12脉冲变压器原理
脉冲变压器原理

脉冲变压器原理脉冲变压器原理脉冲变压器是一种用于变换电压的电子元件,在电子学领域得到了广泛的应用。
脉冲变压器的原理是基于电磁感应定律,通过变换电磁场的磁感应强度来实现变换电压的目的。
下面将详细介绍脉冲变压器的工作原理和应用。
脉冲变压器的结构和工作原理脉冲变压器由一个磁芯和两个绕组组成,它能够将输入的脉冲信号转换成带变化电压幅度的输出脉冲信号。
通常脉冲变压器的两个绕组环绕在同一个铁芯上,它们分别是输入绕组和输出绕组。
在输入绕组中通常传入一个脉冲信号,而输出绕组则用来输出变换后的脉冲信号。
脉冲变压器主要的工作原理是电磁感应定律。
当输入绕组中通入一个脉冲信号的时候,绕组中就会产生一个瞬时的磁场变化,这个磁场变化会引起磁芯中的磁通量发生变化。
当磁通量发生变化时,就会在输出绕组中产生一个感应电动势,这个感应电动势进一步就会导致输出脉冲信号的变化。
如果输入和输出绕组匝数分别为N1和N2,磁芯的磁导率为μ,输入绕组中的电流为I1,那么在磁芯中的磁通量Φ可以表示为:Φ=N1I1/μ当感应电动势被产生时,其大小是与磁通量Φ、输出线圈的匝数N2以及时间导数dT/dt成正比的,因此可以得到:e=-N2(dΦ/dt)由于磁通量的变化与输入信号有关,因此输出脉冲信号的波形也会随着输入信号的变化而改变。
脉冲变压器的应用脉冲变压器的应用非常广泛,下面将介绍几个常见的应用。
1.开关电源中的脉冲变压器在开关电源中,脉冲变压器被用来实现变换电压的目的。
当开关管被关断的时候,输入绕组中的电流会快速下降,这个快速的电流变化会导致磁通量的变化,从而在输出绕组中产生一个加速的电压。
这个输出电压可以用来充电、滤波和调节输出电压。
2.无线电通信中的脉冲变压器在无线电通信中,脉冲变压器被用来实现信号的传输。
当输入绕组中传入一个调制信号时,输出绕组中就会产生一个相应的变换信号。
这样的信号变换可以通过天线进行无线传输,从而实现通信。
3.计算机磁盘驱动器中的脉冲变压器在计算机磁盘驱动器中,脉冲变压器被用来驱动磁头,以便从磁盘上读取或写入数据。
12pulse变压器原理及应用

HARMONIC MITIGATION OF 12-PULSE DRIVESWITH UNBALANCED INPUT LINE VOLTAGESKarl M. HinkMTE CorporationW147 N 9525 Held DriveMenomonee Falls, WI 53051Telephone 262-253-8200; Fax 262-253-8210; E-mail: karlmhink@ABSTRACTTwelve-pulse drives are frequently specified by consulting engineers for heating, ventilating and air conditioning applications because of their theoretical ability to reduce harmonic current distortion, but very little information has been published showing how twelve-pulse drives perform under actual operating conditions with unbalanced input line voltages. This paper presents test data which demonstrate that twelve-pulse drives do not achieve the level of harmonic mitigation most engineers expect and that these drives may not meet the requirements of IEEE-519 under practical operating conditions. The actual performance of twelve-pulse and six-pulse drives is compared to the performance of a six-pulse drive fed by a Matrix Harmonic Filter. The Matrix Harmonic Filter provides superior harmonic mitigation at lower cost.In the mid 1960s when power semiconductors were only available in limited ratings, twelve-pulse drives provided a simpler and more cost effective approach to achieving higher current ratings than direct paralleling of power semiconductors. This technique is still employed today in very large drive applications. A typical diagram of a large twelve-pulse drive appears in figure 1. The drive’s input circuit consists of two six-pulse rectifiers, displaced by 30 electrical degrees, operating in parallel. The 30-degree phase shift is obtained by using a phase shifting transformer. The circuit in figure 1 simply uses an isolation transformer with a delta primary, a delta connected secondary, and a second wye connected secondary to obtain the necessary phase shift. Because the instantaneous outputs of each rectifier are not equal, an interphase reactor is used to support the difference in instantaneous rectifier output voltages and permit each rectifier to operate independently. The primary current in the transformer is the sum of each six-pulse rectifier or a twelve-pulse wave form.Theoretical input current harmonics for rectifier circuits are a function of pulse number and can be expressed as:h = (np + 1) where n= 1, 2, 3,… and p = pulse numberFor a six-pulse rectifier, the input current will have harmonic components at the following multiples of the fundamental frequency.5, 7, 11, 13, 17, 19, 23, 25, 29, 31, etc.For the twelve-pulse system shown in figure 1, the input current will have theoretical harmonic components at the following multiples of the fundamental frequency:11, 13, 23, 25, 35, 37, etc..Note that the 5th and 7th harmonics are absent in the twelve-pulse system. Since the magnitude of each harmonic is proportional to the reciprocal of the harmonic number, the twelve-pulse system has a lower theoretical harmonic current distortion.Figure 1The problem with the circuit shown in figure 1 is that the two rectifiers must share current exactly to achieve the theoretical reduction in harmonics. This requires that the output voltage of both transformer secondary windings match exactly. Because of differences in the transformer secondary impedances and open circuit output voltages, this can be practically accomplished for a given load (typically rated load) but not over a range in loads. This is a very significant problem of the parallel twelve-pulse configuration.A twelve-pulse system can also be constructed from two six-pulse rectifiers connected in series. In this configuration, two six-pulse rectifiers, each generating one half of the DC link voltage, are series connected. Refer to figure 2. In this connection, problems associated with current sharing are avoided and an interphase reactor is not required. For applications where harmonics rather than high current ratings are the issue, this solution is much simpler to implement than the parallel connection.Figure 2Using the series rectifier connection, it is very easy to construct a twelve-pulse drive from a standard six-pulse drive if the six-pulse drive has its DC bus terminals available or permits access to one side of the DC bus. Many standard AC drives provide terminals in the DC bus to accommodate an external DC link choke. These same terminals can be used to add an external rectifier converting the drive to twelve-pulse operation. Refer to figure 3. In this case there is no need for extra circuitry to control inrush current for the second rectifier. The net result is a system solution well within the means of many system integrators. There are many fine textbooks and articles in which rectifier circuits are examined and analyzed in detail. However, most of the analysis is performed under the assumption of balanced three-phase line voltages. Our practical experience suggests that this assumption is not valid for many industrial and commercial power systems, particularly systems with nonlinear loads. As we traveled around the United States working primarily with drive applications, our impression was that most power systems were operating with 1% to 3% unbalance at the point of utilization.ANSI C84.1 – 1995 defines percent voltage unbalance as:100 X (max. deviation from average voltage)(Average Voltage)This same standard also reports that based on field surveys, 98% of power systems are within 0 - 3.0% voltage unbalance range and 66% are within 0 - 1.0% unbalance at the point of common coupling. The standard recommends that electric supply systems be designed and operated to the limit of a maximum voltage unbalance to 3% when measured at the electric utility revenue meter under no-load conditions. Load unbalance within the building power distribution system adds to the utility unbalance at the point of utilization.Figure 3To determine how a twelve-pulse drive system operates under unbalanced line voltage conditions, we constructed a 30 HP twelve-pulse drive from a standard delta delta-wye isolation transformer and standard six-pulse drive using the series bridge connection shown in figure 3. An auto transformer could have been used in place of the isolation transformer. The auto transformer costs less and requires less mounting space, but the isolation transformer was selected because it provides better performance and is readily available from stock. The system was tested with line voltage unbalance ranging from 0% to 3% and with loads ranging from 5% to 110%. The input total harmonic current distortion, THID, is shown in figure 4. THID varied from 12% at full load with balanced line voltages to 65% at 17% load with a 3% unbalance. The data show that the harmonic performance of twelve-pulse drives degrades rapidly with increasing line voltage unbalance. Many users expect that THID should not exceed specified limits from no load to full load. The graph reveals that THID in twelve-pulse drives is very much a function of load. Good performance also requires balanced line voltages.To determine how a six-pulse drive system operates under unbalanced line voltage conditions, we tested a 30 HP drive with a 5% line reactor operating from a power source with a 1% impedance. This system was tested with line voltage unbalance ranging from 0% to 3% and with loads ranging from 5% to 110%. The total harmonic current distortion, THID, is shown in figure 5. THID varied from 29% at full load with balanced line voltage to 95% at 5% load with a 3% line voltage unbalance. The harmonic performance of the twelve-pulse drive is significantly superior to a six-pulse drive under all conditions of line unbalance.Figure 4It is interesting to compare the performance of the twelve-pulse drive with a standard six-pulse drive fitted with an MTE Matrix Harmonic Filter under similar conditions of unbalanced line voltages. The Matrix Harmonic Filter is a type of low pass harmonic filter designed to work with standard six-pulse drives. A Matrix Harmonic Filter was tested feeding a 30 HP six-pulse drive. This system was tested with line voltage unbalance ranging from 0% to 3% and with loads ranging from 5% to 110%. The input total harmonic current distortion, THID, is shown in figure 6. THID varied from 4.7% at full load with balanced line voltage to 9% at 25% load with a 3% line voltage unbalance. The low pass filter provides better harmonic performance than the twelve-pulse system throughout the load range and is significantly less sensitive to voltage unbalance. At 25% load with a 1% line voltage unbalance, the twelve-pulse drive has an input total harmonic current distortion of 29% while the six-pulse drive fed from a low pass Matrix Harmonic Filter has a THID of 7% under the same operating conditions.ConclusionDrives are applied in heating, ventilating, and air conditioning applications because loads are variable and users demand energy efficiency and comfort. Varying loads result in load unbalances within building power distribution systems which add to the utility line voltage unbalance at the point of common coupling. Harmonic mitigation techniques which are not effective with line voltage unbalances of 1% to 3% at the point of utilization will not as a practical matter achieve useful results. The data in this report show that a standard six-pulse drive fed from a low pass Matrix Filter provides superior harmonic performance to a twelve-pulse drive in applications with variable loads and line voltage unbalances ranging from 0% to 3%.Figure 5Figure 6。
脉冲变压器的工作原理

脉冲变压器的工作原理脉冲变压器是一种基于磁性耦合原理的电子元件,用于将一组脉冲信号从一个电路传输到另一个电路。
它常常用于相互隔离的电子设备之间的信号传输,如在计算机网络中。
脉冲变压器通常使用铁芯而不是空心线圈,其以可变的磁场强度来传输信号。
以下详细介绍脉冲变压器的工作原理。
1、铁芯原理脉冲变压器的铁芯是由一块铁矽合金制成的,它有一个环形状,里面有两个相邻的绕组,即“主绕组”和“副绕组”。
这两个绕组都绕在铁芯上,而且它们之间没有任何物理连接或导线连接。
2、主绕组声波发射器当脉冲信号通过“主绕组”时,它会在铁芯中产生一个变化的磁场。
这个变化的磁场会产生一个相应的声波,在频率很高的情况下,声波的频率超过了人耳的听力范围。
这个声波就是我们所说的“磁通声波”。
这个声波会在铁芯中传播,而不会向外传播到空气中。
3、副绕组声波接收器当磁通声波到达“副绕组”时,它会在这里产生一个变化的磁场。
这个变化的磁场会在副绕组的导线中产生一个电流,这个电流与通过主绕组的脉冲信号相同。
因此,这个电流可以用来表示主绕组的信号。
4、耦合系数铁芯的质量和绕组的长度是两个主要的因素,它们共同决定了“耦合系数”。
耦合系数是一个数值,它表示主绕组和副绕组之间的磁耦合程度。
当耦合系数为1时,主绕组中的信号完全传输到副绕组中。
当耦合系数不为1时,只有部分信号能够通过。
综上,脉冲变压器的工作原理是基于主绕组中的脉冲信号产生磁通声波,这些声波在铁芯中传播,最终通过副绕组产生电流来表示信号进行传输。
耦合系数决定了主绕组和副绕组之间的磁耦合程度,从而影响了信号的传输效果。
脉冲变压器通过这种原理,在电子设备之间实现信号的相互隔离和传输。
12脉冲变压器 谐波分量

12脉冲变压器谐波分量
12脉冲变压器是一种特殊的变压器,它的输入端和输出端之间的电压波形是由12个脉冲组成的,每个脉冲的宽度为1/12个周期,因此也被称为12脉冲变压器。
在这种变压器中,由于脉冲宽度的限制,可能会存在谐波分量。
谐波分量是指频率是基波频率整数倍的分量。
对于12脉冲变压器,其基波频率为输入电压频率的1/12。
因此,在12脉冲变压器中可能存在的谐波分量频率包括基波频率的整数倍,即:
f = 1/12 × n
其中,n为正整数,表示基波频率的整数倍。
例如,当输入电压频率为50 Hz时,基波频率为1/12 × 50 = 4.17 Hz,因此可能存在的谐波分量频率为:
f = 1/12 × 1 = 0.083 Hz
f = 1/12 × 2 = 0.167 Hz
f = 1/12 × 3 = 0.250 Hz
f = 1/12 × 4 = 0.333 Hz
f = 1/12 × 5 = 0.417 Hz
f = 1/12 × 6 = 0.500 Hz
f = 1/12 × 7 = 0.583 Hz
f = 1/12 × 8 = 0.667 Hz
f = 1/12 × 9 = 0.750 Hz
f = 1/12 × 10 = 0.833 Hz
f = 1/12 × 11 = 0.917 Hz
需要注意的是,谐波分量的大小取决于输入电压的波形和变压器的设计参数,因此在实际应用中需要进行具体的分析和计算。
等值12脉整流变压器原理

等值12脉整流变压器原理
等值12脉整流变压器原理
等值12脉整流变压器可以将交流电压转换为相应的直流电压,是一种新型的交直流变压器。
它的工作原理是:交流电源(110V或220V)通过输入端(变压器的热端)的源端进入变压器,然后经过型号等值12脉整流器外壳内绕组线路,每脉有6个线路,从而将交流电压转换为相应的直流电压。
等值12脉整流变压器的热端可以根据具体的需要,改变输出电压的大小,从而达到调节的目的。
这种变压器一般是由几个等值(12脉)绕组组成,因此称之为'等值12脉整流变压器'。
等值12脉整流变压器的使用范围很广,可以用来调节输出电压,如电梯、车辆用的马达、变频器、可调谐器等。
它们可以调整机器的电压和频率,从而更好地控制电机和调节其工作状态。
从技术性能上来讲,等值12脉整流变压器具有良好的稳定性、高效率、节能等特点,广泛应用于各种类型的调节系统中。
它的工作原理也比较简单,只需要更换外壳上的几个螺丝即可,不受影响的场景也比较多,所以是一种比较受欢迎的变压器之一。
- 1 -。
双桥十二脉动整流器原理

双桥十二脉动整流器原理0引言十二脉冲整流技术的发展由来已久,早在70年代初期,当大功率可控硅发展成熟之际,人们就已经发现了可控硅整流器在将交流电转换为直流电的同时,产生了大量的谐波电流注入到电网中,随之而来的就是谐波电流对电网中的其它负载产生的影响,为此,人们寻求一种解决方法,希望去除掉整流器产生的谐波电流。
在当时的技术水平和条件下,只有两种解决方案:其一是采用两套整流器通过不同相位的叠加,以便消除H5、H7次谐波,也就是12脉冲整流器;另外一种方案就是采用LC型的无源滤波器,试图消除(主要是)H5和(部分的)H7以及少量的其它更高次的谐波。
这在当时算是比较先进的技术。
1十二脉冲整流器原理12脉冲是指在原有6脉冲整流的基础上,在输入端增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。
两个三相整流电路就是通过变压器的不同联结构成12相整流电路。
桥1的网侧电流傅立叶级数展开为:iIA=iIa=2´31/2/p´Id(sinwt-1/5sin5wt-1/7sin7wt+1/11sin11wt+1/13sin13wt-1/17 Sin17wt-1/19sinwt+…)桥II网侧线电压比桥I超前30°,因网侧线电流比桥I超前30°:iIA=2´31/2/p´Id(sinwt+1/5sin5wt+1/7sin7wt+1/11sin11wt+1/13sin13wt+1/17Sin17 wt+1/19sinwt+…)故合成的网侧线电流iA=iIA+iIIA=4´31/2/p(sinwt+1/11sinwt+1/13sin13wt+…)可见,两个整流桥产生的5、7、17、19、…次谐波相互抵消,注入电网的只有12k±1(k为正整数)次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。
脉冲变压器工作原理

脉冲变压器工作原理
脉冲变压器是一种特殊的电力变压器,主要用于将电能从一个电路传输到另一个电路,例如在直流电路中传输电能。
其工作原理如下:
1. 输入电压方波信号:脉冲变压器的输入端通常接收一个方波信号,信号通常是一个周期性的脉冲。
这个方波信号可以是直流电压的开关信号,或者是其他脉冲信号。
2. 磁性导体:脉冲变压器内部有一个磁性导体,通常是一个铁芯线圈。
这个磁性导体具有高导磁率,可以通过其产生磁场。
3. 动态磁场:当输入信号的脉冲上升沿到来时,导体上的电流开始变化,从而在磁性导体中产生一个变化的磁场。
这个变化的磁场会引起其他线圈(即输出线圈)中的电流变化。
4. 感应电压输出:由于磁场的变化,输出线圈中会感应出一个电压,这个电压的大小取决于输入信号的幅值、占空比以及线圈的参数。
因此,脉冲变压器可以将输入信号的能量传输到输出电路中。
总结起来,脉冲变压器的工作原理主要是通过磁性导体中的变化磁场来实现输入信号能量到输出信号能量的转换。
脉冲变压器的工作原理

脉冲变压器的工作原理
脉冲变压器是一种常见的电力变压器,其工作原理是利用高频交流电源经过开关器件进行断续开关,从而产生脉冲信号,进而改变电压大小。
脉冲变压器的基本工作原理是利用分时开关周期性地将输入电源的能量存储在磁场中,并通过变压器的副边将储存的能量转移到输出负载上。
具体而言,它由以下几个部分组成:
1. 输入电源:脉冲变压器的输入电源通常为直流电压。
这个直流电压通过开关器件进行断续开关,产生高频脉冲信号。
2. 开关器件:脉冲变压器中最关键的组件就是开关器件,常见的有晶体管、MOSFET等。
由于高开关频率,这些器件需要
具备快速开关速度和较小的开关损耗。
3. 能量存储元件:能量存储元件一般为电感器或变压器的主边。
在每个开关周期的高电平时间内,输入电源的能量通过开关器件储存到能量存储元件中。
4. 能量转移元件:能量转移元件一般为变压器的副边。
在每个开关周期的低电平时间内,能量存储元件的储存能量通过能量转移元件传递到输出负载上。
通过高频的开关操作,脉冲变压器能够将输入电压在输出端产生不同的电压。
通过合理设计能量存储元件和能量转移元件的参数,可以实现不同的变压比。
总之,脉冲变压器通过高频断续开关的方式,将输入电源的能量以脉冲形式储存和传递,从而改变输出电压大小。
它在电力变换和电源控制等领域有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12脉冲变压器原理
脉冲变压器是一种用于变换电压的电子器件,其原理是利用磁
性元件和开关电路来实现电压的变换。
脉冲变压器通常由磁性材料
的磁芯、输入线圈、输出线圈和开关电路组成。
首先,让我们来看一下脉冲变压器的工作原理。
当输入电压施
加到输入线圈上时,通过开关电路对输入电压进行调制,产生一系
列的脉冲信号。
这些脉冲信号被传送到磁性芯片上,从而在输出线
圈中诱导出相应的电压。
脉冲变压器的工作原理可以从磁性元件和开关电路两个方面来
解释。
首先,磁性元件的原理是利用磁芯的磁导率和线圈的匝数比
来实现电压的变换。
当脉冲信号通过输入线圈时,它产生的磁场会
在磁芯中产生磁通,从而诱导出输出线圈中的电压。
其次,开关电
路的原理是通过控制开关管的导通和截止来实现对输入电压的调制,从而产生需要的脉冲信号。
此外,脉冲变压器还可以通过变换输入脉冲的频率和占空比来
实现对输出电压的调节。
通过控制开关电路的工作方式,可以实现
不同的输出电压和电流。
这种灵活的调节方式使得脉冲变压器在各
种电子设备中得到了广泛的应用。
总的来说,脉冲变压器利用磁性元件和开关电路来实现电压的变换,其工作原理涉及磁场的诱导和脉冲信号的调制,通过控制开关电路的工作方式可以实现对输出电压的调节。
这种原理使得脉冲变压器成为了电子领域中一种非常重要的电压变换器件。