部分内容以单位“1”转化问题为主,考点和题型综合性强,难度较大,建议根据学生掌握情况选择性进行讲解部分考点,一共划分为八个考点,欢迎使用。

目录导航目录【考点一】常见的单位“1”转化问题 (3)【考点二】单位“1”转化问题:已知剩余数量,转化单位“1” (6)【考点三】单位“1”转化问题:已知数量差,转化单位“1” (14)【考点四】单位“1”转化问题:已知数量和,转化单位“1” (16)【考点五】单位“1”转化问题:任选单位“1”进行转化 (17)【考点六】单位“1”转化问题:多个单量的统一 (20)【考点七】单位“1”转化问题:以总量作单位“1” (22)【考点八】单位“1”转化问题:以单量作单位“1” (24)典型例题【考点一】常见的单位“1”转化问题。

分数除法知识点总结整理

分数除法知识点总结整理

分数除法知识点总结整理一、分数的除法规则1. 分数的除法运算规则分数的除法运算规则是将一个分数除以另一个分数,得到一个新的分数。

当进行分数相除时,我们需要将除数倒数,然后将被除数乘以倒数得到商。

具体来说,如果要计算两个分数的商,可以将分数化为通分形式,然后将除数的分母和被除数的分子相乘,得到分子,再将除数的分子和被除数的分母相乘,得到分母,最后将得到的分子和分母化为最简分数形式,即为所得的商。

2. 分数的除数和被除数在进行分数除法运算时,除数表示将分子分成几份,而被除数表示每份的数量。

除数和被除数的关系是除数除以被除数等于商。

例如,如果除数为2/3,被除数为4/5,那么2/3÷ 4/5 的意思是将4/5分成2/3份,每份的数量是多少?3. 分数的倒数在分数除法中,要先将除数倒数,即将除数的分子和分母互换位置。

例如,要求4/5的倒数,可以通过将4/5的分子和分母互换位置得到5/4,即4/5的倒数是5/4。

二、分数除法的计算步骤1. 分数除法的计算步骤分数除法的计算步骤包括以下几个步骤:1)将除数倒数;2)将被除数乘以倒数得到商;3)将得到的商化为最简分数形式。

2. 分数除法的示例以1/2 ÷ 1/3为例,首先将除数1/3倒数得到3/1,然后将被除数1/2乘以倒数3/1得到3/2,最后将3/2化为最简分数形式得到1 1/2,即1/2 ÷ 1/3 = 1 1/2。

三、分数除法的应用1. 分数除法的应用范围分数除法的应用范围非常广泛,可以用于解决各种实际问题,例如在日常生活和工作中,我们经常需要进行分数的除法运算,计算出几个分数的商,来帮助我们解决一些实际问题。

分数除法的实际问题可以包括以下几种类型:1)分配问题:将一定数量的物品按照一定比例分配给不同的人,需要进行分数的除法运算;2)时间问题:计算一段时间内的工作量,需要进行分数的除法运算;3)距离问题:计算两个地点之间的距离,需要进行分数的除法运算。

人教版六年级数学上册第三单元《分数除法》知识总结

人教版六年级数学上册第三单元《分数除法》知识总结

《分数除法》知识总结1.分数除法计算(1)分数除法的意义和分数除以整数整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。

已知两个因数的积与其中一个因数,求另一个因数,用(除法)计算。

1013103=÷的意义是:已知两个因数的积是103,其中一个因数是3,求另一个因数是多少。

分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

分数除以整数的计算方法:把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。

分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。

(2)分数除以整数,等于分数乘这个整数的倒数。

练习: 1、填空(1)根据3565372=⨯和分数除法意义可得:=÷53356( ),=÷72356( )。

(2)把29m 长的绳子平均剪成4段,每段是29m 的( )。

(3)打字员打一份文件,打了20分钟后还剩52,平均每分钟打这份文件的( )。

2.列式计算。

(1)一个数的6倍是51,这个数是多少?(2)51的61是多少?3.看图列式计算。

811(2)一个数除以分数知识点一:一个数除以分数的计算方法:一个数除以分数,等于这个数乘分数的倒数。

知识点二:分数除法的统一计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

知识点三:商与被除数的大小关系:一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。

0除以任何数商都为0. 练习:1.算一算4851625÷ 44392213÷ 1427277⨯210÷ 2.填空。

(1)32的43是( ),它和32÷( )得数相同。

(2)分数除法可以转化为( )进行计算,计算过程中,转变成乘( )的倒数。

3.判断。

(1)两个真分数相除,商大于被除数。

新人教版六年级数学上册分数除法知识点归纳总结

新人教版六年级数学上册分数除法知识点归纳总结

六年级数学上册分数除法知识点概括总结一、分数除法1、分数除法的意义:乘法:因数×因数 = 积除法:积÷ 一个因数= 另一个因数分数除法与整数除法的意义同样,表示已知两个因数的积和此中一个因数,求另一个因数的运算。

2、分数除法的计算法例:除以一个不为 0 的数,等于乘这个数的倒数。

3、规律(分数除法比较大小时):(1)、当除数大于 1,商小于被除数;(2)、当除数小于 1(不等于 0),商大于被除数;(3)、当除数等于 1,商等于被除数。

4、“”叫做中括号。

一个算式里,假如既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。

二、分数除法解决问题(未知单位“1的”量(用除法):已知单位“1的”几分之几是多少,求单位“1”的量。

)1、数目关系式和分数乘法解决问题中的关系式同样:( 1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1 分率) =分率对应量2、解法:(建议:最好用方程解答)(1)方程:依据数目关系式设未知量为X,用方程解答。

(2)算术(用除法):分率对应量÷对应分率 = 单位“1”的量3、求一个数是另一个数的几分之几:就4、求一个数比另一个数多(少)几分之几:一个数÷另一个数两个数的相差量÷单位“1”的量或:①求多几分之几:大数÷小数–1②求少几分之几: 1 -小数÷大数三、比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后边的数叫做比的后项。

比的前项除此后项所得的商,叫做比值。

比如15 : 10 = 15÷10= 3(比值往常用分数表示,也能够用小数或整数表2示)∶∶∶∶前项比号后项比值3、比能够表示两个同样量的关系,即倍数关系。

也能够表示两个不一样量的比,获得一个新量。

四年级除法知识点总结

四年级除法知识点总结

四年级除法知识点总结四年级除法知识点总结「篇一」一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。

二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。

1、被除数÷除数=被除数×除数的倒数。

2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。

3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。

4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c当b>1时,c(a≠0)②除以小于1的数,商大于被除数:a÷b=c当b<1时,c>a(a≠0b≠0)③除以等于1的数,商等于被除数:a÷b=c当b=1时,c=a三、分数除法混合运算运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。

加、减法为一级运算,乘、除法为二级运算。

②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。

四、比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。

比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。

3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

3、化简比:化简之后结果还是一个比,不是一个数。

(1)、用比的'前项和后项同时除以它们的最大公约数。

(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

也可以求出比值再写成比的形式。

分数的除法知识点总结

分数的除法知识点总结

分数的除法知识点总结在数学中,分数是常见的数值表达方式之一。

除法是数学四则运算中的一种,它用于解决一个数值被另一个数值相除的问题。

本文将详细总结分数的除法知识点,包括分数的表示方法、分数除法的计算规则和常见的解题技巧。

一、分数的表示方法分数由分子和分母两部分组成,分子表示被分割的部分,分母表示分割的份数。

分数可以用以下几种形式进行表示:1. 真分数:分子小于分母的分数,如1/2、3/4等。

2. 假分数:分子大于等于分母的分数,如5/4、7/3等。

3. 带分数:由整数部分和真分数部分组成的分数表示方式,如2 1/2、3 3/4等。

二、分数除法的计算规则分数除法的计算规则与整数除法相似,但需要特别注意以下几点:1. 转化为乘法:分数的除法可以通过转化为乘法来简化计算。

将除法问题转化为分数相乘的形式可以更方便地进行运算。

2. 变换为倒数:除法问题可以通过将除数倒置并与被除数相乘来解决。

这可以将除法问题转化为乘法问题,简化了计算过程。

3. 分数的除法规则:两个分数相除时,可以通过将其中一个分数的分子与另一个分数的分母相乘,分母与分子相乘的结果构成新的分数。

4. 约分:在进行分数除法运算时,可以对得到的分数进行约分,使结果更简洁。

三、分数除法的解题技巧1. 整除的情况:若被除数能够整除除数,则结果为整数,即分子为被除数与除数的商,分母为1。

2. 无限循环小数:当两个数相除得到的结果是一个无限循环小数时,可以将该循环小数化成分数。

将循环部分记为x,循环节的位数记为n,那么这个循环小数可以表示为x/n,分子为循环部分x,分母为由n个9组成的数字。

3. 小数转分数:将小数转化为分数时,可以先写出小数的位数,再将小数的数值部分作为分子,分母为10的位数。

4. 分数连除:如果在一个除法题中,连续出现多个分数,则可以将除法运算转化为乘法运算,将多个分数相乘得到结果。

四、例题解析1. 计算8/3÷1/4的结果。

2023-2024年人教版六年级上册数学分数除法知识点总结素材

2023-2024年人教版六年级上册数学分数除法知识点总结素材

分数除法知识点总结1.倒数的认识:乘积是1的两个数互为倒数(不能说一个数就是倒数)(1)求分数的倒数:交换分子分母的位置。

(2)求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置(3)求带分数的倒数:把带分数化为假分数,再求倒数。

(4)求小数的倒数:把小数化为分数,再求倒数(5)1的倒数是1,0没有倒数(6)真分数的倒数大于1假分数的倒数小于或等于1带分数的倒数小于1。

2.分数除法的计算方法:分数除以一个数(0除外),等于乘这个数的倒数,再用分数乘法计算,别忘了化简(或除号变乘号,除数变倒数)注意:被除数不变;除号变乘号;除数变成它的倒数。

3.除法的规律:(1)当除数大于1,商小于被除数;(2)当除数小于1(不等于0),商大于被除数;(3)当除数等于1,商等于被除数。

4.分数混合运算分数混合运算的顺序和整数混合运算一样要注意:分数混合运算中,既有除法又有乘法,先把除法变乘法,再按照乘法运算定律(能简便要简便,不能则直接计算)约分计算5.简易分数方程:利用等式的性质或四则运算即可,和其他方程做法医院6.简便运算常考题型:①(a±b)÷c=a÷c±b÷cc÷(a±b)不可用,要直接计算例题:②a÷b÷c=a÷(bxc)a÷(bxc)= a÷b÷c先去括号,再把除法变乘法,再用乘法交换律和结合律计算例题:③提取公因式两个分母相同的加减法式子相除,把公因式提取出来(先找两式的倍数关系,若没有找分数单位的式子作公因式)④带分数在后,直接计算:带分数在÷后面,直接计算,先把带分数化成假分数(分子保留乘法式子的形式),再把除法化成乘法约分⑤上下约分成1把分子和分母的接近的乘法式子统一成有一样的乘法式子,再用分配律等方法化简,再约分成17.解决问题:补:除法问题中,“每/一”后面的量作除数步骤:(1)找单位“1”(2)未知单位“1”的量用除法:对应的量÷对应的分率=单位“1”(画图)(3)也可设单位“1”的量为x,根据题意列方程解答常考题型:①已知一个数的几分之几是多少,求这个数已知量÷已知量占单位“1”的几分之几=单位“1”的量②已知比一个数多或少几分之几的数是多少,求这个数已知量÷(1±几分之几)=单位“1”的量③和倍/差倍问题方法一:找出单位“1”的量并设未知数,用含有未知数的式子表示另一个量,再根据两个数的和或差列方程式解答。

第三单元 分数除法 必背知识点

第三单元  分数除法 必背知识点

第三单元《分数除法》知识点1.分数除法计算(1)分数除法的意义和分数除以整数:整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。

分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

分数除以整数的计算方法:把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。

分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。

(2)分数除以整数,等于分数乘这个整数的倒数。

一个数除以分数的计算方法:一个数除以分数,等于这个数乘分数的倒数。

分数除法的统一计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

商与被除数的大小关系:一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。

0除以任何数商都为0.(1)两个真分数相除,商一定大于被除数。

(2)一个数除以假分数,商一定小于等于被除数。

(3)分数除法的混合运算除加、除减混合运算,如果没有括号,先算除法,后算加减。

分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。

不含括号的分数混合运算的运算顺序:在一个分数混合运算的算式里,如果只含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二级运算,再算第一级运算。

含有括号的分数混和运算的运算顺序:在一个分数混合运算的算式里,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的。

整数的运算定律在分数混和运算中的运用:在进行分数的混和运算中,可以利用加法、减法、乘法、除法的运算定律或运算性质,使计算简便。

2.解决问题已知一个数的几分之几是多少,求这个数的应用题解法列方程解题的关键:找出题中数量间的等量关系。

用算术法解除法应用题的关键:找准已知数量对应的单位“1”的几分之几。

解简单的“已知一个数的几分之几是多少,求这个数”的解题方法:方程解法:(1)找出单位“1”,设未知量为x;(2)找出题中的数量关系式;(3)列出方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数除法知识点总结(8篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!分数除法知识点总结(8篇)作为一位优秀的人·民教师,时常会需要准备好教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

那么你有了解过教案吗?以下是本店铺分享的分数除法知识点总结(8篇)希望大家可以喜欢并分享出去。

分数除法篇一分解质因数和短除法的区别是定义不同。

每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

短除法是先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数。

后来,使用分解质因数法来分别分解两个数的因数,再进行运算。

在小学数学里,两个正整数相乘,那么这两个数都叫做积的因数,或称为约数。

小学数学定义:假如aXb=c(a、b、c都是整数),那么我们称a和b就是c的因数。

需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。

反过来说,我们称c为a、b的倍数。

在研究因数和倍数时,小学数学不考虑0。

(来源:文章屋网)分数除法篇二1.一本书共有360页,笑笑读了它的5/12.读了多少页?2.某学校绘画小组男生有12人,占绘画小组总人数的3/5.绘画小组一共有多少人?3.某工厂4月用水240吨,是3月的2/5,3月用水多少吨?4.五年级有160名学生,参加科技小组的占总人数的1/5.参加科技小组的有多少人?5.一本故事书有80页,小明第一天从第一页看起,看了全书的1/5.第二天他应该从第几页看起?6.笑笑看一本少儿版《西游记》,平均每天看15页,连续看了10天,正好看了这本书的3/5.这本书一共有多少页?分数除法范文篇三“除数是两位数除法”是小学生学习整数除法的最后阶段,是在学生学习了“一位数乘两位数乘法”“除数是一位数除法”的基础上编排的。

一、体例结构上的变与不变“除数是两位数除法”课标教材和实验教材都安排在四年级上册,主要内容包括口算除法、笔算除法和商的变化规律,具体按“例题、想一想、做一做、练习、整理和复习”这五大体例来编排,不同的只是例题数和习题数。

大纲教材则是将这一内容安排在三年级下册的第3单元,除了编排了除数是整十数的口算除法、除数是两位数的笔算除法外,还编排了连除应用题和连除的一些简便计算。

体例上是按“准备题、例题、试一试、做一做、练习、复习”这六大块来编排的。

就体例结构而言,大纲教材比课标、实验教材多了“准备题”和“试一试”,课标、实验教材比大纲教材多了4小题“想一想”,其他基本类同。

(一)关于准备题课标、实验教材没有编排准备题,而大纲教材则在每个例题前都编排了1~2题的准备题。

准备题的编排重视学生已有的学习经验,大多是以原有知识作为新课起点,起铺垫作用。

具体内容见表1、表1、大纲教材中“除数是两位数除法”例题与准备题例题准备题口算除法例1、80里面有几个10?80里面有几个20?例2、120÷30= 80÷2、60÷3(首位能整除的整十数、整百数除以一位数)120÷6、240÷8(首位不能整除的整十数、整百数除以一位数)目的是为了复习整十、整百数除以一位数的口算方法,为学习整十数除整十数、几百几十数做准备笔算除法例1、90÷30=例2、200÷60=……(除数是整十数的笔算除法)(1)口算:40÷20320÷80 笔算除法试商是以口算除法为基础的。

此口算题是为例题教学做准备(2)()里最大能填几?60X()50X()例3、96÷32=例4、143÷41=……(“四舍”法试商)(1)()里最大能填几?40X()20X()(2)例5:443÷58=(“五入”法试商)(1)()里最大能填几?30X()60X()(2)例6:283÷72=(初商过大需调商)(1)在下面的里填上>、62X636121X714532X825672X5361为调商计算做铺垫。

因本课的难点是出现初商过大时要调商(2)289÷72、复习巩固笔算除法的计算方法例7:392÷48(初商过小需调商)(1)()里最大能填几?58X()37X()49X()68X()(2)382÷48 复习笔算除法的计算方法,为教学例7做准备例8:70÷14=例9:209÷26=(除数个位是4.5.6的两位数除法) 25X514X615X724X825X316X9 除数个位是4.5.6的两位数除法,由于不接近整十数,用“四舍五入”法把除数看成接近整十数试商,调商次数较多,比较麻烦。

用特殊的“口算试乘”法去试商可提高计算的正确率和速度。

而准备题是为本课的“口算试乘”作服务的例10:644÷28=例11、3052÷42=(除数是两位数除法的计算法则概括)本课是法则的总结。

除数是两位数与除数是一位数的商的最高位的试商方法是完全相同的。

准备题是为例题法则总结作铺垫例12、3594÷58=(验算) 222÷37=66X3、 7=315÷45=77X45=14÷3=4 (2)4X3=14、复习了整除与有余数除法中被除数、除数、商以及除数之间的关系,为例题验算教学做准备。

例题教学中就可以让学生根据以上关系自己列式验算,为学生参与教学过程创造条件例13、9568÷46=(商中间有0的除法)(1)648÷6817÷4、除数是一位数除法中商中间有0的除法学生已学过,为例题教学作铺垫(2)判断下面各题的商是几位数。

判断商是几位数,由此可推出除数是两位数除法的估商位数的估商方法,为例题教学做准备例14、7920÷33(商末尾有0的除法) 5040÷87200÷6450÷5 复数是一位数,商末尾有0的除法备注:例15、例16连除应用题,例17连除的简算略数学是逻辑性很强、系统性严密的学科,每个知识节点间都是前后连贯紧密联系的。

即旧知是新知学习的基础,新知又是旧知的顺应、组合和发展。

从上表中可看出大纲教材中的“准备题”都是根据知识间的联系、组合而转换、迁移过来的。

笔者认为,这些准备题既可为学生的自学、探究学习提供样板,在自学、探究学习中使学生的迁移意识、迁移能力得到培养,又可为年轻教师的课堂教学提供“脚手架”。

小学数学教科书是小学数学教学的基本载体,在数学课堂教学中具有不可替代作用,而尤以新教师更甚,新教师相对来说对教材的解读能力、开发能力比较薄弱。

如大纲教材中的“例6:283÷72=(初商过大需调商)”,准备题“(1)在下面的里填上>、(二)关于试一试、练一练在每个例题后,大纲教材安排了“试一试”“练一练”。

“试一试”类同于课标、实验教材中的“做一做”,形式单一、多为基础练习。

而“练一练”是在“试一试”基础上的提升,内容相对来说较丰富,个中习题都是围绕着本节课的例题编排、服务的。

如例5学习“443÷58(“五入”法试商)”在2小题“试一试”后编排了“练一练”,“练一练”中的5道习题都是围绕着例5内容,分别是(1)先说说下面各题的除数可以看作多少试商,再进行计算;(2)()里最大能填几?;(3)(4)是用竖式计算有12小题;(5)算用结合。

这5道习题重点是巩固试商方法,并能正确地进行计算,但每题的要求又有所侧重。

大纲教材这种体例编排优点外显。

“除数是两位数除法”是比较复杂的计算知识,学生在理解算理、算法的基础上得花费一定的时间和精力――得有适量的练习来掌握计算方法、拓宽计算思路和提高学生的计算技能,而后才能正确、熟练、灵活地计算。

教材按“准备题例题试一试练一练”的顺序编排,结构清晰而完整,练习适量。

这样的编排方式给了学生一个完整“自学单”,学生可完全借助已掌握的知识技能来对新知的学习产生积极的影响,体现了学生学习的自主性。

(三)关于想一想课标教材和实验教材在口算除法例题教学后都安排了相应的除法估算,即“想一想:83÷20≈,80÷19≈,122÷30≈,120÷28≈”,这样编排的目的是为估商、试商做准备的。

这在大纲教材中是没有的。

应该说,估算能力是计算能力的重要组成部分。

在日常学习、生活中,处处有计算,也处处离不开估算。

从某种意义上说,估算的应用已大大超过精确计算。

教给学生常用的估算方法,培养学生估算意识、估算能力是小学数学教学中一项重要任务。

相关文档
最新文档